Algorithms for Causal Probabilistic Graphical Models

Class 1: Introduction and Inference

Athens Summer School on Al July 2024

Prof. Rina Dechter Prof. Alexander Ihler

UNIVERSITY of CALIFORNIA O IRVINE

Outline of Lectures

Class 2: Bounds & Variational Methods

Class 3: Search Methods

Class 4: Monte Carlo Methods

Class 5: Causal Reasoning

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decomposition

Variable Orderings

Learning from Data

Describe structure and interdependence in a model of the world

Examples:

Markov Random Fields: correlations

Map coloring & constraint satisfaction problems

Semantic segmentation: fine-grain object recognition

Describe structure and interdependence in a model of the world

Examples:

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence

Pedigree network: genetic inheritance

Describe structure and interdependence in a model of the world

Examples:

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence
- Causal Networks: effect of intervention what would happen if?

ESSAI 2024

6

Describe structure and interdependence in a model of the world

Examples:

"Oil Wildcatter" Decision Network

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence
- Causal Networks: effect of intervention what would happen if?
- Influence Diagrams: actions and rewards what should we do if?

(Partially Observable) Markov Decision Process (Planning, Reinforcement Learning)

Dechter & Ihler

ESSAI 2024

Bayesian networks

Use independence and conditional independence to simplify a joint probability

- Joint probability, p(X=x,Y=y,Z=z)
 - The probability that event (x,y,z) happens.
- Conditional probability
 - The chain rule of probability tells us

p(X=x,Y=y,Z=z) = p(X=x) p(Y=y | X=x) p(Z=z | X=x,Y=y)

(x,y,z all happen)	(x happens)	(y happens	(z happens	
		given x happened)	given x,y happened)	

Can use any order, e.g. (Z,X,Y):
 p(X=x,Y=y,Z=z) = p(Z=z) p(X=x | Z=z) p(Y=y | X=x,Z=z)

Independence

- X, Y independent:
 - p(X=x,Y=y) = p(X=x) p(Y=y) for all x,y
 - Shorthand: p(X,Y) = P(X) P(Y)
 - Equivalent: p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
 - Intuition: knowing X has no information about Y (or vice versa)

Independent probability distributions:

Δ	P(A)		B	P(B)		C	P(C)	loint.	A	B	С	P(A,B,C)
								JOIIT.	0	0	0	.4 * .7 * .1
0	0.4		0	0.7		0	0.1		0	0	1	1 * 7 * 9
1	0.6		1	0.3		1	0.9		0		-	.4 .7 .9
										1	0	.4 * .3 * .1
	This reduces representation size!								0	1	1	
									1	0	0	
									1	0	1	
									1	1	0	
									1	1	1	

Independence

- X, Y independent:
 - p(X=x,Y=y) = p(X=x) p(Y=y) for all x,y
 - Shorthand: p(X,Y) = P(X) P(Y)
 - Equivalent: p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
 - Intuition: knowing X has no information about Y (or vice versa)

Independent probability distributions:

Δ	D(A)	R	D(R)		C		loint	A	Ŀ	
A	P(A)					P(C)	JUIII.	0	(
0	0.4	0	0./		0	0.1		0	ſ	
1	0.6	1	0.3		1	0.9		0		
				1				0	1	
	This red	uces r	epresenta	tio	n si	ze!		0	1	
	1									
	Note: it	is hard	l to "read	″ in	dep	pendence		1	(
	trom t	the Joi	nt distribu	Itio	n.			1	1	
	We can "test" for it, however.									

P(A,B,C)

0.028

0.252

0.012

0.108

0.042

0.378

0.018

0.162

С

0

1

0

1

0

1

0

1

Conditional Independence

- X, Y independent given Z
 - p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
 - Equivalent: p(X|Y,Z) = p(X|Z) or p(Y|X,Z) = p(Y|Z)

(if all > 0)

- Intuition: X has no additional info about Y beyond Z's

Example

X = heightp(height|reading, age) = p(height|age)Y = reading abilityp(reading|height, age) = p(reading|age)Z = age

Height and reading ability are dependent (not independent), but are conditionally independent given age

Conditional Independence

- X, Y independent given Z
 - p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
 - Equivalent: p(X|Y,Z) = p(X|Z) or p(Y|X,Z) = p(Y|Z)
 - Intuition: X has no additional info about Y beyond Z's
- Example: Dentist $(T \perp\!\!\!\perp D \mid C)$?
- Is T conditionally independent of C given D?
- Again, hard to "read" from the joint probabilities; only from the conditional probabilities.

Like independence, reduces representation size!

Joint prob:									
Т	D	С	P(T,D,C)						
0	0	0	0.576						
0	0	1	0.008						
0	1	0	0.144						
0	1	1	0.072						
1	0	0	0.064						
1	0	1	0.012						
1	1	0	0.016						
1	1	1	0.108						
	Join T 0 0 0 0 1 1 1 1	T D 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1	T D C 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1	T D C P(T,D,C) 0 0 0 0.576 0 0 1 0.008 0 1 0.008 0 1 0.008 0 1 0.008 1 0 0.144 0 1 1 0.072 1 0 0 0.064 1 0 1 0.012 1 1 0 0.016 1 1 1 0.108					

т	D	С	P(T D,C)
0	0	0	0.90
0	0	1	0.40
0	1	0	0.90
0	1	1	0.40
1	0	0	0.10
1	0	1	0.60
1	1	0	0.10
1	1	1	0.60

Bayesian networks

- Directed graphical model
- Nodes associated with variables
- "Draw" independence in conditional probability expansion
 - Parents in graph are the RHS of conditional
- $E_{\mathbf{X}:} p(x, y, z) = p(x) p(y | x) p(z | y)$

 $x \rightarrow y \rightarrow z$

• $\operatorname{Ex} p(a, b, c, d) = p(a) \ p(b \mid a) \ p(c \mid a, b) \ p(d \mid b)$

Example

- Consider the following 5 binary variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - W = Watson calls to report the alarm
 - H = Mrs. Hudson calls to report the alarm
 - What is P(B | H=1, W=1)? (for example)
 - We can use the full joint distribution to answer this question
 - Requires 2⁵ = 32 probabilities
 - Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian network

- Given p(W, H, A, E, B) = p(E) p(B) p(A|E, B) p(W|A) p(H|A)
- **Define probabilities:** 1 + 1 + 4 + 2 + 2
- Where do these come from?
 - Expert knowledge; estimate from data; some combination

Constructing a Bayesian network

Joint distribution

Full joint distribution: $2^5 = 32$ probabilities

Structured distribution: specify 10 parameters

E	B	A	W	Η	P()
0	0	0	0	0	.93674
0	0	0	0	1	.00133
0	0	0	1	0	.00005
0	0	0	1	1	.00000
0	0	1	0	0	.00003
0	0	1	0	1	.00002
0	0	1	1	0	.00003
0	0	1	1	1	.00000
0	1	0	0	0	.04930
0	1	0	0	1	.00007
0	1	0	1	0	.00000
0	1	0	1	1	.00000
0	1	1	0	0	.00027
0	1	1	0	1	.00016
0	1	1	1	0	.00025
0	1	1	1	1	.00000

E	B	A	W	Н	P()
1	0	0	0	0	.00946
1	0	0	0	1	.00001
1	0	0	1	0	.00000
1	0	0	1	1	.00000
1	0	1	0	0	.00007
1	0	1	0	1	.00004
1	0	1	1	0	.00007
1	0	1	1	1	.00000
1	1	0	0	0	.00050
1	1	0	0	1	.00000
1	1	0	1	0	.00000
1	1	0	1	1	.00000
1	1	1	0	0	.00063
1	1	1	0	1	.00037
1	1	1	1	0	.00059
1	1	1	1	1	.00000

Alarm network [Beinlich et al., 1989]

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

Some terminology

- Parents & Children
 - Parents $pa(A) = \{E,B\}$
 - Children ch(A) = {W,H}
- Ancestors & Descendants
 - Ancestors an(W) = {A,E,B}
 - Descendants de(E) = {A,W,H}
- Roots & Leaves
- Paths
 - Directed paths, undirected paths

A graphical model consists of: $A \in \{0, 1\}$ $X = \{X_1, \dots, X_n\}$ -- variables $B \in \{0, 1\}$ $D = \{D_1, \dots, D_n\}$ -- domains (we'll assume discrete) $C \in \{0, 1\}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\}$ -- functions or "factors" $f_{AB}(A, B), \quad f_{BC}(B, C)$

Example:

and a combination operator

The combination operator defines an overall function from the individual factors, e.g., "*" : $F(A, B, C) = f_{AB}(A, B) \cdot f_{BC}(B, C)$

Notation:

Discrete X_i : values called "states"

"Tuple" or "configuration": states taken by a set of variables

"Scope" of f: set of variables that are arguments to a factor f often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha})$, $X_{\alpha} \subseteq X$

Canonical forms

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{-- variables}$ $D = \{D_1, \dots, D_n\} \quad \text{-- domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \quad \text{-- functions or "factors"}$

and a combination operator

Typically either multiplication or summation; mostly equivalent:

$$\begin{pmatrix}
f_{\alpha}(X_{\alpha}) \ge 0 \\
F(X) = \prod_{\alpha} f_{\alpha}(X_{\alpha})
\end{pmatrix}$$

Product of nonnegative factors (probabilities, 0/1, etc.)

$$\begin{pmatrix}
\theta_{\alpha}(X_{\alpha}) = \log f_{\alpha}(X_{\alpha}) \in \mathbb{R} \\
\theta(X) = \log F(X) = \sum_{\alpha} \theta_{\alpha}(X_{\alpha})
\end{pmatrix}$$

Sum of factors (costs, utilities, etc.)

Graphical visualization

A graphical model consists of: $X = \{X_1, \dots, X_n\} \quad \text{-- variables}$ $D = \{D_1, \dots, D_n\} \quad \text{-- domains}$ $F = \{f_{\alpha_1}, \dots, f_{\alpha_m}\} \quad \text{-- functions or "factors"}$

Primal graph: variables ↔ nodes factors ↔ cliques

 $p(A, B, C, D, F, G) = f_1(A, B, D) \cdot f_2(D, F, G)$ $\cdot f_3(B, C, F) \cdot f_4(A, C)$

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decomposition

Variable Orderings

Learning from Data

Inference

Enable us to answer **queries** about our model

- Some probabilities are directly accessible
- Some are only **implicit**, and require computation

ESSAI 2024

Causal Bayesian networks

- Typical BNs capture conditional independence
- May not correspond to causation; but if so:

Causal Effect Query ("Intervention"):

 $p(W|\mathrm{do}(K=1))$

What is the probability when we intervene to turn on the sprinkler?

Influence diagrams

Random variables, plus actions (policy) and utilities (outcome values)

Maximum Expected Utility Query:

What actions should I take in a given situation? What is the expected value of my policy over the actions?

e.g., [Raiffa 1968; Shachter 1986]

Chance variables: $X = x_1, \ldots, x_n$ Decision variables: $D = d_1, \ldots d_m$ CPDs for chance variables: $P_i = P(x_i | x_{pa_i})$, Reward components: $r = \{r_1, \ldots, r_j\}$ Utility function: $u(X) = \sum_i r_i(X)$

Structural Causal Models

Deterministic mechanisms involving (random) underlying causes

Ex: Sprinkler

- p(S): season a function of (unobserved) month
- p(K|S): sprinkler on due to watering schedule: randomness in K due to (unobserved) day of week
- p(R|S) caused by humidity and temperature
- p(W|R,K) also caused by humidity and temperature (effects of evaporation, etc.)

Structural Causal Models

Deterministic mechanisms involving (random) underlying causes

Counterfactual Query:

Probability of an event in contradiction with the observations What would have happened if the sprinkler had been turned off?

Requires that we transfer information about random outcomes that happened, to a different setting

Ex: Sprinkler

Observe the sprinkler is on & grass is wet: (K=1,W=1)

What is the probability it would still be wet if we had turned the sprinkler off?

Observing K=1 tells us it is more likely to be summer; Observing K=1,W=1 tells us it is not too hot & dry.

Then, apply this knowledge to compute the counterfactual: $p(W_{K=0} \,|\, K=1, W=1)$

Why graphical models?

Combine domain knowledge with learning and data

- Domain knowledge
 - Problem structure: potential causation or interactions
 - Model parameters: known dependency mechanisms, probabilities
- Learning and data
 - Identify (in)dependence from data
 - Estimate model parameters to explain observations
- Scalable and Composable
 - Models over large systems may be composed of smaller parts
 - Efficient representation allows learning from relatively few data

Ex: Medical diagnosis

Diagnosing liver disease [Onisko et al., 1999]

Queries:

•

- Prediction
- Diagnosis, explanation
- Situation assessment
- Planning, decision making
- Counterfactual reasoning

Automated Reasoning:

- Develop methods to answer these questions
- Learning models from experts and data

Ex: Model composability

Large models may be defined by many repeated, interrelated structures

Domains for graphical models

- Natural Language processing
 - Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
 - Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
 - Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
 - Webpage link analysis, social networks, communications, citations,
- Robotics
 - Planning & decision making

Books on Graphical Models & Causality

(intervention & counterfactuals)

Outline of Lectures

Class 2: Bounds & Variational Methods

Class 3: Search Methods

Class 4: Monte Carlo Methods

Class 5: Causal Reasoning

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decomposition

Variable Orderings

Learning from Data

Inference

- Take information (model, observations)
 - Implicitly defines a joint / conditional joint distribution
- Inference: what does that information mean?
 - How do other probabilities change? (Conditional) marginals
 - How likely was our observation? Probabiliity of evidence
 - Predict the value of the other variables? MPE / MAP estimates

• Tasks
"summation"
$$Z = \sum_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha}) \qquad p(X_{i} = x_{i}) = Z^{-1} \sum_{x \sim x_{i}} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$
"maximization"
$$x^{*} = \arg \max_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha}) \qquad f^{*} = f(x^{*}) = \max_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$
A simple example

- Suppose we have two factors: $f(X) = f_{12}(X_1, X_2) f_{23}(X_2, X_3)$
- To compute the partition function (sum):

$$Z = \sum_{x_1, x_2, x_3} f(x_1, x_2, x_3) = f(0, 0, 0) + f(0, 0, 1) + f(0, 0, 2) + f(0, 1, 0) + \dots + f(1, 0, 0) + f(1, 0, 1) + f(1, 0, 2) + f(1, 1, 0) + \dots$$

- Use the factorization of f(x): $Z = f_{12}(0,0) f_{23}(0,0) + f_{12}(0,0) f_{23}(0,1) + f_{12}(0,0) f_{23}(0,2) + f_{12}(0,1) f_{23}(1,0) + \dots + f_{12}(1,0) f_{23}(0,0) + f_{12}(1,0) f_{23}(0,1) + f_{12}(1,0) f_{23}(0,2) + f_{12}(1,1) f_{23}(1,0) + \dots$

and apply the distributive rule:

We can pre-compute and re-use these terms in the sum!

$$\lambda(x_2) = \left(\sum_{x_3} f_{23}(x_2, x_3)\right) \qquad \qquad Z = \sum_{x_1, x_2} f_{12}(x_1, x_2) \,\lambda(x_2)$$

Dechter & Ihler

ESSAI 2024

Variable Elimination

Product of factors:

$$p(X_1, X_2, X_3, X_4) = \frac{1}{Z} f_{12}(X_1, X_2) f_{13}(X_1, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4).$$

Compute:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} f_{34}(x_3, x_4) f_{24}(x_2, x_4) f_{12}(x_1, x_2) f_{13}(x_1, x_3),$$

Collect terms involving x_1 , then x_2 , and so on:

$$Z = \sum_{x_4} \sum_{x_3} f_{34}(x_3, x_4) \sum_{x_2} f_{24}(x_2, x_4) \sum_{x_1} f_{12}(x_1, x_2) f_{13}(x_1, x_3),$$

"Bucket elimination":

$$egin{aligned} \lambda_1(x_2,x_3) &= \sum_{x_1} f_{12}(x_1,x_2) f_{13}(x_1,x_3), \ \lambda_2(x_3,x_4) &= \sum_{x_2} f_{24}(x_2,x_4) \lambda_1(x_2,x_3), \ \lambda_3(x_4) &= \sum_{x_3} f_{34}(x_3,x_4) \lambda_2(x_3,x_4), \ Z &= \sum_{x_4} \lambda_3(x_4), \end{aligned}$$

Collect all factors with x₁ in a "bucket"

Collect all remaining factors with x₂

Place intermediate calculations in bucket of their earliest argument

Dechter & Ihler

ESSAI 2024

Combination of factors

Α	В	f(A,B)
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

				-
Α	В	С	f(A,B,C)	Ĩ
b	b	b	0.1	
b	b	g	0	Î
b	g	b	0	Î
b	g	g	0.08	= C
g	b	b	0	
g	b	g	0	
g	g	b	0	
g	g	g	0.4	

В	С	f(B,C)
b	b	0.2
b	g	0
g	b	0
g	g	0.8

= 0.1 x 0.8

Elimination in a factor

Belief updating

• p(X | Evidence) = ?

(Use distributive rule to calculate efficiently:)

 $= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$

(Use distributive rule to calculate efficiently:)

$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$
$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$

(Use distributive rule to calculate efficiently:)

$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$

$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$

$$= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$$

(Use distributive rule to calculate efficiently:)

$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$

$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$

$$= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$$

$$= \max_{x_5} g_2(x_5) \left[\max_{x_4} f_{45} g_1(x_4) g_3(x_4) \right]$$

(Use distributive rule to calculate efficiently:)

 $\max_{x_1...x_5} f_{14} f_{25} f_{34} f_{45}$

$$= \max_{x_2...x_5} f_{25} f_{34} f_{45} \left[\max_{x_1} f_{14} \right]$$
$$= \max_{x_3...x_5} f_{34} f_{45} g_1(x_4) \left[\max_{x_2} f_{25} \right]$$

$$= \max_{x_4...x_5} f_{45} g_1(x_4) g_2(x_5) \left[\max_{x_3} f_{34} \right]$$

 $= \max g_2(x_5) g_4(x_5)$

$$= \max_{x_5} g_2(x_5) \left[\max_{x_4} f_{45} g_1(x_4) g_3(x_4) \right]$$

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \hline \\ g_4(x_5) \end{array} \begin{array}{c} x_2 \\ g_2(x_5) \\ x_5 \\ \hline \\ g_4(x_5) \end{array}$$

For trees:

Efficient elimination order (leaves to root); computational complexity same as model size

 x_5

Induced Width

- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w* is the min w*(d) over all orderings d

Complexity of Bucket Elimination

Finding smallest induced-width is hard!

ESSAI 2024

Types of queries

- **NP-hard**: exponentially many terms
- Difficulty (in part) due to restricted elimination orderings
- We will focus on **approximation** algorithms
 - Anytime: very fast & very approximate \rightarrow Slower & more accurate

Generating the optimal assignment

Given BE messages, select optimum config in reverse order

$$\mathbf{b}^{*} = \arg \max_{b} p(b|a^{*}) p(d^{*}|b, a^{*}) p(e^{*}|b, c^{*}) \quad \mathbf{B}: \qquad p(b|a) p(d|b, a) p(e|b, c)$$

$$\mathbf{c}^{*} = \arg \max_{c} p(c|a^{*}) \lambda_{B \to C}(a^{*}, c, d^{*}, e^{*}) \quad \mathbf{C}: \qquad p(c|a) \qquad \lambda_{B \to C}(a, c, d, e)$$

$$\mathbf{d}^{*} = \arg \max_{d} \lambda_{C \to D}(a^{*}, d, e^{*}) \quad \mathbf{D}: \qquad \lambda_{C \to D}(a, d, e)$$

$$\mathbf{e}^{*} = \arg \max_{e} \mathbb{1}[e = 0] \lambda_{D \to E}(a^{*}, e) \quad \mathbf{E}: \qquad \mathbb{1}[e = 0] \qquad \lambda_{D \to E}(a, e)$$

$$\mathbf{a}^{*} = \arg \max_{a} p(a) \cdot \lambda_{E \to A}(a) \quad \mathbf{A}: \qquad p(a) \qquad \lambda_{E \to A}(a)$$

Return optimal configuration (a*,b*,c*,d*,e*)

OPT = optimal value

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decompositions

Variable Orderings

Learning from Data

From Buckets to Clusters

- Merge non-maximal buckets into maximal clusters.
- Connect clusters into a tree: each cluster to one with which it shares a largest subset of variables.
- Separators are variable- intersection on adjacent clusters.

ESSAI 2024

The General Tree-Decomposition

treewidth = (maximum cluster size) - 1

Cluster-Tree Elimination (CTE), or Join-tree message-passing

For each cluster P(X|e) is computed, also $P(e)_{\beta_1}$

Examples of (Join)-Trees Construction

Tree and Hypertree Decompositions

A *tree decomposition* for a belief network $BN = \langle X, D, G, P \rangle$ is a triple $\langle T, \chi, \psi \rangle$, where T = (V, E) is a tree and χ and ψ are labeling functions, associating with each vertex $v \in V$ two sets, $\chi(v) \subseteq X$ and $\psi(v) \subseteq P$ satisfying :

1. For each function $p_i \in P$ there is exactly one vertex such that

 $p_i \in \psi(v)$ and $scope(p_i) \subseteq \chi(v)$

2. For each variable $X_i \in X$ the set $\{v \in V | X_i \in \chi(v)\}$ forms a

connected subtree (running intersection property)

Treewidth (w) = 3 Hyper tree-width (hw) =2

Tree decomposition

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decompositions

Variable Orderings

Learning from Data

Variable ordering heuristics

- What makes a good order?
 - Low induced width
 - Elimination creates a function over neighbors
- Finding the best order is hard (NP-complete!)
 - But we can do well with simple heuristics
 - Min-induced-width, Min-Fill, ...
 - Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Variable ordering heuristics

- Min (induced) width heuristic
 - 1. for i=1 to n (# of variables)
 - 2. Select a node X_i with smallest degree as next eliminated
 - 3. Connect Xi's neighbors:
 - 4. $E = E + \{ (X_i, X_k) : (X_i, X_j) \text{ and } (X_i, X_k) \text{ in } E \}$
 - 5. Remove X_i from the graph: $V = V \{X_i\}$
 - 6. end

("Weighted" version: weight edges by domain size)

Variable ordering heuristics

- Min fill heuristic
 - 1. for i=1 to n (# of variables)
 - 2. Select a node X_i with smallest "fill edges" as next eliminated
 - 3. Connect Xi's neighbors:
 - 4. $E = E + \{ (X_j, X_k) : (X_i, X_j) \text{ and } (X_i, X_k) \text{ in } E \}$
 - 5. Remove X_i from the graph: $V = V \{X_i\}$
 - 6. end

("Weighted" version: weight edges by domain size)

Min-Fill Heuristic

• Select the variable that creates the fewest "fill-in" edges

Outline

Graphical Models

Inference Tasks

Variable Elimination

Tree Decompositions

Variable Orderings

Learning from Data

Learning Bayesian networks

Known graph? learn parameters: P(C|S)

Complete data

- parameter estimation (ML, MAP, ...) Incomplete data
- parameter optimization (gradient, EM, ...)

Unknown graph? learn graph and parameters

Complete data

- search over graphs (score-based, constraint-based)
 Incomplete data
- iterative optimization & search (structural EM, etc.)

Learning Bayesian networks

- Maximum Likelihood estimation
 - Select model that makes the data most probable
- For discrete X_i & no shared parameters
 - ML estimates are empirical probabilities

Learning with missing data

- Latent / hidden variables
 - Value is never observed
 - No unique model (e.g., symmetry)
 - No closed form solution; iterative ML
- More general missing values?
 - May depend on the reason for missingness!

a	-		
Dat	?	0	(
/ed	?	0	(
sen	?	1	(
qO	?	1	-
	?	0	(
	?	0	-
	?	1	(

? | 1

A W H

Learning with missing data

Summary

Graphical Models

Inference Tasks

Variable Elimination

Tree Decomposition

Variable Orderings

Learning from Data

Outline of Lectures

Class 2: Bounds & Variational Methods

Class 3: Search Methods

Class 4: Monte Carlo Methods

Class 5: Causal Reasoning

Summary

- Formalisms for describing probabilistic & causal models
 - Bayesian networks, Influence Diagrams, Structural Causal Models
- Reasoning & Inference Queries
- Exact inference
 - Bucket elimination: time & memory exponential in the induced width.
 - Tree decomposition: organize computation into message-passing
 - Finding optimal induced width is hard, but greedy schemes work well
 - Inference task may restrict elimination orderings & increase width
- Learning from Data
 - Maximum likelihood learning
 - Easy case: match empirical statistics of the data