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Class 2: Bounds & Variational Methods
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Approximate Inference
• Two main schools of approximate inference

• Variational methods   [Class 2]

– Frame “inference” as convex optimization
 & approximate (constraints, objectives)
– Reason about “beliefs”; pass messages
– Fast approximations & bounds
– Quality often limited by memory

• Monte Carlo sampling   [Class 4]

– Approximate expectations with sample averages
– Estimates are asymptotically correct
– Can be hard to gauge finite sample quality
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Graphical models

5

A graphical model consists of:
          -- variables
     -- domains
     -- functions or “factors”

     and a combination operator 

The combination operator defines an overall function from the individual factors,
      e.g.,  “*”  : 

(we’ll assume discrete)

Notation:
     Discrete  Xi  values called “states”
     “Tuple” or “configuration”: states taken by a set of variables
     “Scope” of f: set of variables that are arguments to a factor f
              often index factors by their scope, e.g., 
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Season

Sprinkler Rain

Wet

P(S)

P(K|S)

P(W|K,S)

P(R|S)



Canonical forms

     
   

       
 

Typically either multiplication or summation; mostly equivalent:

Product of nonnegative factors
(probabilities, 0/1, etc.)

Sum of factors
(costs, utilities, etc.)

log / exp

A graphical model consists of:
          -- variables
     -- domains
     -- functions or “factors”

     and a combination operator 
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Probabilistic Reasoning Problems
• Exact Inference by elimination or search
• Complexity:

Influence 
diagrams & 
planning Bounded error

Causal effects
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Decomposition bounds
• Upper & lower bounds via approximate problem decomposition
• Example: MAP inference

– Relaxation: two “copies” of x, no longer required to be equal
– Bound is tight (equality) if f1, f2 agree on maximizing value x

ESSAI 2024 9

X f1(X)
0 1.0
1 2.0
2 3.0
3 4.0

X f2(X)
0 1.0
1 2.0
2 2.0
3 0.0

X F (X)
0 2.0
1 4.0
2 5.0
3 4.0

+=

5.0 =  4.0  +  2.0   =   6.0
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Mini-Bucket Approximation

Split a bucket into mini-buckets ―> bound complexity

Exponential complexity decrease:

bucket (X) = 
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Mini-Bucket Elimination

A

D E

CB

bucket E:

bucket C:

bucket D:

bucket B:

bucket A:

mini-buckets

U = upper bound

[Dechter & Rish 2003]
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Mini-Bucket Elimination

bucket E:

bucket C:

bucket D:

bucket B:

bucket A:

mini-buckets

U = upper bound

[Dechter & Rish 2003]

A

D E

CB’

B

Can interpret process as “duplicating” B 
[Kask et al. 2001, Geffner et al. 2007, 
  Choi et al. 2007, Johnson et al. 2007]

Dechter & Ihler ESSAI 2024 12



Mini-Bucket Decoding
• Assign values in reverse order using approximate messages

ESSAI 2024

Greedy configuration = lower bound

E:

C:

D:

B:

A:

mini-buckets

U = upper bound
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Properties of MBE(i)
• Complexity: O(r exp(i)) time and O(exp(i)) space

• Yields a lower bound and an upper bound

• Accuracy: determined by upper/lower (U/L) bound

• Possible use of mini-bucket approximations
– As anytime algorithms
– As heuristics in search

• Other tasks (similar mini-bucket approximations)
– Belief updating, Marginal MAP, MEU, WCSP, Max-CSP
[Dechter and Rish, 1997], [Liu and Ihler, 2011], [Liu and Ihler, 2013]
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Tightening the bound
• Reparameterization (or, “cost shifting”)

– Decrease bound without changing overall function

15

+
B C f2(B,C)

0 0 1.0
0 1 0.0
1 0 1.0
1 1 3.0

A B C F(A,B,C)
0 0 0 3.0
0 0 1 2.0
0 1 0 2.0
0 1 1 4.0
1 0 0 4.5
1 0 1 3.5
1 1 0 4.0
1 1 1 6.0

=

A B f1(A,B) ¸(B)
0 0 2.0

0
1 0 3.5
0 1 1.0

+1
1 1 3.0

B C f2(B,C) -¸(B)
0 0 1.0

0
0 1 0.0
1 0 1.0

-1
1 1 3.0

A B f1(A,B)

0 0 2.0
1 0 3.5
0 1 1.0
1 1 3.0

+=
(Adjusting functions
               cancel each other)
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Decomposition for MAP

• Bound solution using decomposed optimization
• Solve independently: optimistic bound

• Tighten the bound by reparameterization
– Enforces lost equality constraints using Lagrange multipliers

Reparameterization:

Add factors that “adjust”  
    each local term, but
    cancel out in total
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Decomposition for MAP

• Many names for the same class of bounds
– Dual decomposition [Komodakis et al. 2007]

– TRW, MPLP   [Wainwright et al. 2005; Globerson & Jaakkola 2007]

– Soft arc consistency [Cooper & Schiex 2004]

– Max-sum diffusion  [Warner 2007]

Add factors that “adjust”  
    each local term, but
    cancel out in total

Dechter & Ihler ESSAI 2024 17

Reparameterization:



Decomposition for MAP

• Many ways to optimize the bound:
– Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]

– Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag 2009; Ihler et al. 2012]

– Proximal optimization [Ravikumar et al. 2010]

– ADMM    [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]
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Add factors that “adjust”  
    each local term, but
    cancel out in total

Reparameterization:



Decomposition for MAP

• Many ways to optimize the bound:
– Sub-gradient descent [Komodakis et al. 2007; Jojic et al. 2010]

– Coordinate descent [Warner 2007; Globerson & Jaakkola 2007; Sontag 2009; Ihler et al 2012]

– Proximal optimization [Ravikumar et al. 2010]

– ADMM    [Meshi & Globerson 2011; Martins et al. 2011; Forouzan & Ihler 2013]

Relaxation
upper bound

Decoded configurations

MAP

Dechter & Ihler ESSAI 2024 19

Add factors that “adjust”  
    each local term, but
    cancel out in total

Reparameterization:



Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent

A B f1(A,B) λ(B)
0 0 1.0

0
1 0 0.0
0 1 0.0

0
1 1 2.5
0 2 1.0

0
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0

0
0 1 2.0
1 0 1.0

0
1 1 1.5
2 0 0.2

0
2 1 0.0

+=
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Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent

A B f1(A,B) λ(B)
0 0 1.0

+1
1 0 0.0
0 1 0.0

0
1 1 2.5
0 2 1.0

-1
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0

-1
0 1 2.0
1 0 1.0

0
1 1 1.5
2 0 0.2

+1
2 1 0.0

+=

Dechter & Ihler ESSAI 2024 21

A B B C



Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent

A B f1(A,B) λ(B)
0 0 1.0

+1
1 0 0.0
0 1 0.0

0
1 1 2.5
0 2 1.0

-1
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0

-1
0 1 2.0
1 0 1.0

0
1 1 1.5
2 0 0.2

+1
2 1 0.0

+=
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Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent

A B f1(A,B) λ(B)
0 0 1.0

+2
1 0 0.0
0 1 0.0

-1
1 1 2.5
0 2 1.0

-1
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0

-2
0 1 2.0
1 0 1.0

+1
1 1 1.5
2 0 0.2

+1
2 1 0.0

+=
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Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent

A B f1(A,B) λ(B)
0 0 1.0

+2
1 0 0.0
0 1 0.0

-1
1 1 2.5
0 2 1.0

-1
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0

-2
0 1 2.0
1 0 1.0

+1
1 1 1.5
2 0 0.2

+1
2 1 0.0

+=
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Both parts agree on 
the optima value(s):
zero subgradient

A B B C



Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent
– Coordinate descent

A B f1(A,B) λ(B)
0 0 1.0
1 0 0.0
0 1 0.0
1 1 2.5
0 2 1.0
1 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0
0 1 2.0
1 0 1.0
1 1 1.5
2 0 0.2
2 1 0.0

+=
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Easy to minimize over a 
single variable, e.g. B:

Find maxima for each B
Match values between f’s

A B B C



Optimizing the bound
• Can optimize the bound in various ways:

– (Sub-)gradient descent
– Coordinate descent

A B f1(A,B) λ(B)
0 0 1.0 - 0.5 

+2.51 0 0.0
0 1 0.0 - 1.25 

+0.751 1 2.5
0 2 1.0 - 1.5  

+0.11 2 3.0

B C f2(B,C) -λ(B)
0 0 5.0 +0.5

- 2.50 1 2.0
1 0 1.0 +1.25

- 0.751 1 1.5
2 0 0.2 +1.5

- 0.12 1 0.0

+=
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Easy to minimize over a 
single variable, e.g. B:

Find maxima for each B
Match values between f’s

A B B C



E:

C:

D:

B:

A:

Mini-Bucket as Decomposition

ESSAI 2024

mini-buckets

U = upper bound

[Ihler et al. 2012]
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E:

C:

D:

B:

A:

Mini-Bucket as Decomposition

ESSAI 2024

U = upper bound

Join graph:

{A,B,C} {B,D,E}

{A,C,E}

{A,D,E}

{A,E}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}

• Downward pass as cost shifting

• Can also do cost shifting within  
mini-buckets:

“Join graph” message passing

• “Moment-matching” version:
One message exchange within 
each bucket, during downward 
sweep

• Optimal bound defined by cliques 
(“regions”) and cost-shifting f’n 
scopes (“coordinates”)

[Ihler et al. 2012]
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Anytime Approximation

• Can tighten the bound in various ways
– Cost-shifting          (improve consistency between cliques)
– Increase i-bound  (higher order consistency)

• Simple moment-matching step improves bound significantly

ESSAI 2024Dechter & Ihler 29



Anytime Approximation

• Can tighten the bound in various ways
– Cost-shifting          (improve consistency between cliques)
– Increase i-bound  (higher order consistency)

• Simple moment-matching step improves bound significantly
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Anytime Approximation

• Can tighten the bound in various ways
– Cost-shifting          (improve consistency between cliques)
– Increase i-bound  (higher order consistency)

• Simple moment-matching step improves bound significantly
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Decomposition for Sum
• Generalize technique to sum via Holder’s inequality:

• Define the weighted (or powered) sum:

– “Temperature” interpolates between sum & max:

– Different weights do not commute:
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Decomposition for Sum

• Fixed elimination order
• Assign weight per clique & variable

• Again, tighten bound by reparameterization
– Can also optimize over weights

Weights:

Dechter & Ihler ESSAI 2024 33

Reparameterization:

Ex: w12 = [ 0.5   0.3     -   ]
 w13 = [ 0.5     -     0.6 ]
 w23 = [   -     0.7   0.4 ]

[Peng, Liu, Ihler 2015]



Weighted Mini-bucket

Compute downward messages 
    using weighted sum

Upper bound if all weights positive
  (corresponding lower bound if only one positive, rest negative)

E:

C:

D:

B:

A:

mini-buckets

U = upper bound

…

[Liu & Ihler 2011]
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Variational methods
• “Variational” = calculus of variations

– Optimization of a “functional” (function of a function)

• Idea: 
– frame “inference” (maximization or marginals, partition f’n) 
 as a (continuous) optimization problem

• Ex: fit a surrogate model q(x); use to answer questions about p(x)

• Why?  
– We’re really good at continuous optimization:
 (stochastic) gradient descent, etc.

• Problem?
– How can we optimize q(x) without inference about p(x)?

Dechter & Ihler 36ESSAI 2024



Ex: BN with Evidence
• Suppose we have a Bayesian network with some evidence E=e

• The KL-divergence between q & p works out very conveniently:

Dechter & Ihler 38

Evaluate or estimate from q(x)
We can maximize this over q(x)!

probability 
of evidence

“target” distribution we’re interested in

but, only able to evaluate up to a constant

“probability of evidence”

Sometimes called the ELBO = “Evidence Lower BOund”

ESSAI 2024



Stochastic Variational Inference (in Pyro)
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def guide():
    mu = pyro.param("mu", torch.tensor(-1.0) )
    var = pyro.param("var", torch.tensor(3.0), constraint=constraints.positive)
    X = pyro.sample("X", dist.Normal(mu,var))

def model():
    X = pyro.sample('X', dist.Gumbel(torch.tensor([0.0]), torch.tensor([1.0])))

(1) Define our target, unnormalized model (may have evidence, etc.)

(2) Define our variational approximation, q(x) and initialize its parameters:

optimizer = pyro.optim.Adam({"lr": 0.01})
svi = pyro.infer.SVI(model, guide, optimizer, loss=pyro.infer.Trace_ELBO())
for step in range(3000): svi.step()

(3)  Optimize the bound using gradient descent

(gradient descent)
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Variational methods
• Answer queries by fitting a simpler “proxy” model

– Optimize the KL divergence (proxy to target)

• Needs proxy q(x) to be “easy” or “nice”!
– What kinds of q(x) are nice?
– Need to be able to evaluate expectations & evaluate/estimate entropy

– Continuous-valued x?  q(x) Gaussian, etc.

– Discrete x?  High-dimensional x?   Make q(x) simple in terms of its graph!

Dechter & Ihler 40

Can evaluate or 
estimate from q(x)

Constant – depends 
only on f(x)!
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Mean Field
• We can design lower bounds by restricting q(x)

– Naïve mean field: q(x) is fully independent
– Entropy H(q) is then easy:

• Optimizing the bound via coordinate ascent:

)

Dechter & Ihler ESSAI 2024 41

Coordinate update:



Mean Field
• We can design lower bounds by restricting q(x)

– Naïve mean field: q(x) is fully independent
– Entropy H(q) is then easy:

• Optimizing the bound via coordinate ascent:

A

B C

E

D
“Message passing” interpretation:
    Updates depend only on Xi’s Markov blanket

Dechter & Ihler ESSAI 2024 42



Optimization Perspective
• “Variational” = calculus of variations

– Optimization of a “functional” (function of a function)

• Exponential family distributions
– Inference tasks are convex in the model natural parameters!

• Very elegant perspective based on convex optimization
 (discussed here for background / perspective)
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Vector space representation
• Represent the (log) model and state in a vector space

X1 X2

0 0 -1.0

0 1 2.0

1 0 0.0

1 1 1.0

X1

0 0.5

1 0.75

0.5
0.75

.

.
…

-1.0
2.0
0.0
1.0
…

0
1
1
0
…
0
0
1
0
….

…

…
Evaluating the function is a dot product in the vector space:
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Inference Tasks & Convexity
• Distribution is log-linear (exponential family):

• Tasks of interest are convex functions of the model:

“natural parameters”

“features”
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Bounds via Convexity
• Convexity relates target to “nearby” models

– Some of these models are easy to solve!  (trees, etc.)
– Inference at easy models + convexity tells us something about our model!

• Lower bounds:

“easier” model:
  efficient to do inference

target model:
  inference is hard!

Mean field
Negative TRW
…
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Bounds via Convexity
• Convexity relates target to “nearby” models

– Some of these models are easy to solve!  (trees, etc.)
– Inference at easy models + convexity tells us something about our model!

• Upper bounds:

“easier” models:
  efficient to do inference

target model:
  inference is hard!

TRW
Decomposition
…
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Tree-reweighted MAP
• Let T1, T2 be two (or more) tree-structured models, with

• Each Ti is easy to solve:

• And by convexity,

• Minimize bound?
– Convex objective, linear constraints

T1
T2

0.25

0.5

.

.

…

0.0

0.0

0.0

0.0

…Dechter & Ihler ESSAI 2024 48



Decomposition Bounds
• TRW MAP is equivalent to MAP decomposition

· =

(on trees, decomposition bound = exact inference)

More compact
Faster optimization
Reparameterization “messages”
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Tree-reweighted Sum
• Let T1, T2 be two (or more) tree-structured models, with

• Again, we have
T1

T2

w1 w2

·
w2

w1

0

0

1

1

=

(if T1, T2 share an elimination order)
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Variational forms
• Reframe inference task as an optimization over distributions q(x)
• Ex: MAP inference

• Sum inference:

• How to optimize over distributions q?

Optimal q(x) puts all mass on optimal value(s) of x:
   (mass on any other values of x reduces the average) 

(Kullback–Leibler divergence)

Equal iff

Proof:
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The marginal polytope
• Rewrite 

(the marginal probabilities of q)

0

1

1

0

0

0

1

0

q(X1=0)

q(X1=1)

q(X2=0)
.

q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

.

(set of all valid marginal probabilities of q)

X = (0,0):
[1,0,0,0]

X=(0,1):
[0,1,0,0]

X=(1,0):
[0,0,1,0]

X=(1,1):
[0,0,0,1]

“marginal polytope”

and similarly, 
(max entropy given ¹)
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming       n/a   

Mean field         exact   

Belief propagation 

Tree-reweighted  

Method     distributions    entropy        value               

Max:

Sum:
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming       n/a   

Mean field         exact   

Belief propagation 

Tree-reweighted  

Method     distributions    entropy        value               

Max:

Sum:
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Naïve Mean Field
• Subset of M corresponding to independent distributions?

– Includes all vertices (configurations of x), but not all distributions
– Non-convex set; coordinate ascent has local optima

(set of marginal probabilities of independent q)

X = (0,0):
[1,0,0,0]

X=(0,1):
[0,1,0,0]

X=(1,0):
[0,0,1,0]

X=(1,1):
[0,0,0,1]

Non-convex (quadratic) manifold!

1-q1

q1

1-q2

q2

(1-q1) x (1-q2)

(1-q1) x q2 

q1 x (1-q2)

.

q(X1=0)

q(X1=1)

q(X2=0)

q(X2=1)

q(X1=0,X2=0)

q(X1=0,X2=1)

q(X1=1,X2=0)

.
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming       n/a   

Mean field         exact   

Belief propagation 

Tree-reweighted  

Method     distributions    entropy        value               

Max:

Sum:
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The local polytope
• Unfortunately, M has a large number of constraints 

– Enforce only a few, easy to check constraints? 
– Equivalent to a linear programming relaxation of original ILP

q(X1=0)
q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)
q(X1=0,X2=1)
q(X1=1,X2=0)

q(X1=1,X2=0)

…

All probabilities 
   are within [0,1]

“local consistency” polytope
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The local polytope
• Unfortunately, M has a large number of constraints 

– Enforce only a few, easy to check constraints? 
– Equivalent to a linear programming relaxation of original ILP

q(X1=0)
q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)
q(X1=0,X2=1)
q(X1=1,X2=0)

q(X1=1,X2=0)

…

All probabilities 
   are within [0,1]

Each marginal probability
   is normalized to sum to one

“local consistency” polytope
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The local polytope
• Unfortunately, M has a large number of constraints 

– Enforce only a few, easy to check constraints? 
– Equivalent to a linear programming relaxation of original ILP

All probabilities 
   are within [0,1]

Each marginal probability
   is normalized to sum to one

Marginal of (xi, xj)
   is consistent with marginal of xi 

(& similarly, consistent with xj )

q(X1=0)
q(X1=1)

q(X2=0)
q(X2=1)

…
q(X1=0,X2=0)
q(X1=0,X2=1)
q(X1=1,X2=0)

q(X1=1,X2=0)

…

“local consistency” polytope
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The local polytope
• Local polytope does not enforce all the constraints of M:

– Ex: all pairwise probabilities locally consistent, but no joint q(x) exists:

• But, trees remain easy
– If we only specify the marginals on a tree, we can construct q(x)

0.5          0 
     0          0.5 

0.5          0 
     0          0.5 

0         0.5 
    0.5         0

0.5
   0.5

(also illustrates connection to arc consistency in CSPs, etc.)

on tree-structured distributions
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Duality relationship
• Local polytope LP & MAP decomposition are Lagrangian duals:

subject to (a) normalization constraints  (enforce explicitly) 
   (b) consistency:                                         ,                                          (use Lagrange)
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Duality: MAP
Primal

Dual

Reason about subproblems

“Messages” adjust overlapping 
subproblems

Reparameterize subproblems to 
decrease upper bound

Reason about “beliefs” (marginals)

Constraints enforce overlapping 
beliefs are consistent

Optimum over beliefs gives upper 
bound

=
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Outline

Regions & Higher-order Approximations

Variational Optimization

Convexity & Duality

Review: Graphical Models

Decomposition Bounds
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Regions
• Generalize local consistency enforcement

G
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B

C
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JI

H

Factor graph
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FGI
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BCE

GHIJ
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FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F H

F FG GH H

GI
Dual graph

Consistency:

Beliefs:

Separators = coordinates
  of bound optimization (¸)
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B
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D

F
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JI
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Factor graph Dual graph

Consistency:

Beliefs:
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B

C

D

F

E

JI

H

Factor graph Dual graph

Consistency:

Beliefs:

A

ABDE

FGHI
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BCE

GHIJ
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C
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F
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Regions
• Generalize local consistency enforcement
• Larger regions: more consistent; more costly to represent

G

A

B

C

D

F

E

JI

H

Factor graph Dual graph

Consistency:

Beliefs:

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

Junction tree:
Approximation is exact!
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Regions
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more accuracy

less complexity
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Mini-bucket Regions
• Mini-bucket elimination defines regions with bounded complexity

E:

C:

D:

B:

A:

mini-buckets

U = upper bound U = upper bound

Join graph:

{A,B,C} {B,D,E}

{A,C,E}

{A,D,E}

{A,E}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}
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Variational perspectives
• Replace q 2 P  and  H(q)  with simpler approximations

• Algorithms and their properties:

Linear programming       n/a   

Mean field         exact   

Belief propagation 

Tree-reweighted  

Method     distributions    entropy        value               

Max:

Sum:

Approximate entropy in 
terms of local beliefs
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Neuro BE
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Summary: Variational methods
• Build approximations via an optimization perspective

– Primal form: decomposition into simpler problems
– Dual form: optimization over local “beliefs”

• Deterministic bounds and approximations
– Convex upper bounds
– Non-convex lower bounds
– Bethe approximation & belief propagation

• Scalable, “local approximation” viewpoint
– Optimization as local message passing

• Can improve quality through increasing region size
– But, requires exponentially increasing memory & time, or approximation
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