Algorithms for Causal Probabilistic Graphical Models

Class 5: **Causal Queries & Observational Data**

Athens Summer School on AI July 2024

Prof. Rina Dechter Prof. Alexander Ihler

Outline of Lectures

Class 1: Introduction & Inference Class 2: Bounds & Variational Methods

Graphical models

The *combination operator* defines an overall function from the individual factors, e.g., "+" : $P(S, K, R, W) = P(S) \cdot P(K|S) \cdot P(R|S) \cdot P(W|K, S)$

Notation:

Discrete X_i values called "states"

"Tuple" or "configuration": states taken by a set of variables

"Scope" of f: set of variables that are arguments to a factor f

 often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha}), \quad X_{\alpha} \subseteq X$

P(S)

Probabilistic Reasoning Problems

- Exact inference time, space exponential in induced width
- Casual reasoning is a sum-inference task.

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

Pearl's Causal Hierarchy (PCH)

Structural Causal Models

- Endogenous (visible) variables V
	- Season, Sprinkler, Rain, Wet…
- Exogenous (latent) variables U
	- Temp, Humidity, Day, Month
- V are deterministic $($ \Rightarrow $)$ given parents
	- $v_i = f_i(pa_i, u_i)$
- Randomness arises from U
	- $(u_1, \ldots, u_m) \sim p(U)$
- We can only observe the variables V
	- SCM defines a **causal diagram**

and the **observational distribution** p(V)

$$
p(V) = \sum_{\mathbf{u}} p(\mathbf{u}) \prod_{i} p(V_i | pa_i, u_i)
$$

7

Causal Diagram

A graph over the visible variables V that describes their causal structure

Special Cases

Markovian

Each U_i has no parents, one child (equivalent to a Bayesian network)

Semi-Markovian

Each U_i has no parents, ≤ 2 children

Observational Distribution $p(V) = \sum p(\mathbf{u}) \prod p(V_i | pa_i, u_i)$ visible and latent u parents of V_i

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

The Challenge of Causal Inference

"Causal Effect"

• How much does outcome Y change with X, if we vary X between two constants free of the influence of other (possibly unobserved) causes Z?

- Randomized control experiments
	- Sample from hypothetical world directly
	- What if we cannot do this? (e.g., can't control X directly, or too much delay)
- Can we estimate using data only from the left model?

Computing Causal Effects

Dechter & Ihler 11

Computing Causal Effects

Dechter & Ihler 12

Counterfactual Queries

Counterfactual Query:

Probability of an event in contradiction with the observations *What would have happened if the sprinkler had been turned off?*

Requires that we transfer information about random outcomes that happened, to a different setting

> Observe the sprinkler is on & grass is wet: $(K=1, W=1)$

What is the probability it would still be wet if we had turned the sprinkler off?

Abduction: Observing K=1 tells us it is more likely to be summer; Observing K=1,W=1 tells us it is not too hot & dry.

Action and Prediction: Then, apply this knowledge to compute the counterfactual:

Computing Counterfactuals

Given a model $M=\langle V, U, F, P(u)\rangle$, the conditional probability $P(Y_x | z)$ can be evaluated using the following 3-step procedure:

- 1. (Abduction) Update $P(u)$ by the evidence $Z=z$ to obtain $P(u \mid z)$.
- 2. (Action) Modify M with $do(X=x)$ to obtain F_x .
- 3. (Prediction) Use the model $\langle V, U, F_x, P(u \mid z) \rangle$ to compute the probability of Y .

Counterfactual Queries

Ex: Observe the sprinkler is on & grass is wet: $(K=1,W=1)$. What is the probability it would still be wet if we had turned the sprinkler off? Observing K=1 tells us it is

If the nate the tan the act, commentation spectre can In and M and M and M and M and M and the real and the real and the sequence \mathbb{R}^n If we have the full model, Counterfactual queries can Be answered by PGM methods over the twin network model (Classes 1-4)

Compute $P(Y^*K=0 | 11 - 1, N)$

Computing Causal Effects

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

Identifiability

When can we answer $p(Y|do(X))$ from observations?

Definition

We say a query $p(Y|do(X))$ is **identifiable** on graph G if, for any two distributions $p_1(V,U)$, $p_2(V,U)$ on G,

 $p_1(V) = p_2(V) \Rightarrow p_1(Y|do(X)) = p_2(Y|do(X))$

- Intuition
	- If a query is not identifiable, it cannot be answered uniquely for **any** amount of data – no consistent estimator exists!
	- Conversely, if we can express $p(Y|do(X))$ in terms of $p(V)$, the query must be identifiable.

Let's look at a few useful special cases, before the general setting…

Identifiability: Markovian models

- For a Markovian graph G:
	- Causal effect p(Y|do(X)) is identifiable whenever X and all its parents are observed

– In general, $p(Y| {\rm do}(X)) = \sum p(Y|X,pa_X)\, p(pa_X)$ We "adjust" for the values of $pa_x!$

- Why is this necessary?
	- The problem of confounding

Ex: Confounding Bias

Ex: Confounding Bias

What's the causal effect of Exercise on Cholesterol? What about *P(cholesterol | exercise)* ?

Ex: Confounding Bias

Identifiability: Backdoor Criterion

- A set Z satisifies the **backdoor criterion** if
	- $-$ No Z_i in Z is a descendant of X
	- Z blocks every path between X,Y that has an arrow into X

• Then,
$$
p(Y|do(X)) = \sum_{Z} p(Y|X, Z) p(Z)
$$

- Ex: What if Season is latent?
	- Z={Rain} for X=Sprinkler, Y=Wet
		- Conditioning on Rain blocks the non-causal path p_2
		- Leaves the causal path p_1 unaffected!

Identifiability: Frontdoor Criterion

- A set Z satisifies the **frontdoor criterion** if
	- Z intercepts all directed paths from X to Y
	- There is no unblocked backdoor path from X to Z
	- All backdoor paths from Z to Y are blocked by X

• Then,
$$
p(Y|do(X)) = \sum_{Z} p(Z|X) \sum_{X'} p(Y|X', Z) p(X')
$$

Ex: Smoking & Cancer

• Z={Tar} for X=Smoking, Y=Cancer

$$
p(Y|\text{do}(X)) = \sum_{Z} p(Z|X) \sum_{X'} p(Y|X', Z) p(X')
$$

\n
$$
p(Z|\text{do}(X)) \qquad p(Y|\text{do}(Z)) \qquad \text{irmediating variable''}
$$

\n
$$
p(Z|\text{do}(X)) \qquad p(Y|\text{do}(Z)) \qquad \text{in causation process}
$$

"mediating variable"

The Do-Calculus

Semantics for rewriting expressions with do-operators

Theorem

The following transformations are valid for any do-distribution induced by a causal model M:

Rule 1: Adding/Removing Observations

 $p(y|\text{do}(x),\text{do}(z),w) = p(y|\text{do}(x),z,w)$ if $(Z \perp\!\!\!\perp Y | X, W)_{G_{\overline{X}Z}}$

Rule 2: Action/Observation Exchange $p(y|\text{do}(x), z, w) = p(y|\text{do}(x), w)$ if $(Z \perp\!\!\!\perp Y \mid W)_{G_{\overline{X}}}$

Rule 3: Adding/Removing Actions $p(y|\text{do}(x),\text{do}(z),w) = p(y|\text{do}(x),w)$ if $(Z \perp\!\!\!\perp Y | X, W)_{G_{\overline{XZ(W)}}}$ where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $\mathsf{G}_{\overline{\mathsf{X}}}$

If we can rewrite $p(Y|do(X))$ in terms of $p(V)$, the query is identifiable!

Algorithmic approach for identification

The distribution generated by an intervention *do(X=x)* in a Semi-Markovian model *M* is given by the (generalized) truncated factorization product, namely,

$$
P(\mathbf{v} | do(\mathbf{x})) = \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(v_i | pa_i, u_i) P(\mathbf{u})
$$

And the effect of such intervention on a set Y is

$$
P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{v} \setminus (\mathbf{y} \cup \mathbf{x})} \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(\mathbf{v}_i | pa_i, u_i) P(\mathbf{u})
$$

Factorizing the observed distribution

• Start from a simple Markovian model:

$$
P(v) = P(v_1)P(v_2 | v_1)P(v_3 | v_2)P(v_4 | v_3)P(v_5 | v_4)
$$

$$
V_1 \tV_2 \tV_3 \tV_4 \tV_5
$$

• Let's add an unobservable *U1*, that affects two observables, and breaking Markovianity:

Factorizing the observed distribution

From the previous model ...

$$
P(\mathbf{v}) = \sum_{u_1} P(u_1)P(v_1 | u_1)P(v_2 | v_1)P(v_3 | v_2, u_1)P(v_4 | v_3)P(v_5 | v_4)
$$

\n
$$
V_1 \qquad V_2 \qquad V_3 \qquad V_4 \qquad V_5 \qquad = P(v_2 | v_1)P(v_4 | v_3)P(v_5 | v_4) \left(\sum_{u_1} P(u_1)P(v_1 | u_1)P(v_3 | v_2, u_1) \right)
$$

• Add another unobservable *U2*,

$$
U_1
$$

\n
$$
U_2
$$

\n
$$
P(\mathbf{v}) = \sum_{u_1, u_2} P(u_1, u_2) P(v_1 | u_1) P(v_2 | v_1) P(v_3 | v_2, u_1, u_2) P(v_4 | v_3) P(v_5 | v_4, u_2)
$$

\n
$$
V_1
$$

\n
$$
V_2
$$

\n
$$
V_3
$$

\n
$$
V_4
$$

\n
$$
V_5
$$

\n
$$
= P(v_2 | v_1) P(v_4 | v_3) \left(\sum_{u_1, u_2} P(u_1, u_2) P(v_1 | u_1) P(v_3 | v_2, u_1, u_2) P(v_5 | v_4, u_2) \right)
$$

Factorizing the observed distribution

From the previous model...

$$
U_1
$$
\n
$$
P(\mathbf{v}) = \sum_{u_1, u_2} P(u_1, u_2) P(v_1 | u_1) P(v_2 | v_1) P(v_3 | v_2, u_1, u_2) P(v_4 | v_3) P(v_5 | v_4, u_2)
$$
\n
$$
V_1
$$
\n
$$
V_2
$$
\n
$$
V_3
$$
\n
$$
V_4
$$
\n
$$
V_5
$$
\n
$$
= P(v_2 | v_1) P(v_4 | v_3) \left(\sum_{u_1, u_2} P(u_1, u_2) P(v_1 | u_1) P(v_3 | v_2, u_1, u_2) P(v_5 | v_4, u_2) \right)
$$

• Let's add one more, *U3*,

C-Factors

• Recall our example
\n
$$
P(\mathbf{v}) = \begin{pmatrix}\n\sum_{u_3} P(u_3)P(v_2 | v_1, u_3)P(v_4 | v_3, u_3) \\
\sum_{u_1, u_2} P(u_1, u_2)P(v_1 | u_1)P(v_3 | v_2, u_1, u_2)P(v_5 | v_4, u_2)\n\end{pmatrix}
$$

• These factors made of sums may be long to write in terms of *P(v,u)*. However, their structure follows from the topology of the diagram, then we can abstract this concept out by defining a new function *Q:*

$$
Q[\mathbf{C}](\mathbf{c}, pa_{\mathbf{c}}) = \sum_{u(\mathbf{C})} P(u(\mathbf{C})) \prod_{V_i \in \mathbf{C}} P(v_i | pa_i, u_i) \quad \text{where} \quad U(\mathbf{C}) = \bigcup_{V_i \in \mathbf{C}} U_i
$$

Then $P(\mathbf{v})$ can be re-written as

$$
P(\mathbf{v}) = Q[V_2, V_4](v_2, v_4, v_1, v_3)Q[V_1, V_3, V_5](v_1, v_3, v_5, v_2, v_4)
$$

C-Factors

- For convenience *Q[C](c,pac)* can be written just as *Q[C]*
- Then, for our example, we can just write

$$
P(\mathbf{v}) = Q[V_2, V_4]Q[V_1, V_3, V_5]
$$

U1

- Note that for the whole set of variables V $Q[V] = \sum P(\mathbf{u}) \prod P(v_i | pa_i, u_i) = P(\mathbf{v})$ **u** $V_i \in V$
- For consistency define *Q[*∅*]=1*

Confounding Components

C-components: A partition of the observed variables where any 2 variables connected by a path of bi-directed edges is in the same component.

- *V1* is in the same c-component as *V3*,
- *V3* is in the same c-component as *V5*,
- \bullet By extension, V_I is in the same ccomponent as *V5* too.
- *V2* is in the same c-component as *V4*.

- To see it easily, consider the graph induced over the bidirected edges!
- Obs. The C-Component relation defines a partition over the observable variables, hence it is *Reflexive*, *Symmetric* and *Transitive*.

C-Component Factorization

• The distribution *P(v)* factorizes into c-factors associated with the c-components of the graph.

$$
Q_1 = \{V_2, V_4\}
$$
 $Q_2 = \{V_1, V_3, V_5\}$

$$
V_1
$$
\n
$$
V_2
$$
\n
$$
V_3
$$
\n
$$
V_4
$$
\n
$$
V_5
$$
\n
$$
V_3
$$
\n
$$
V_4
$$
\n
$$
V_5
$$

$$
P(\mathbf{v}) = \left(\sum_{u_3} P(u_3)P(v_2 | v_1, u_3)P(v_4 | v_3, u_3)\right)\left(\sum_{u_1, u_2} P(u_1, u_2)P(v_1 | u_1)P(v_3 | v_2, u_1, u_2)P(v_5 | v_4, u_2)\right)
$$

$$
P(\mathbf{v}) = Q[V_2, V_4] Q[V_1, V_3, V_5]
$$

 $\sqrt{2}$

 λ

C-Component Factorization

- For any *^H* [⊆] *^V*, consider a graph *^GH*.
- Let *H1, H2, …, Hk* be the c-components of *^GH*.
- Then

$$
Q[\mathbf{H}] = \prod_j Q[H_j]
$$

And, the Q factor of any c component can be computed from Q(H)

C-factor Algebra - Summary

We have two basic operations over c-factors

- 1. Reduce to an ancestral set
	- **c**∖**w** $Q[\mathbf{W}] = \sum_{\mathbf{X}} Q[\mathbf{C}]$ If *W* is ancestral in *G_C*
- 2. Factorize into c-components

j $Q[\mathbf{H}] = \prod_{\Pi} Q[H_j]$ Where $H_1, ... H_k$, are the c-components in *G^H*

The Identification Algorithm

• Given *G* and the query variables *^X,^Y*

$$
P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{v} \setminus (\mathbf{x} \cup \mathbf{y})} Q[\mathbf{V} \setminus \mathbf{X}]
$$

= $\sum_{d \setminus \mathbf{y}} Q[\mathbf{D}]$ where $\mathbf{D} = An(\mathbf{Y})$ in $G_{\mathbf{X}}$

• Suppose the graph G_D has C-components **D**1,**D**2,…,**D***k*, then

$$
P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{d} \setminus \mathbf{y}} \prod_i Q[\mathbf{D}_i]
$$

The Identification Algorithm

• If we can identify each $O/D11, O/D21, ..., O/Dk1$, from $P(v) = Q/V = Q/C_1$... Q/C_m , we obtain an expression equal to $P(y|do(x))$. An algorithm for computing Q[C] from $Q[T]$ for C, T being c-components:

Identify(C , T , Q , G)

- 1. Let $A=An(C)$ in G_T .
- 2. If A=C return $Q[C]=\sum_{t\setminus c}Q$.
- 3. If A=T return Fail.
- 4. Let A_i be the c-comp of G_A that contains C . Get $Q[A_i]$ from Q .
- 5. Return Identify(C, A_i , Q[A_i], G).

Theorem [Huang and Valtorta, 2008]

The causal effect *P(y|do(x))* is identifiable from causal diagram *G* and *P(v) if and only if* each of the C-factors $O[D_i]$ is identifiable by $Identify(D_i, C_i, Q[C_i], G).$

Where \mathbf{C}_i is the C-component of G containing \mathbf{D}_i .

Examples of Estimand Expressions

Figure 1: Chain Model with 7 observable variables and 3 latent variables

 $P(V_7 \mid do(V_1)) = \sum_{V_2, V_3, V_4, V_5, V_6} P(V_6 \mid V_1, V_2, V_3, V_4, V_5) P(V_4 \mid V_1, V_2, V_3) P(V_2 \mid V_1)$ × ∑ $\sum_{V'_1} P(V_7 \mid V'_1, V_2, V_3, V_4, V_5, V_6) P(V_5 \mid V'_1, V_2, V_3, V_4) P(V_3 \mid V'_1, V_2) P(V'_1)$

 (a) Model 1

(c) Model 8

Estimand Expressions for Models $1 \& 8$.

Examples of Estimand Expressions

(b) Cone Cloud, $n = 15$ (15-CC)

 $P(V_0|V_{14}, V_{10}, V_4) =$

 $P(V_2|V_4, V_5, V_7, V_8, V_9, V_{11}, V_{12}, V_{13}, V_{14}) \times$ $V_1, V_2, V_3, V_5, V_6, V_7, V_8, V_9, V_{11}, V_{12}, V_{13}, v'_{10}, V'_{11}, V'_{12}, V'_{13}, V'_{14}$ $P(V_9|V_{13}, V_{14}) P(V_8|V_{12}, V_{13}) P(V_1|V_3, V_4, V_6, V_7, V_8, V_{10}, V_{11}, V_{12}, V_{13}) \times$ $P(V_7|V_{11},V_{12})P(V_6|V_{10},V_{11})P(V_{11},V_{12},V_{13})\times$ $P(V_0|V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V'_{10}, V_{11}, V_{12}, V_{13}, V'_{14}) \times$ $P(V_5|V_1,V_3,V_4,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13},V_{14}') \times$ $P(V'_{14}|V_1,V_3,V_4,V_6,V_7,V_8,V'_{10},V_{11},V_{12},V_{13})\times$ $P(V_3, V_{13}|V_6, V_7, V'_{10}, V_{12}, V_{13}) P(V'_{10}|V_7, V_{11}, V_{12}) P(V_{11}, V_{12})$ (7)

An estimand often corresponds to inference over a Bayesian network Which is sometime very dense.

The treewidth of the above example is sqrt of n, when n is the number of variables

So, is evalution Exp(w)?.

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

The Plug-in estimate

- The Plug-in methods uses the "empirical distributions extracted from the data to estimate observed probabilistic quantities.
- Complexity of generating a table is O(|D|).
- Complexity of evaluation is exponential in the hyper-tree width.
- Computation can explore the graph and sparseness of the probabilistic quantities.

Empirical Factors, Sparse Representation

Table 80: 6 Variables with domain size 3

(a) Data Table

Estimands Tree-Decomposition (Cones)

hw=2,w=14

Hyper-tree width: is the mximum number of functions placed in any cluster of a tree-decomposition

Dechter & Ihler 52

Complexity of Plug-In Scheme

Theorem: The complexity of evaluating an extimands whose expression has a tree-decomposition having hyper tree-width hw is $O(n \ t^{hw})$ if it has no denominators, where $n =$ number of variables, t is the data size and k is the variables domain size. The complexity is also exponential in the tree-width is $O(n \; k^W)$.

In all the examples we saw hw=1,2. w=1 or $O(\sqrt{n})$.

But what about statistical accuracy?

Note: The Plug-in can be viewed as using *maximum –likelihood* learning when data is fully observed over a Bayesian network graph extracted from the estimand.

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

Learning Bayesian networks

- Maximum Likelihood estimation
	- Select model that makes the data most probable
- For discrete X_i & no shared parameters
	- ML estimates are empirical probabilities

Learning with missing data

- Latent / hidden variables
	- Value is never observed
	- No unique model (e.g., symmetry)
	- No closed form solution; iterative ML
- More general missing values?
	- May depend on the reason for missingness!

Learning-Based Approach

Motivation: Use PGM algorithms for Causal Reasoning

$$
P(V_7 \mid do(V_1)) = \sum_{V_2, V_3, V_4, V_5, V_6} P(V_6 \mid V_1, V_2, V_3, V_4, V_5) P(V_4 \mid V_1, V_2, V_3) P(V_2 \mid V_1)
$$

\$\times \sum_{V_1'} P(V_7 \mid V_1', V_2, V_3, V_4, V_5, V_6) P(V_5 \mid V_1', V_2, V_3, V_4) P(V_3 \mid V_1', V_2) P(V_1')\$

Figure 1: Chain Model with 7 observable variables and 3 latent variables

Motivation: Bucket-elimination on this network has tree-width 3 while the observational distribution has a tree-width of 7 and hypertree width of 1

Learning Idea: Input: G, P(V) 1. Learn a full causal BN , from G and samples from $P(V)$ using **EM**. 2. Truncate the learned model B into B x . 3. Compute $P(Y)$ by Bucket elimination over B x and return. End Algorithm

Accuracy: EM is a mximum likelihood learning scheme that converges to a local maxima. **Complexity** of Inference of both learning and inference is exponential in the **tree-width.**

Theorem: Given a model M yielding observational distribution P(V) and graph G, then any causal Bayesian Network over G having the same P(V), will agree with M **on any identifiable** causal effect query P(Y|do(X)).

Learning-Based Approach

What about the latent variables? Their domains?

Fit a good domain size for latent variables using the BIC score.

 $BIC_{\mathcal{B},\mathcal{D}} = -2 \cdot LL_{\mathcal{B},\mathcal{D}} + p \cdot \log(|\mathcal{D}|)$

Algorithm 3: EM4CI **input**: A causal diagram $\mathcal{G} = \langle \mathbf{U} \cup \mathbf{V}, E \rangle$, U latent and V observables; D samples from $P(V)$; Query $Q = P(Y | do(X = x))$ output: Estimated $P(Y | do(X = x))$ // k= latent domain size, $BIC_B = BIC$ score of \mathcal{B}, \mathcal{D} , // LL_B is the log-likelihood of \mathcal{B}, \mathcal{D} 1. Initialize: $BIC_B \leftarrow \inf$, $Step 1:$ 2. If \neg identifiable(\mathcal{G}, Q), terminate. 3. For $k = 2, ...,$ to upper bound, do $(LL_{\mathcal{B}_{new}}) \leftarrow \max_{LL} \{ \{ EM(\mathcal{G}, \mathcal{D}, k) \mid i = 1, 2, \ldots, 10 \} \}$; $\overline{4}$ Calculate $BIC_{\mathcal{B}_{new}}$ from $LL_{\mathcal{B}_{new}}$ 5. If $BIC_{\mathcal{B}_{new}} \leq BIC_{\mathcal{B}}$, 6. $\mathcal{B} \leftarrow \mathcal{B}_{new}, BIC_{\mathcal{B}} \leftarrow BIC_{\mathcal{B}}$ 7. else, break. 8. 9. Endfor 10: $B_{X=x} \leftarrow$ generate truncated CBN from B. 11: **return** \leftarrow evaluate $P_{\mathcal{B}_{\mathbf{X}=\mathbf{x}}}(\mathbf{Y})$

Empirical Evaluation: Small Graphs

(a) Model 1

Small Synthetic models

Estimand Expressions for Models 1 & 8 .

(c) Model 8

Results for EM4CI and Plug-in estimates on $P(Y = y|do(X = 0)), (d, k) = (2, 10), k_{lm}$ is the learned domain sizes of latent variables.

	100 Samples		$1,000$ Samples				
	EM4CI		Plugin		EM4CI	Plugin	
(LL, BIC) Model	(mad, time(s))	k_{lm}	(mad,time)	(LL, BIC)	(mad.time(s))	k_{lm}	(mad,time)
$(-79, 167)$	(0.00348, 0.13)	$\overline{2}$	(0.015, 0.016)	$(-716, 1445)$	0.003475, 1.5	2°	(0.002, 0.21)
$(-121, 262)$	(0.0373, 0.61)	$\overline{2}$	(0.288, 0.016)	$-1290, 2609$	(0.0083, 6.6)		(0.154, 0.248)

Empirical Evaluation: Large Synthetic

Figure 1: Chain Model with 7 observable variables and 3 latent variables

More accuracy for learning in all cases but 1

Table 78: Results for EM4CI and Plug-In on $P(Y|do(\mathbf{X}))$ $(d, k) = (4, 10)$

 (a) 1,000 samples

				Plug-In			
Model	Query	k_{lm}	$_{\rm mad}$	$Learn-time(s)$	$inf-time(s)$	mad	time(s)
5-CH	$P(V_4 do(V_0))$	4	0.0902	3.5	0.0001	0.1509	2.3
$9-CH$	$P(V_8 do(V_0))$	4	0.1204	11.5	0.0002	0.1516	2.4
25-CH	$P(V_24 do(V_0))$	2	0.0070	77.7	0.0003	0.0959	6.1
49-CH	$P(V_48 do(V_0))$	4	0.0005	161.2	0.0007	0.0319	17.8
99-CH	$P(V_98 do(V_0))$	6	0.0093	413.4	0.0023	0.0611	88.1
$9-D$	$P(V_8 do(V_0))$	$\overline{2}$	0.0719	24.6	0.0002	0.1832	3.4
$17-D$	$P(V_{16} do(V_0))$	6	0.0542	202.3	0.0006	0.0700	4.5
$65-D$	$P(V_{64} do(V_0))$	4	0.0074	432.4	0.0012	0.1716	232.5
$6-CC$	$P(V_0 do(V_5))$	4	0.0088	23.5	0.0001	0.0156	2.3
15-CC	$P(V_0 do(V_{14}))$	4	0.0147	60.8	0.0001	0.0659	4.5
45-CC	$P(V_0 do(V_{14}, V_{36}, V_{44}))$	6	0.0097	199.2	2.7429	0.1509	18.6

 (b) 10,000 samples

Dependence on Model Size

Trajectory over Cone Instances Trajectory over Chain Instances Trajectory over Diamond Instances

Figure 4: Comparing the accuracy of EM4CI and Plug-In. While both methods improve with more samples (solid to dashed lines), the error (mad) of EM4CI is smaller, even when compared to Plug-In with more samples.

Empirical Evaluation: Results

• **4 Real Networks**

•"Alarm", "A", "Barley", and "Win95pts" network

Figure: A Model

Table 8: Plug-In & EM4CI results on the A Network $|V| = 46$; $|U| = 8$; $d = 2$; $k = 2$ treewidth ≈ 16

(a) Plug-In

(b) EM4CI

Summary: Causal queries

- Causal Bayesian networks and SCM encodes causal assumptions explicitly.
- Causal effects and counterfactual queries can be computed from the full causal model by PGM methods.
- Given only the causal diagram and observational data queries can be evaluated if identifiable.
- Causal effect queries can be done by statistical estimation of estimands (defined by observation quantities).
- Estimands can be generated by Backdoor, Frontdoor, docalculous. The ID algorithm.
- Model completion by learning is a promising alternative for causal inference that exploit PGM methods.

Summary of Lectures

Software

[My software page](https://ics.uci.edu/%7Edechter/software.html)

[pyGMs](https://github.com/ihler/pyGM) : Python Toolbox for Graphical Models by Alexander Ihler.

UAI Probabilistic Inference Competitions

New UAI Competition

• [UAI Competition 2022](https://uaicompetition.github.io/uci-2022/)

Thank You !

For publication see: http://www.ics.uci.edu/~dechter/publications.html

Rina Dechter Alex Ihler

Kalev Kask Irina Rish Bozhena Bidyuk Robert Mateescu **Radu Marinescu** Vibhav Gogate Lars Otten Natalia Flerova Andrew Gelfand William Lam Filjor Broka **Junkyu Lee Qi Lou Bobak** Pezeshki

> UNIVERSITY of CALIFORNIA **IRVINE**