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Integrating Inference and Sampling

Importance Sampling

Stratified & Abstraction Sampling
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Graphical models

4

A graphical model consists of:
          -- variables
     -- domains
     -- functions or “factors”

     and a combination operator 

The combination operator defines an overall function from the individual factors,
      e.g.,  “*”  : 

(we’ll assume discrete)

Notation:
     Discrete  Xi  values called “states”
     “Tuple” or “configuration”: states taken by a set of variables
     “Scope” of f: set of variables that are arguments to a factor f
              often index factors by their scope, e.g., 
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Season

Sprinkler Rain

Wet

P(S)

P(K|S)

P(W|K,S)

P(R|S)



Probabilistic Reasoning Problems
• Exact inference time, space exponential in induced width 
• Use randomness to help?

(e.g., decisions, planning)

(e.g., causal effects)

(stochastic 
search)

(Monte 
Carlo)

(Monte 
Carlo Tree 

Search)
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Monte Carlo estimators
• Most basic form: empirical estimate of probability

• Relevant considerations
– Able to sample from the target distribution p(x)?
– Able to evaluate p(x) explicitly, or only up to a constant?

• “Any-time” properties
– Unbiased estimator, 
 or asymptotically unbiased, 

– Variance of the estimator decreases with m
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Monte Carlo estimators
• Most basic form: empirical estimate of probability

• Central limit theorem
– p(U) is asymptotically Gaussian:

• Finite sample confidence intervals
– If u(x) or its variance are bounded, e.g.,
 probability concentrates rapidly around the expectation:

m=1: m=5: m=15:
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Example: Alarm network
• Estimate p(HR=1)?

– Implicitly defined by model’s other probabilities
– But, easy to estimate p(X) from samples!
– And, samples are easy to generate!
– Draw values for any roots; then their children…

PCWP CO
HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

[Beinlich et al., 1989]
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Sampling in Bayes nets
• No evidence: “causal” form makes sampling easy

– Follow variable ordering defined by parents
– Starting from root(s), sample downward
– When sampling each variable, condition on values of parents

A B

C

D Sample:

[e.g., Henrion 1988]
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Bayes nets with evidence
• Estimating the probability of evidence, P[E=e]:

– Finite sample bounds:  u(x) 2 [0,1]

 

– Relative error bounds [Dagum & Luby 1997]

[e.g., Hoeffding]

What if the evidence is unlikely?  P[E=e]=1e-6 ) could estimate U = 0!
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Algorithm: Forward sampling
• Easy to draw samples from Bayes nets:

• Samples can be used to estimate any expectation:

– Example:  Pr(Xi = a)  = E[  1[Xi=a]  ]
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Bayes nets with evidence
• Estimating the probability of evidence, P[E=e]:

– Finite sample bounds:  u(x) 2 [0,1]

 

– Relative error bounds [Dagum & Luby 1997]

[e.g., Hoeffding]

What if the evidence is unlikely?  P[E=e]=1e-6 ) could estimate U = 0!
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Ex: Burglary Model
What is p(E|W=1)?

• Rejection sampling
– Discard many samples with W=0

• “Likelihood weighting”
– Just “set” W=1
– Now sampling E=0,W=1 too often!
– Weight samples to adjust

• Want to draw E=1 more often!
– Exact sampling: use inference
(same work as just finding the answer?)
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Earthquake Burglary

Alarm

Watson Mrs Hudson

E B P(A|E,B)

0 0 0.001

0 1 0.29

1 0 0.94

1 1 0.95

P(B)

0.001

P(E)

0.002

A P(W|A)

0 0.05

1 0.90

A P(H|A)

0 0.01

1 0.70



Downward message normalizes bucket;
    ratio  is a conditional distribution

E:

C:

D:

B:

A:

Exact sampling via inference
• Draw samples from P[X|E=e] directly?

– Model defines un-normalized p(X1,…,E=e)
– Build (oriented) tree decomposition & sample

Z

Work:  O(exp(w)) to build distribution
      O(n d) to draw each sampleDechter & Ihler ESSAI 2024 17



Outline

Importance Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

Monte Carlo: Basics

Stratified & Abstraction Sampling
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Importance Sampling
• Basic empirical estimate of probability:

• Importance sampling:

Dechter & Ihler ESSAI 2024 19

What if we can’t sample from p(.) easily?

q(.): easy to sample from



Importance Sampling
• Basic empirical estimate of probability:

• Importance sampling:

“importance weights”
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IS for common queries
• Partition function / Probability of Evidence

– Unbiased; only requires evaluating unnormalized function f(x)

• General expectations wrt  p(x|E) / p(x,E) = f(x)?
– E.g., conditional marginal probabilities, etc.

Estimate separately
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“self-normalized” IS: only asymptotically unbiased…



Importance Sampling
• Importance sampling:

• IS is unbiased and fast if q(.) is easy to sample from

• IS can be lower variance if q(.) is chosen well
– Ex: q(x) puts more probability mass where u(x) is large
– Optimal:  q(x) /  |u(x) p(x)|

• IS can also give poor performance
– If q(x) << u(x) p(x):  rare but very high weights!
– Then, empirical variance is also unreliable!
– For guarantees, need to analytically bound weights / variance…
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Choosing a proposal
• Can use WMB upper bound to define a proposal q(x):

E:

C:

D:

B:

A:

mini-buckets

U = upper bound

…

Weighted mixture:
   use minibucket 1 with probability w1
   or, minibucket 2 with probability w2 = 1 - w1
where

Key insight: provides bounded importance weights!

[Liu, Fisher, Ihler 2015]
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WMB-IS Bounds
• Finite sample bounds on the average

• Compare to forward sampling
– Works well if evidence “not too unlikely” ) not too much less likely than U

101    102     103     104     105  
Sample Size (m)

101   102    103    104    105   106              

Sample Size (m)

BN_6 BN_11

-58.4

-53

-63

-39.4

-34

-44

“Empirical Bernstein” bounds

[Liu, Fisher, Ihler 2015]
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Other choices of proposals
• Belief propagation

– BP-based proposal  [Changhe & Druzdzel 2003]
– Join-graph BP proposal [Gogate & Dechter 2005]
– Mean field proposal [Wexler & Geiger 2007]

E:

C:

D:

B:

A:

Join graph:

{B|A,C} {B|D,E}

{C|A,E}

{D|A,E}

{E|A}

{A}

{B}

{D,E}

{A}
{A}

{A,E}

{A,C}
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Other choices of proposals
• Belief propagation

– BP-based proposal  [Changhe & Druzdzel 2003]
– Join-graph BP proposal [Gogate & Dechter 2005]
– Mean field proposal [Wexler & Geiger 2007]

• Adaptive importance sampling
– Use already-drawn samples to update q(x)
– Rates vt and ´t adapt estimates, proposal
– Ex:
 [Cheng & Druzdzel 2000]
 [Lapeyre & Boyd 2010]
 …
– Lose “iid”-ness of samples
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Stratified & Abstraction Sampling

Markov Chain Monte Carlo

Integrating Inference and Sampling

Monte Carlo: Basics

Importance Sampling
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Systematic Search vs Sampling
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Systematic Search

• Enumerate states
• Every stone turned
• No stone turned more than once



Systematic Search vs Sampling
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Systematic Search

• Enumerate states
• Every stone turned
• No stone turned more than once

Importance Sampling

• Exploit “typicality” via randomization
• Concentration inequalities



Stratified Sampling
• Organize states into groups (“strata”)

– Enumerate over strata
– Importance sampling within each strata

• Reduces estimate variance

• Intermediate
– Part search, part sampling

• “Ensemble” Monte Carlo
– Draw multiple samples together
– Samples are anti-correlated

Dechter & Ihler 31

Strata 1 Strata 2 Strata 3

[Knuth, 1975; Chen, 1992; Rizzo, 2007]

ESSAI 2024



Abstraction Sampling
• View ensemble of samples as a search sub-tree 

– Draw probe level by level
– Use stratified sampling at each stage

• Exploit AND/OR search tree structure
– Probe compactly represents many states

• Abstraction function defines strata
– An area of ongoing development
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[Broka et al. 2018, Kask et al. 2020, 
Pezeshki et al. 2024]

AND/OR Abstraction Probe:
11 nodes representing 
16 joint configurations

ESSAI 2024
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Markov Chain Monte Carlo

Stratified & Abstraction Sampling

Integrating Inference and Sampling

Monte Carlo: Basics

Importance Sampling
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MCMC Sampling
• Recall: Basic empirical estimate of probability:

• Can we design a procedure to sample from p(x) anyway?

• Example: card shuffling
– Want: a uniform distribution over card deck orders.  How?
– Create a “process” that converges to the right distribution
– Ex: pick two cards at random & swap them with probability 1/2:

• How do we know this will converge to the right distribution?

What if we can’t sample from p(.) easily?
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Markov Chains
• Temporal model

– State at each time t
– “Markov property”: state at time t depends only on state at t-1
– “Homogeneous” (in time):  p(Xt | Xt-1) = T(Xt |Xt-1) does not depend on t

• Example: random walk
– Time 0:  x0 = 0
– Time t:   xt = xt-1 § 1

x0 x1 x2 x3 x4

…
O

O O

O

O
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Markov Chains
• Temporal model

– State at each time t
– “Markov property”: state at time t depends only on state at t-1
– “Homogeneous” (in time):  p(Xt | Xt-1) = T(Xt |Xt-1) does not depend on t

• Example: finite state machine
– Time 0:  x0 = S3
– Ex:  S3 ! S1 ! S3 ! S2 !  …
– What is  p(xt)?  Does it depend on x0?

x0 x1 x2 x3 x4

S1 S2

S3

2/3
1/3

1/2

1
1/2

S1:
S2:
S3:

P(x0) P(x1) P(x2) P(x3)

…
P(x100)
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Stationary distributions
• Stationary distribution

• p(xt) becomes independent of p(x0)?
• Sufficient conditions for s(x) to exist and be unique:

(a) p( . | . ) is acyclic:
(b) p( . | . ) is irreducible:

Ex: not (a)
     
   

s(x) may not exist

Ex: not (b)
     
   

multiple s(x) exist

Without both (a) & (b), 
long-term probabilities 
may depend on the initial 
distribution
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Stationary distributions
• Uniqueness of the stationary distribution is powerful

• Recall: simple shuffling

• Irreducible?
– Yes: there is a path between any two orderings

• Acyclic?
– Yes: if there is a path of length L, there is also one of length L+1, L+2, …

• So, the stationary distribution is unique!
– Now just show that “uniform over orders” is a stationary dist…
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Markov Chain Monte Carlo
• Method for generating samples from an intractable p(x)

– Create a Markov chain whose stationary distribution equals p(x)

– Sample x(1)…x(m);   x(m) ~ p(x) if m sufficiently large
– Two common methods:

• Metropolis sampling
– Propose a new point x’  using  q(x’ | x) ; depends on current point x
– Accept with carefully chosen probability, a(x’,x)  

• Gibbs sampling
– Sample each variable in turn, given values of all the others

A B

C

A1

B1

C1

A2

B2

C2

A3

B3

C3

State “x”:
  Complete config. 
  of target model
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Metropolis-Hastings
• At each step, propose a new value x’ ~ q(x’|x)
• Decide whether we should move there

– If  p(x’) > p(x),   it’s a higher probability region  (good)
– If  q(x|x’) < q(x’|x),   it will be hard to move back (bad)

– Accept move with a carefully chosen probability:

– The resulting transition probability
 has detailed balance with p(x), a sufficient condition for stationarity

Probability of “accepting” the move from 
x to x’; otherwise, stay at state x.

Ratio p(x’) / p(x) means that we can substitute 
an unnormalized distribution f(x) if needed
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Detailed balance in Markov chains
• Detailed balance:

– Mass moving from i to j at steady-state equals mass moving from j to i

– A sufficient condition for s(.) to be the stationary dist.

• Metropolis-Hastings:
– Transition depends on propose & accept:

If less than 1:       assign to a(x’ , x)
   greater than 1: assign to a(x , x’)
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Mixing Rate
• How quickly do approach the stationary distribution?

– Rate to get a sample from p(x)
– Rate of independent samples (forget previous value)

• Depends on the transitions of the Markov chain
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Not irreducible
     
   

Multiple s(x) exist

“Barely” irreducible
     
   

Unique s(x), but slow!

ε
ε



MCMC Example

Early samples depend
    on initialization

“Burn in”; may discard
    these samples

Metropolis-Hastings (symmetric proposal)
        

f = lambda X: … % define f(x) / p(x), target
x = np.zeros((1,2)); % set or sample initial state
for t in range(T): % simulate Markov chain:
    x_ = x + .5*np.random.randn(1,2) % propose move
    r = min(1,f(x_)/f(x))    % compute acceptance 
    if np.random.rand() < r: x = x_  % sample acceptance
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MCMC Example
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Metropolis-Hastings (symmetric proposal)
        

f = lambda X: … % define f(x) / p(x), target
x = np.zeros((1,2)); % set or sample initial state
for t in range(T): % simulate Markov chain:
    x_ = x + .5*np.random.randn(1,2) % propose move
    r = min(1,f(x_)/f(x))    % compute acceptance 
    if np.random.rand() < r: x = x_  % sample acceptance

T = 50



MCMC Example

Samples correlated
  in time 
  (not independent)
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Metropolis-Hastings (symmetric proposal)
        

f = lambda X: … % define f(x) / p(x), target
x = np.zeros((1,2)); % set or sample initial state
for t in range(T): % simulate Markov chain:
    x_ = x + .5*np.random.randn(1,2) % propose move
    r = min(1,f(x_)/f(x))    % compute acceptance 
    if np.random.rand() < r: x = x_  % sample acceptance

T = 100



MCMC Example
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Metropolis-Hastings (symmetric proposal)
        

f = lambda X: … % define f(x) / p(x), target
x = np.zeros((1,2)); % set or sample initial state
for t in range(T): % simulate Markov chain:
    x_ = x + .5*np.random.randn(1,2) % propose move
    r = min(1,f(x_)/f(x))    % compute acceptance 
    if np.random.rand() < r: x = x_  % sample acceptance

T = 500



MCMC Example

Asymptotically,
  samples will 
  represent p(x)
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Metropolis-Hastings (symmetric proposal)
        

f = lambda X: … % define f(x) / p(x), target
x = np.zeros((1,2)); % set or sample initial state
for t in range(T): % simulate Markov chain:
    x_ = x + .5*np.random.randn(1,2) % propose move
    r = min(1,f(x_)/f(x))    % compute acceptance 
    if np.random.rand() < r: x = x_  % sample acceptance

T = 10000  (subsampled by 10)

May choose to “decimate”
(keep only every kth sample),
for memory/storage reasons



Mixing behavior
• What makes MCMC mix slowly?
• Transition proposal is: 

– too small?  Can’t change the state much!
– too large?  Try states with low probability; reject: same state!
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small: 
slow to move

large: low 
acceptance

small: 
can’t escape current mode

large: 
hard to find 
other modes

Multi-modal distributions: hard!



Markov Chain Monte Carlo
• Method for generating samples from an intractable p(x)

– Create a Markov chain whose stationary distribution equals p(x)

– Sample x(1)…x(m);   x(m) ~ p(x) if m sufficiently large
– Two common methods:

• Metropolis sampling
– Propose a new point x’  using  q(x’ | x) ; depends on current point x
– Accept with carefully chosen probability, a(x’,x)  

• Gibbs sampling
– Sample each variable in turn, given values of all the others

A B

C

A1

B1

C1

A2

B2

C2

A3

B3

C3

State “x”:
  Complete config. 
  of target model
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Gibbs sampling
• Proceed in rounds

– Sample each variable in turn given all the others’ most recent values:

– Conditional distributions depend only on the Markov blanket

– Easy to see that p(x) is a stationary distribution:

[Geman & Geman 1984]

A

B C

E

D

Advantages:
    No rejections
    No free parameters (q)

Disadvantages:
    “Local” moves
    May mix slowly if vars strongly correlated
    (can fail with determinism)
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MCMC and Common Queries
• MCMC generates samples (asymptotically) from p(x)

• Estimating expectations is straightforward

• Estimating the partition function
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MCMC and Common Queries
• MCMC generates samples (asymptotically) from p(x)

• Estimating expectations is straightforward

• Estimating the partition function

Ex:  Harmonic Mean Estimator 
[Newton & Raftery 1994; Gelfand & Dey, 1994]

“Reverse” importance sampling
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MCMC
• Samples from p(x) asymptotically (in time)

– Samples are not independent

• Rate of convergence (“mixing”) depends on
– Proposal distribution for MH
– Variable dependence for Gibbs

• Good choices are critical to getting decent performance
• Difficult to measure mixing rate; lots of work on this

• Usually discard initial samples (“burn in”)
– Not necessary in theory, but helps in practice

• Average over rest; asymptotically unbiased estimator
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Monte Carlo
Importance sampling

• i.i.d. samples
• Unbiased estimator
• Bounded weights provide 

finite-sample guarantees

• Samples from Q
• Good proposal: close to p but 

easy to sample from

• Reject samples with zero-
weight

MCMC sampling

• Dependent samples
• Asymptotically unbiased
• Difficult to provide finite-

sample guarantees

• Samples from ¼ P(X|e)
• Good proposal: move quickly 

among high-probability x

• May not converge with 
deterministic constraints
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Outline

Integrating Inference and Sampling

Markov Chain Monte Carlo

Stratified & Abstraction Sampling

Monte Carlo: Basics

Importance Sampling

Dechter & Ihler ESSAI 2024 57



Estimating with samples
• Suppose we want to estimate p(Xi | E)

• Method 1: histogram (count samples where Xi=xi)

• Method 2: average probabilities

Converges faster!  (uses all samples)

Rao-Blackwell Theorem:

Let X = (XS,XT), with joint distribution p(XS,XT), to estimate 

Then,

[e.g., Liu et al. 1995]

Weak statement, but powerful in practice!  Improvement depends on XS,XT
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Cutsets
• Exact inference:

– Computation is exponential in the graph’s induced width

• “w-cutset”: set C, such that p(X:C |XC) has induced width w
– “cycle cutset”: resulting graph is a tree; w=1

A

B

P

J

L

E

DF M
O

H

K

G N

C

Cycle cutset = {A,B,C}

C P

J

L

B

E

DF M
O

H

K

G N

C P

J

L

E

DF M
O

H

K

G N

C P

J A

L

B

E

DF M
O

H

K

G N
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Cutset Importance Sampling
• Use cutsets to improve estimator variance

– Draw a sample for a w-cutset XC

– Given XC, inference is O(exp(w))

X1

X4

X7

X2

X5

X8

X3

X6

X9

O(n d2) work
X1

X4

X7

X2

X5

X8

X3

X6

X9

X1

X4

X7 X8

X3

X6

X9

[Gogate & Dechter 2005,
  Bidyuk & Dechter 2006]

(Use weighted sample average for XC; weighted average of probabilities for X:C)
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Using Inference in Gibbs sampling
• “Blocked” Gibbs sampler

– Sample several variables together

– Cost of sampling is exponential in the block’s induced width

– Can significantly improve convergence (mixing rate)
– Sample strongly correlated variables together

…
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Using Inference in Gibbs sampling
• “Collapsed” Gibbs sampler

– Analytically marginalize some variables before / during sampling

– Ex: LDA “topic model” for text

A B

C
A B

…

62Dechter & Ihler ESSAI 2024



Using Inference in Gibbs Sampling

• Standard Gibbs:
                (1)
• Blocking:
                   (2)
• Collapsed:
                     (3)

Faster
Convergence

A B

C
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Summary: Monte Carlo methods
• Stochastic estimates based on sampling

– Asymptotically exact, but few guarantees in the short term

• Importance sampling
– Fast, potentially unbiased
– Performance depends on a good choice of proposal q
– Bounded weights can give finite sample, probabilistic bounds

• Stratified & Abstraction Sampling
– Ensemble of samples drawn together can reduce variance

• MCMC
– Only asymptotically unbiased
– Performance depends on a good choice of transition distribution

• Incorporating inference
– Use exact inference within sampling to reduce variance
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