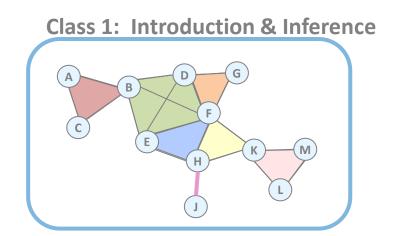
Algorithms for Causal Probabilistic Graphical Models

Class 5: Class 5:

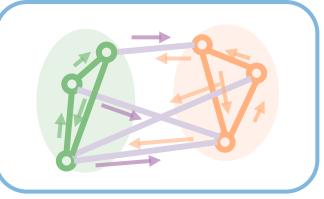
Athens Summer School on Al July 2024

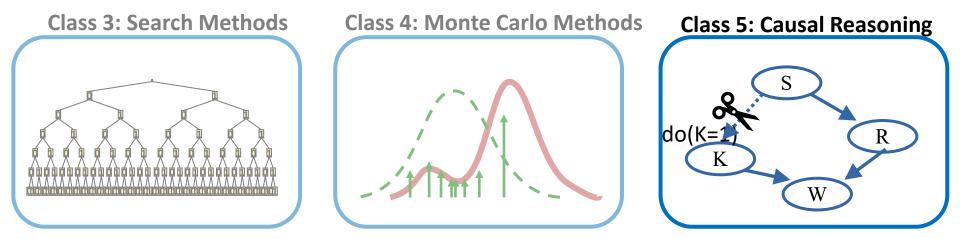
Prof. Rina Dechter Prof. Alexander Ihler

Outline of Lectures



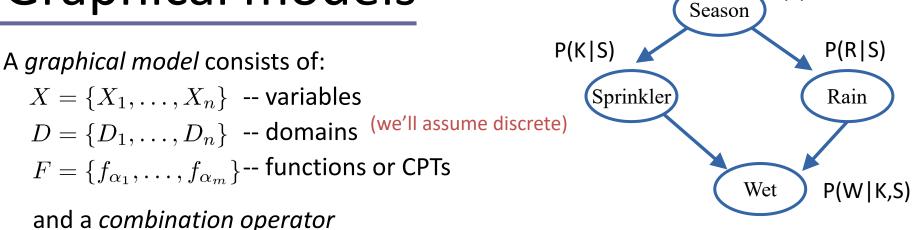
Class 2: Bounds & Variational Methods





ESSAI 2024

Graphical models



The *combination operator* defines an overall function from the individual factors, e.g., "+" : $P(S, K, R, W) = P(S) \cdot P(K|S) \cdot P(R|S) \cdot P(W|K, S)$

Notation:

Discrete X_i values called "states"

"Tuple" or "configuration": states taken by a set of variables

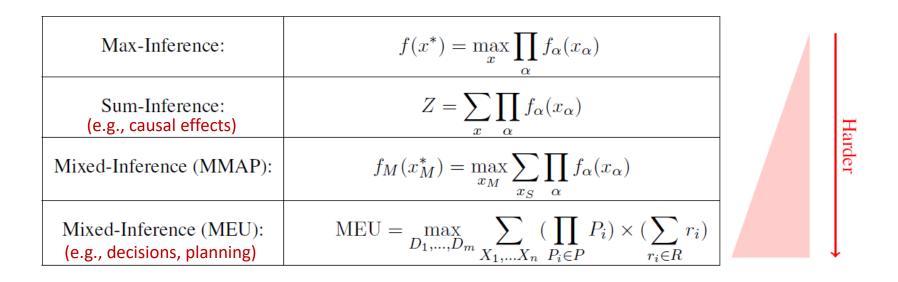
"Scope" of f: set of variables that are arguments to a factor f

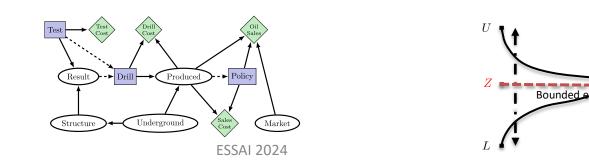
often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha}), \quad X_{\alpha} \subseteq X$

P(S)

Probabilistic Reasoning Problems

- Exact inference time, space exponential in induced width
- Casual reasoning is a sum-inference task.





Dechter & Ihler

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

Pearl's Causal Hierarchy (PCH)

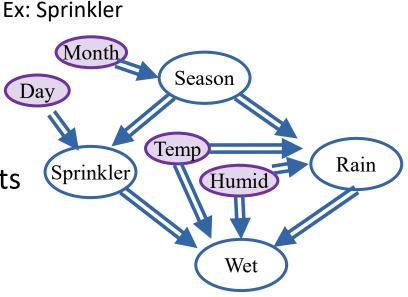
Level (Symbol)	Typical Activity	Typical Question	Examples
1 Association $P(y \mid x)$	Seeing	What is? How would seeing X change my belief in Y?	What does a symptom tell us about the disease?
$ \begin{array}{c} 2 \\ \text{Intervention} \\ P(y \mid do(x), c) \end{array} $	Doing	What if? What if I do <i>X</i> ?	What if I take aspirin, will my headache be cured?
$ \bigoplus_{\substack{P(y_x \mid x', y')}}^{3} $	Imagining, Retrospection	Why? What if I had acted differently?	Was it the aspirin that stopped my headache?

Structural Causal Models

- Endogenous (visible) variables V
 - Season, Sprinkler, Rain, Wet...
- Exogenous (latent) variables U
 - Temp, Humidity, Day, Month
- V are deterministic (=>) given parents
 - $-v_i = f_i(pa_i, u_i)$
- Randomness arises from U - $(u_1, \ldots, u_m) \sim p(U)$
- We can only observe the variables V
 - SCM defines a causal diagram

and the **observational distribution** p(V)

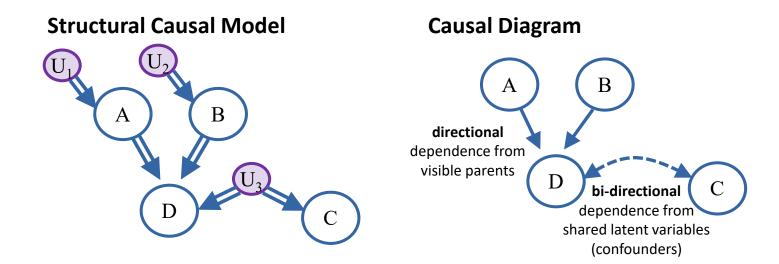
$$p(V) = \sum_{\mathbf{u}} p(\mathbf{u}) \prod_{i} p(V_i \mid pa_i, u_i)$$



7

Causal Diagram

A graph over the visible variables V that describes their causal structure



Special Cases

Markovian

 Each U_i has no parents, one child (equivalent to a Bayesian network)

Semi-Markovian

Each U_i has no parents, ≤ 2 children

Observational Distribution $p(V) = \sum_{\mathbf{u}} p(\mathbf{u}) \prod_{i} p(V_i \mid pa_i, u_i)$ visible and latent parents of V_i

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

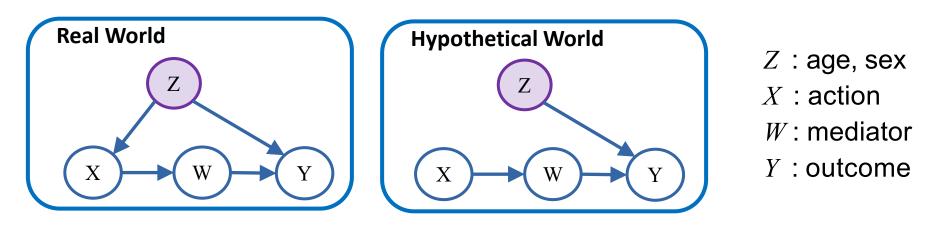
Estimand Methods

Learning Methods

The Challenge of Causal Inference

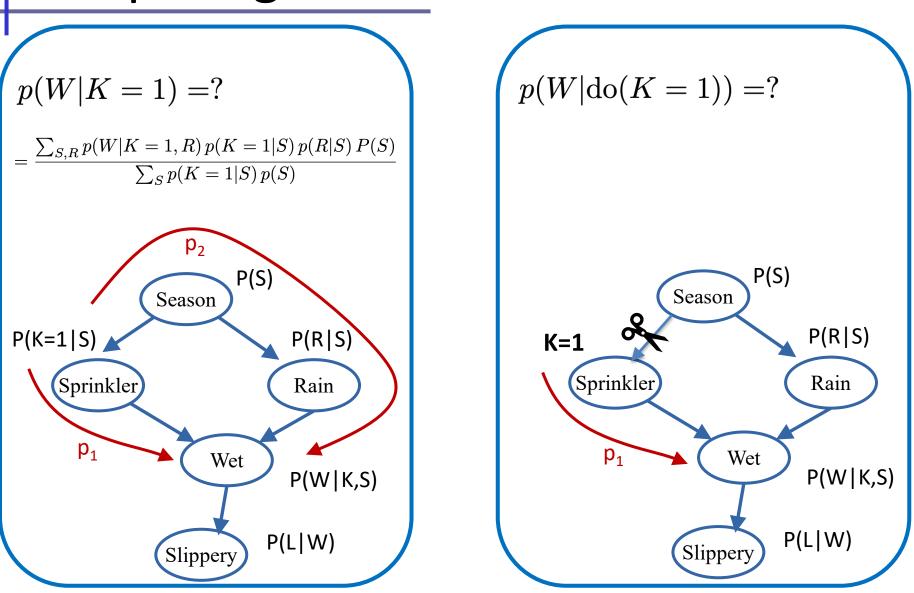
"Causal Effect"

• How much does outcome Y change with X, if we vary X between two constants free of the influence of other (possibly unobserved) causes Z?

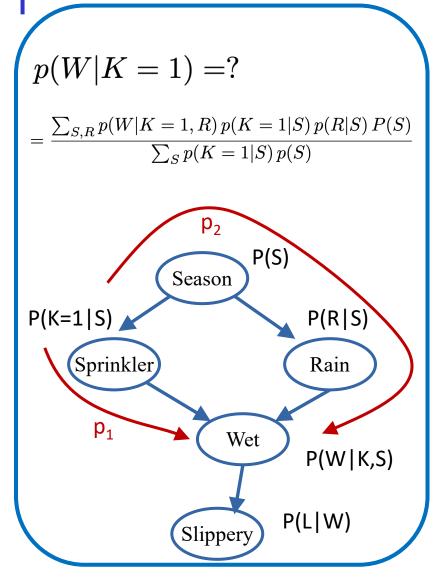


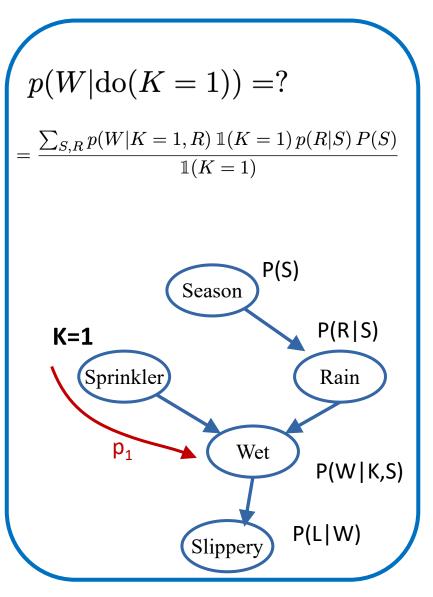
- Randomized control experiments
 - Sample from hypothetical world directly
 - What if we cannot do this? (e.g., can't control X directly, or too much delay)
- Can we estimate using data only from the left model?

Computing Causal Effects



Computing Causal Effects



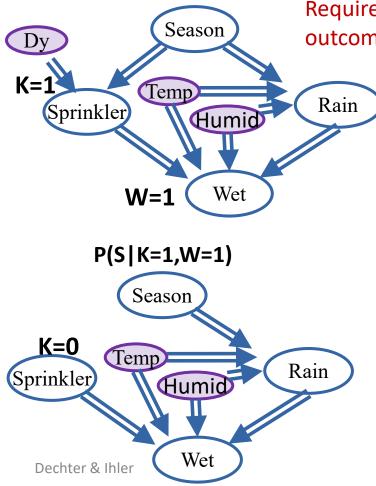


Dechter & Ihler

Counterfactual Queries

Counterfactual Query:

Probability of an event in contradiction with the observations What **would have happened** if the sprinkler had been turned off?



Requires that we transfer information about random outcomes that happened, to a different setting

Observe the sprinkler is on & grass is wet: (K=1,W=1)

What is the probability it would still be wet if we had turned the sprinkler off?

Abduction: Observing K=1 tells us it is more likely to be summer; Observing K=1,W=1 tells us it is not too hot & dry.

Action and Prediction: Then, apply this knowledge to compute the counterfactual:

ESSAI 2024

Computing Counterfactuals

Given a model $M = \langle V, U, F, P(u) \rangle$, the conditional probability $P(Y_x | z)$ can be evaluated using the following 3-step procedure:

- 1. (Abduction) Update P(u) by the evidence Z=z to obtain $P(u \mid z)$.
- 2. (Action) Modify *M* with do(X=x) to obtain F_x .
- 3. (Prediction) Use the model $\langle V, U, F_x, P(u \mid z) \rangle$ to compute the probability of *Y*.

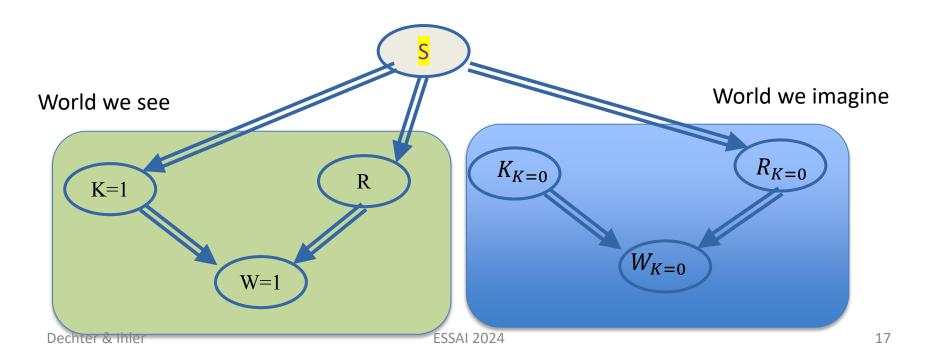
Counterfactual Queries

Ex: Observe the sprinkler is on & grass is wet: (K=1,W=1). What is the probability it would still be wet if we had turned the sprinkler off? Observing K=1 tells us it is

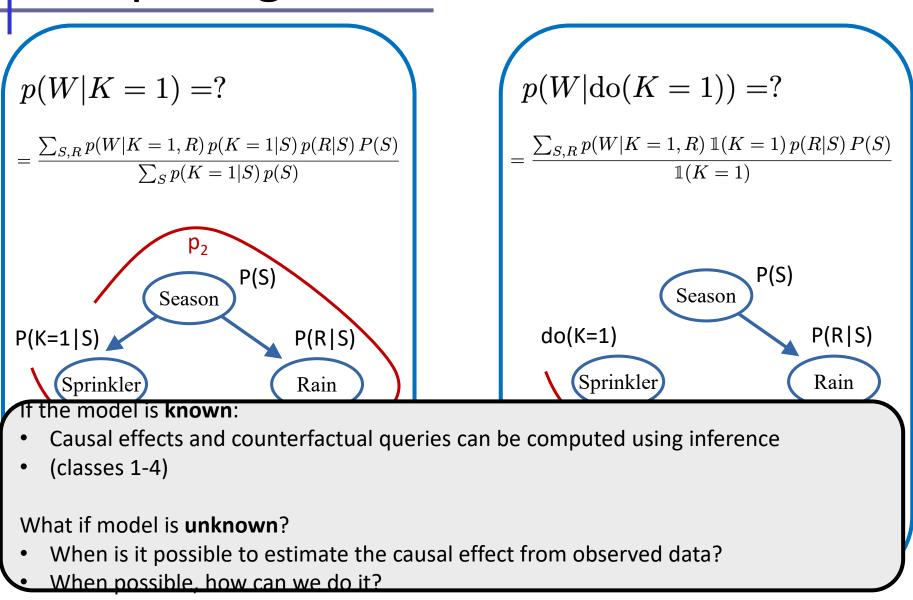
If we have the full model, Counterfactual queries can Be answered by PGM methods over the twin network model (Classes 1-4)

h G*

Compute $P(\mathbf{v} K=0 | \mathbf{x} - \mathbf{x}, \mathbf{v} - \mathbf{x})$ minut



Computing Causal Effects



ESSAI 2024

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

Identifiability

• When can we answer p(Y|do(X)) from observations?

Definition

We say a query p(Y|do(X)) is **identifiable** on graph G if, for any two distributions $p_1(V,U)$, $p_2(V,U)$ on G,

 $p_1(V) = p_2(V) \quad \Rightarrow \quad p_1(Y|do(X)) = p_2(Y|do(X))$

- Intuition
 - If a query is not identifiable, it cannot be answered uniquely for **any** amount of data – no consistent estimator exists!
 - Conversely, if we can express p(Y|do(X)) in terms of p(V), the query must be identifiable.

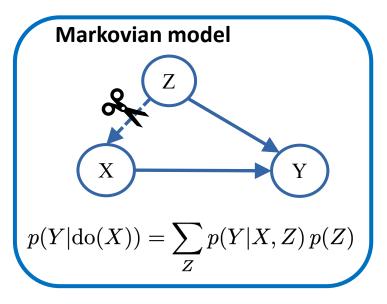
Let's look at a few useful special cases, before the general setting...

Identifiability: Markovian models

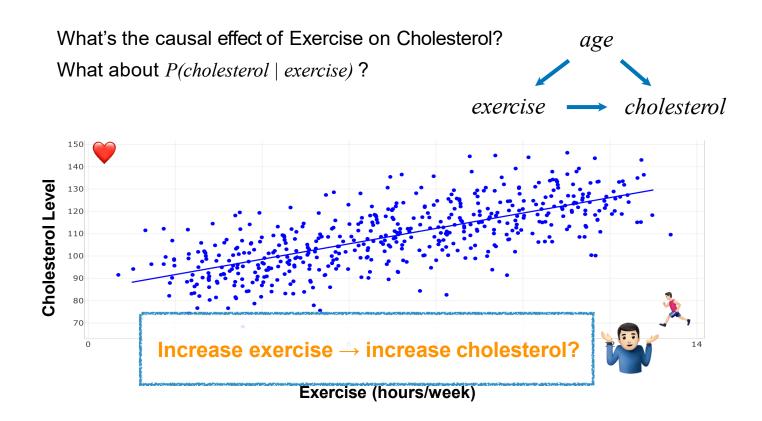
- For a Markovian graph G:
 - Causal effect p(Y|do(X)) is identifiable whenever X and all its parents are observed

- In general, $p(Y|do(X)) = \sum_{Z} p(Y|X, pa_X) p(pa_X)$ We "adjust" for the values of pa_X !

- Why is this necessary?
 - The problem of confounding

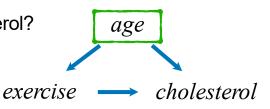


Ex: Confounding Bias



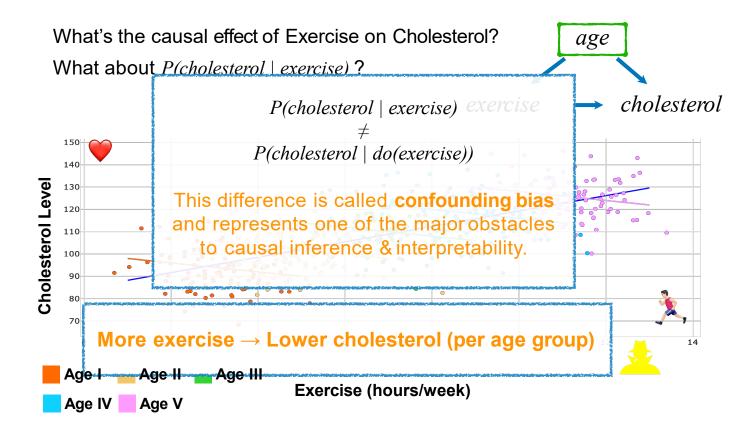
Ex: Confounding Bias

What's the causal effect of Exercise on Cholesterol? What about *P*(*cholesterol* | *exercise*)?





Ex: Confounding Bias

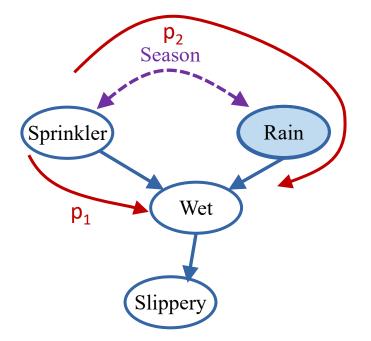


Identifiability: Backdoor Criterion

- A set Z satisifies the **backdoor criterion** if
 - No Z_i in Z is a descendant of X
 - Z blocks every path between X,Y that has an arrow into X

• Then,
$$p(Y|do(X)) = \sum_{Z} p(Y|X,Z) p(Z)$$

- Ex: What if Season is latent?
 - Z={Rain} for X=Sprinkler, Y=Wet
 - Conditioning on Rain blocks the non-causal path p_2
 - Leaves the causal path p_1 unaffected!



Identifiability: Frontdoor Criterion

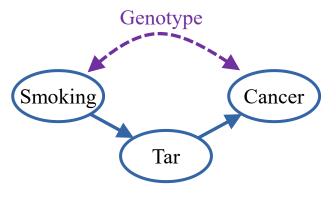
- A set Z satisifies the **frontdoor criterion** if
 - Z intercepts all directed paths from X to Y
 - There is no unblocked backdoor path from X to Z
 - All backdoor paths from Z to Y are blocked by X

• Then,
$$p(Y|do(X)) = \sum_{Z} p(Z|X) \sum_{X'} p(Y|X', Z) p(X')$$

• Z={Tar} for X=Smoking, Y=Cancer

$$p(Y|\text{do}(X)) = \sum_{Z} p(Z|X) \sum_{X'} p(Y|X', Z) p(X')$$

$$p(Z|\text{do}(X)) \qquad p(Y|\text{do}(Z))$$



"mediating variable" in causation process

The Do-Calculus

Semantics for rewriting expressions with do-operators

Theorem

The following transformations are valid for any do-distribution induced by a causal model M:

Rule 1: Adding/Removing Observations

 $p(y|\operatorname{do}(x), \operatorname{do}(z), w) = p(y|\operatorname{do}(x), z, w)$ if $(Z \perp Y \mid X, W)_{G_{\overline{X}Z}}$

Rule 2: Action/Observation Exchange p(y|do(x), z, w) = p(y|do(x), w) if $(Z \perp \!\!\!\perp Y \mid W)_{G_{\overline{X}}}$

Rule 3: Adding/Removing Actions p(y|do(x), do(z), w) = p(y|do(x), w) if $(Z \perp \!\!\!\perp Y \mid X, W)_{G_{\overline{X}\overline{Z(W)}}}$ where Z(W) is the set of Z-nodes that are not ancestors of any W-node in $G_{\overline{X}}$

If we can rewrite p(Y|do(X)) in terms of p(V), the query is identifiable!

Algorithmic approach for identification

The distribution generated by an intervention do(X=x)in a Semi-Markovian model *M* is given by the (generalized) truncated factorization product, namely,

$$P(\mathbf{v} | do(\mathbf{x})) = \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(v_i | pa_i, u_i) P(\mathbf{u})$$

And the effect of such intervention on a set Y is

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{v} \setminus (\mathbf{y} \cup \mathbf{x})} \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(v_i | pa_i, u_i) P(\mathbf{u})$$

Factorizing the observed distribution

• Start from a simple Markovian model:

$$P(\mathbf{v}) = P(v_1)P(v_2 | v_1)P(v_3 | v_2)P(v_4 | v_3)P(v_5 | v_4)$$

$$V_1 \quad V_2 \quad V_3 \quad V_4 \quad V_5$$

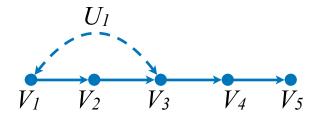
• Let's add an unobservable U₁, that affects two observables, and breaking Markovianity:

$$U_{1} \qquad P(\mathbf{v}) = \sum_{u_{1}} P(u_{1})P(v_{1} | u_{1})P(v_{2} | v_{1})P(v_{3} | v_{2}, u_{1})P(v_{4} | v_{3})P(v_{5} | v_{4})$$

$$= P(v_{2} | v_{1})P(v_{4} | v_{3})P(v_{5} | v_{4}) \left(\sum_{u_{1}} P(u_{1})P(v_{1} | u_{1})P(v_{3} | v_{2}, u_{1})\right)$$

Factorizing the observed distribution

• From the previous model ...



$$P(\mathbf{v}) = \sum_{u_1} P(u_1)P(v_1 | u_1)P(v_2 | v_1)P(v_3 | v_2, u_1)P(v_4 | v_3)P(v_5 | v_4)$$

= $P(v_2 | v_1)P(v_4 | v_3)P(v_5 | v_4) \left(\sum_{u_1} P(u_1)P(v_1 | u_1)P(v_3 | v_2, u_1)\right)$

• Add another unobservable U₂,

$$U_{1} \qquad U_{2} \qquad P(\mathbf{v}) = \sum_{u_{1}, u_{2}} P(u_{1}, u_{2})P(v_{1} | u_{1})P(v_{2} | v_{1})P(v_{3} | v_{2}, u_{1}, u_{2})P(v_{4} | v_{3})P(v_{5} | v_{4}, u_{2})$$

$$V_{1} \qquad V_{2} \qquad V_{3} \qquad V_{4} \qquad V_{5} \qquad = P(v_{2} | v_{1})P(v_{4} | v_{3}) \left(\sum_{u_{1}, u_{2}} P(u_{1}, u_{2})P(v_{1} | u_{1})P(v_{3} | v_{2}, u_{1}, u_{2})P(v_{5} | v_{4}, u_{2})\right)$$

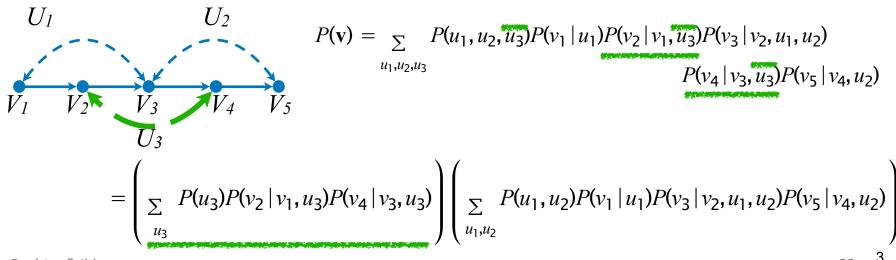
Factorizing the observed distribution

From the previous model...

$$U_{1} \qquad U_{2} \qquad P(\mathbf{v}) = \sum_{u_{1}, u_{2}} P(u_{1}, u_{2})P(v_{1} | u_{1})P(v_{2} | v_{1})P(v_{3} | v_{2}, u_{1}, u_{2})P(v_{4} | v_{3})P(v_{5} | v_{4}, u_{2})$$

$$V_{1} \qquad V_{2} \qquad V_{3} \qquad V_{4} \qquad V_{5} \qquad = P(v_{2} | v_{1})P(v_{4} | v_{3}) \left(\sum_{u_{1}, u_{2}} P(u_{1}, u_{2})P(v_{1} | u_{1})P(v_{3} | v_{2}, u_{1}, u_{2})P(v_{5} | v_{4}, u_{2})\right)$$

• Let's add one more, U₃,



Dechter & Ihler

C-Factors

• Recall our example

$$P(\mathbf{v}) = \begin{pmatrix} U_1 & U_2 \\ V_1 & V_2 & V_3 & V_4 & V_5 \\ U_3 & U_3 & U_4 & V_5 & U_3 & U_4 & U_5 \\ V_1 & V_2 & V_3 & V_4 & V_5 & U_3 & U_4 & U_5 &$$

• These factors made of sums may be long to write in terms of *P*(*v*,*u*). However, their structure follows from the topology of the diagram, then we can abstract this concept out by defining a new function *Q*:

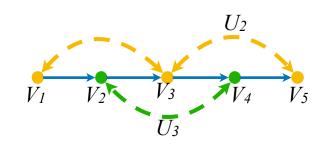
$$Q[\mathbf{C}](\mathbf{c}, pa_{\mathbf{c}}) = \sum_{u(\mathbf{C})} P(u(\mathbf{C})) \prod_{V_i \in \mathbf{C}} P(v_i | pa_i, u_i) \quad \text{where} \quad U(\mathbf{C}) = \bigcup_{V_i \in \mathbf{C}} U_i$$

Then $P(\mathbf{v})$ can be re-written as
$$P(\mathbf{v}) = Q[V_2, V_4](v_2, v_4, v_1, v_3)Q[V_1, V_3, V_5](v_1, v_3, v_5, v_2, v_4)$$

C-Factors

- For convenience *Q*[*C*](*c*,*pa*_{*c*}) can be written just as *Q*[*C*]
- Then, for our example, we can just write

$$P(\mathbf{v}) = Q[V_2, V_4]Q[V_1, V_3, V_5]$$

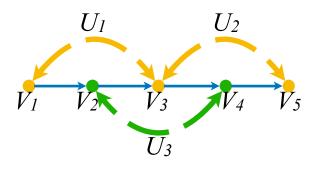


 U_l

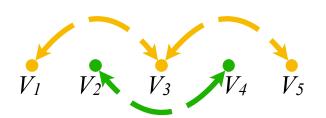
- Note that for the whole set of variables V $Q[\mathbf{V}] = \sum_{\mathbf{u}} P(\mathbf{u}) \prod_{V_i \in \mathbf{V}} P(v_i | pa_i, u_i) = P(\mathbf{v})$
- For consistency define $Q[\emptyset] = 1$

Confounding Components

C-components: A partition of the observed variables where any 2 variables connected by a path of bi-directed edges is in the same component.



- V_1 is in the same c-component as V_3 ,
- V_3 is in the same c-component as V_5 ,
- By extension, *V*₁ is in the same c-component as *V*₅ too.
- V_2 is in the same c-component as V_4 .



- To see it easily, consider the graph induced over the bidirected edges!
- Obs. The C-Component relation defines a partition over the observable variables, hence it is *Reflexive*, *Symmetric* and *Transitive*.

C-Component Factorization

 The distribution *P(v)* factorizes into c-factors associated with the c-components of the graph.

$$Q_1 = \{V_2, V_4\} \quad Q_2 = \{V_1, V_3, V_5\}$$

$$U_1 \qquad U_2$$

$$V_1 \qquad V_2 \qquad V_3 \qquad V_4 \qquad V_5$$

$$U_3 \qquad U_4 \qquad V_5$$

$$P(\mathbf{v}) = \left(\sum_{u_3} P(u_3)P(v_2 | v_1, u_3)P(v_4 | v_3, u_3)\right) \left(\sum_{u_1, u_2} P(u_1, u_2)P(v_1 | u_1)P(v_3 | v_2, u_1, u_2)P(v_5 | v_4, u_2)\right)$$

 $P(\mathbf{v}) = Q[V_2, V_4] Q[V_1, V_3, V_5]$

of 3 works a line work of the line work of the

C-Component Factorization

- For any $H \subseteq V$, consider a graph G_H .
- Let H_1 , H_2 , ..., H_k be the c-components of G_H .
- Then

$$Q[\mathbf{H}] = \prod_{j} Q[H_{j}]$$

And, the Q factor of any c component can be computed from Q(H)

C-factor Algebra - Summary

We have two basic operations over c-factors

- 1. Reduce to an ancestral set
 - $Q[\mathbf{W}] = \sum_{\mathbf{c} \setminus \mathbf{W}} Q[\mathbf{C}] \qquad \text{If } W \text{ is ancestral in } G_C$
- 2. Factorize into c-components

 $Q[\mathbf{H}] = \prod_{j} Q[H_{j}]$

Where $H_1, ..., H_k$, are the c-components in G_H

The Identification Algorithm

• Given G and the query variables X, Y

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{v} \setminus (\mathbf{x} \cup \mathbf{y})} Q[\mathbf{V} \setminus \mathbf{X}]$$
$$= \sum_{\mathbf{d} \setminus \mathbf{y}} Q[\mathbf{D}] \qquad \text{where } \mathbf{D} = An(\mathbf{Y}) \text{ in } G_{\mathbf{X}}$$

Suppose the graph G_D has C-components
 D₁, D₂, ..., D_k, then

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{d} \setminus \mathbf{y}} \prod_{i} Q[\mathbf{D}_{i}]$$

The Identification Algorithm

 If we can identify each Q[D1],Q[D2],...,Q[Dk], from P(v)=Q[V]=Q[C1]...Q[Cm], we obtain an expression equal to P(y|do(x)). An algorithm for computing Q[C] from Q[T] for C, T being c-components:

Identify($\mathbf{C}, \mathbf{T}, \mathbf{Q}, \mathbf{G}$)

- 1. Let $\mathbf{A}=\operatorname{An}(\mathbf{C})$ in $G_{\mathbf{T}}$.
- 2. If **A=C** return $Q[C] = \sum_{t \in Q}$.
- 3. If A=T return Fail.
- Let A_i be the c-comp of G_A that contains C. Get Q[A_i] from Q.
- 5. Return Identify(C, A_i , $Q[A_i]$, G).

Theorem [Huang and Valtorta, 2008]

The causal effect P(y|do(x)) is identifiable from causal diagram G and P(v) if and only if each of the C-factors $Q[\mathbf{D}_i]$ is identifiable by Identify (Di, Ci, Q[Ci], G).

Where C_i is the C-component of G containing D_i .

Examples of Estimand Expressions

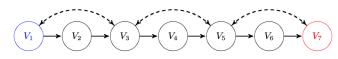
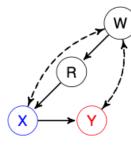
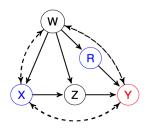


Figure 1: Chain Model with 7 observable variables and 3 latent variables

 $P(V_7 \mid do(V_1)) = \sum_{V_2, V_3, V_4, V_5, V_6} P(V_6 \mid V_1, V_2, V_3, V_4, V_5) P(V_4 \mid V_1, V_2, V_3) P(V_2 \mid V_1)$ $\times \sum_{V_1'} P(V_7 \mid V_1', V_2, V_3, V_4, V_5, V_6) P(V_5 \mid V_1', V_2, V_3, V_4) P(V_3 \mid V_1', V_2) P(V_1')$



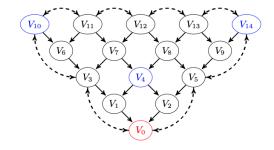
(a) Model 1



(c) Model 8 Dechter & Ihler Estimand Expressions for Models 1 & 8 .

Model	Estimate of $P(Y \mid do(X))$
1	$\frac{\sum_{W} P(X,Y R,W)P(W)}{\sum_{W} P(X R,W)P(W)}$
8	$\sum_{R,W,Z} P(Z R,W,X) P(R W) \sum_{x} P(Y R,W,x,Z) P(x R,W) P(W)$

Examples of Estimand Expressions



(**b**) Cone Cloud, n = 15 (15-CC)

 $P(V_0|V_{14},V_{10},V_4) =$

$$\begin{split} &\sum_{V_1,V_2,V_3,V_5,V_6,V_1,V_{12},V_{13},V_{12},V_{13},V_{13}',V_{13}',V_{13}',V_{14}') \times \\ &P(V_9|V_{13},V_{14})P(V_8|V_{12},V_{13})P(V_1|V_3,V_4,V_6,V_7,V_8,V_{10},V_{11},V_{12},V_{13}) \times \\ &P(V_7|V_{11},V_{12})P(V_6|V_{10},V_{11})P(V_{11},V_{12},V_{13}) \times \\ &P(V_0|V_1,V_2,V_3,V_4,V_5,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13}) \times \\ &P(V_8|V_1,V_3,V_4,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13},V_{14}') \times \\ &P(V_1|V_1,V_3,V_4,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13}) \times \\ &P(V_1|V_1,V_3,V_4,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13}) \times \\ &P(V_1|V_1,V_3,V_4,V_6,V_7,V_8,V_9,V_{10}',V_{11},V_{12},V_{13}) \times \\ &P(V_3,V_{13}|V_6,V_7,V_{10}',V_{12},V_{13})P(V_{10}'|V_7,V_{11},V_{12})P(V_{11},V_{12}) \quad (7) \end{split}$$

An estimand often corresponds to inference over a Bayesian network Which is sometime very dense.

The treewidth of the above example is sqrt of n, when n is the number of variables

So, is evalution Exp(w)?.

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

Identifiability

Estimand Methods

Learning Methods

The Plug-in estimate

- The Plug-in methods uses the "empirical distributions extracted from the data to estimate observed probabilistic quantities.
- Complexity of generating a table is O(|D|).
- Complexity of evaluation is exponential in the hyper-tree width.
- Computation can explore the graph and sparseness of the probabilistic quantities.

Empirical Factors, Sparse Representation

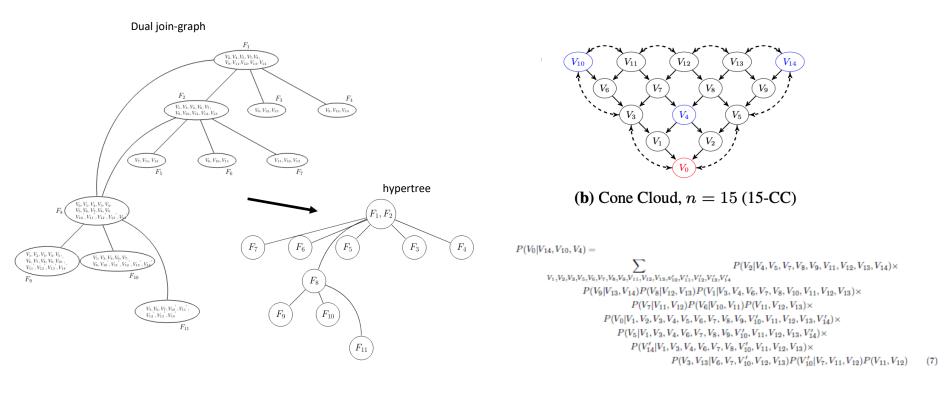
Table 80: 6 Variables with domain size 3

(a) Data Table

А	В	\mathbf{C}	D	Е	F
0	1	2	0	1	2
1	2	0	1	2	0
2	0	1	2	0	1
1	0	2	1	0	2
2	1	0	2	1	0
0	1	2	0	1	2
1	2	0	1	2	0
2	0	1	2	0	1
1	0	2	1	0	2
0	1	2	0	1	2
1	2	0	1	2	0
2	0	1	2	0	1
1	0	2	1	0	2
2	1	0	2	1	0
0	0	0	0	0	0
1	2	1	0	2	0
0	1	0	2	1	1
0	0	0	0	0	0
2	0	1	2	0	1
0	2	2	1	0	1

(b) Sparse Factor Table								
Α	В	С	D	Е	F	Probability		
0	1	2	0	1	2	0.20		
1	2	0	1	2	0	0.20		
2	0	1	2	0	1	0.20		
1	0	2	1	0	2	0.15		
2	1	0	2	1	0	0.10		
0	0	0	0	0	0	0.10		
1	2	1	0	2	0	0.05		
0	1	0	2	1	1	0.05		
0	2	2	1	0	1	0.05		

Estimands Tree-Decomposition (Cones)



hw=2,w=14

Hyper-tree width: is the mximum number of functions placed in any cluster of a tree-decomposition

Dechter & Ihler

ESSAI 2024

Complexity of Plug-In Scheme

Theorem: The complexity of evaluating an extimands whose expression has a tree-decomposition having hyper tree-width hw is $O(n \ t^{hw})$ if it has no denominators, where n = number of variables, t is the data size and k is the variables domain size. The complexity is also exponential in the tree-width is $O(n \ k^{w})$.

In all the examples we saw hw=1,2. w=1 or $O(\sqrt{n})$.

But what about statistical accuracy?

Note: The Plug-in can be viewed as using *maximum –likelihood* learning when data is fully observed over a Bayesian network graph extracted from the estimand.

Outline: Causal Inference

Causal Models: Semantics

Causal Models: Queries

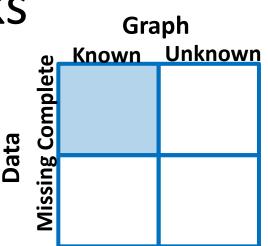
Identifiability

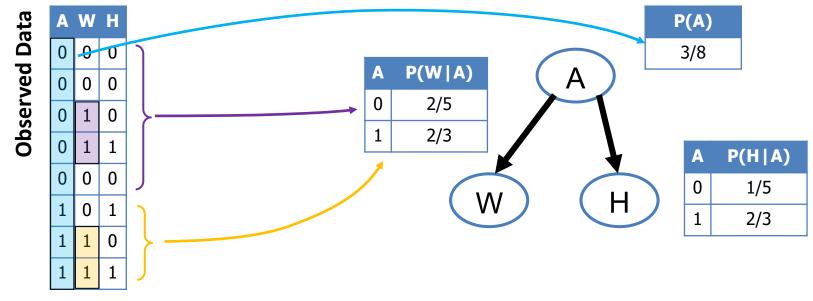
Estimand Methods

Learning Methods

Learning Bayesian networks

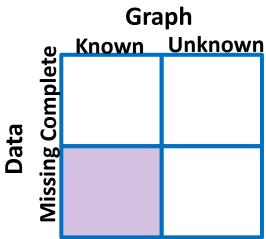
- Maximum Likelihood estimation
 - Select model that makes the data most probable
- For discrete X_i & no shared parameters
 - ML estimates are empirical probabilities

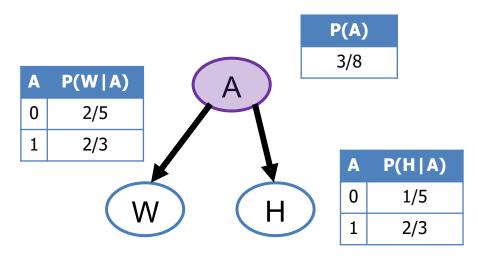




Learning with missing data

- Latent / hidden variables
 - Value is never observed
 - No unique model (e.g., symmetry)
 - No closed form solution; iterative ML
- More general missing values?
 - May depend on the reason for missingness!





Data	A	W	Η
	?	0	0
Observed	?	0	0
ser	?	1	0
qO	?	1	1
	?	0	0
	?	0	1
	?	1	0
	?	1	1

Learning-Based Approach

Motivation: Use PGM algorithms for Causal Reasoning

 $P(V_7 \mid do(V_1)) = \sum_{\substack{V_2, V_3, V_4, V_5, V_6 \\ V_1'}} P(V_6 \mid V_1, V_2, V_3, V_4, V_5) P(V_4 \mid V_1, V_2, V_3) P(V_2 \mid V_1)$ $\times \sum_{\substack{V_1' \\ V_1'}} P(V_7 \mid V_1', V_2, V_3, V_4, V_5, V_6) P(V_5 \mid V_1', V_2, V_3, V_4) P(V_3 \mid V_1', V_2) P(V_1')$

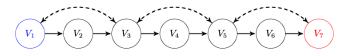


Figure 1: Chain Model with 7 observable variables and 3 latent variables

Motivation: Bucket-elimination on this network has tree-width 3 while the observational distribution has a tree-width of 7 and hypertree width of 1

Learning Idea: Input: G, P(V) 1.Learn a full causal BN, from G and samples from P(V) using EM. 2. Truncate the learned model B into B_x. 3. Compute P(Y) by Bucket elimination over B_x and return. End Algorithm

Accuracy: EM is a mximum likelihood learning scheme that converges to a local maxima. **Complexity** of Inference of both learning and inference is exponential in the **tree-width**.

Theorem: Given a model M yielding observational distribution P(V) and graph G, then any causal Bayesian Network over G having the same P(V), will agree with M **on any identifiable** causal effect query P(Y|do(X)).

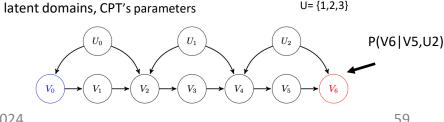
Learning-Based Approach

What about the latent variables? Their domains?

Fit a good domain size for latent variables using the BIC score.

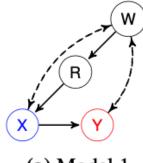
 $BIC_{\mathcal{B},\mathcal{D}} = -2 \cdot LL_{\mathcal{B},\mathcal{D}} + p \cdot \log(|\mathcal{D}|)$

Algorithm 3: EM4CI input : A causal diagram $\mathcal{G} = \langle U \cup V, E \rangle$, U latent and V observables; \mathcal{D} samples from $P(\mathbf{V})$; Query $Q = P(\mathbf{Y} \mid do(\mathbf{X} = \mathbf{x})).$ **output:** Estimated $P(\mathbf{Y} \mid do(\mathbf{X} = \mathbf{x}))$ // k= latent domain size, $BIC_{\mathcal{B}} = BIC$ score of $\mathcal{B}, \mathcal{D},$ $// LL_{\mathcal{B}}$ is the log-likelihood of \mathcal{B}, \mathcal{D} 1. Initialize: $BIC_{\mathcal{B}} \leftarrow \inf$, Step 1: 2. If \neg identifiable(\mathcal{G}, Q), terminate. 3. For k = 2, ..., to upper bound, do $(LL_{\mathcal{B}_{new}}) \leftarrow \max_{LL} \{ \{ EM(\mathcal{G}, \mathcal{D}, k) \mid i = 1, 2, \dots, 10 \} \};$ 4. Calculate $BIC_{\mathcal{B}_{new}}$ from $LL_{\mathcal{B}_{new}}$ 5.If $BIC_{\mathcal{B}_{new}} \leq BIC_{\mathcal{B}}$, 6. $\mathcal{B} \leftarrow \mathcal{B}_{new}, BIC_{\mathcal{B}} \leftarrow BIC_{\mathcal{B}_{new}}$ 7. 8. else, break. 9. Endfor 10: $\mathcal{B}_{\mathbf{X}=\mathbf{x}} \leftarrow$ generate truncated CBN from \mathcal{B} . 11: return \leftarrow evaluate $P_{\mathcal{B}_{\mathbf{X}=\mathbf{x}}}(\mathbf{Y})$



ESSAI 2024

Empirical Evaluation: Small Graphs

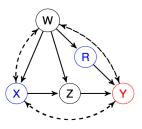


(a) Model 1

Small Synthetic models

Estimand Expressions for Models $1\ \&\ 8$.

Model	Estimate of $P(Y \mid do(X))$
1	$\frac{\sum_{W} P(X,Y R,W)P(W)}{\sum_{W} P(X R,W)P(W)}$
8	$\sum_{R,W,Z} P(Z R,W,X) P(\vec{R W}) \sum_{x} P(Y R,W,x,Z) P(x R,W) P(W)$



(c) Model 8

Results for EM4CI and Plug-in estimates on P(Y = y | do(X = 0)), (d, k) = (2, 10), k_{lrn} is the learned domain sizes of latent variables.

	100 Samples				1,000 Samples			
		EM4CI		Plugin		EM4CI		Plugin
Model	(LL,BIC)	(mad,time(s))	k_{lrn}	(mad, time)	(LL,BIC)	(mad,time(s))	k_{lrn}	(mad,time)
1	(-79,167)	(0.00348, 0.13)	2	(0.015, 0.016)	(-716,1445)	(0.003475, 1.5)	2	(0.002, 0.21)
8	(-121,262)	(0.0373, 0.61)	2	(0.288, 0.016)	(-1290, 2609)	(0.0083, 6.6)	2	(0.154, 0.248)

Empirical Evaluation: Large Synthetic

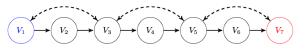
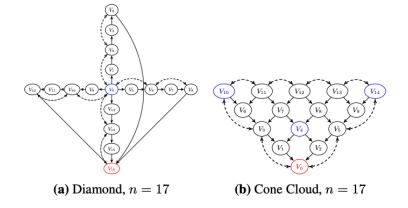


Figure 1: Chain Model with 7 observable variables and 3 latent variables



More accuracy for learning in all cases but 1

Table 78: Results for EM4CI and Plug-In on $P(Y|do(\mathbf{X}))$ (d,k) = (4,10)

(a) 1,000 samples

		EM4CI				Plu	g-In
Model	Query	k_{lrn}	mad	Learn-time(s)	inf-time(s)	mad	time(s)
5-CH	$P(V_4 do(V_0))$	4	0.0902	3.5	0.0001	0.1509	2.3
9-CH	$P(V_8 do(V_0))$	4	0.1204	11.5	0.0002	0.1516	2.4
25-CH	$P(V_24 do(V_0))$	2	0.0070	77.7	0.0003	0.0959	6.1
49-CH	$P(V_48 do(V_0))$	4	0.0005	161.2	0.0007	0.0319	17.8
99-CH	$P(V_{9}8 do(V_{0}))$	6	0.0093	413.4	0.0023	0.0611	88.1
9-D	$P(V_8 do(V_0))$	2	0.0719	24.6	0.0002	0.1832	3.4
17-D	$P(V_{16} do(V_0))$	6	0.0542	202.3	0.0006	0.0700	4.5
65-D	$P(V_{64} do(V_0))$	4	0.0074	432.4	0.0012	0.1716	232.5
6-CC	$P(V_0 do(V_5))$	4	0.0088	23.5	0.0001	0.0156	2.3
15-CC	$P(V_0 do(V_{14}))$	4	0.0147	60.8	0.0001	0.0659	4.5
45-CC	$P(V_0 do(V_{14}, V_{36}, V_{44}))$	6	0.0097	199.2	2.7429	0.1509	18.6

(b) 10,000 samples

		EM4CI				Plug-In	
Model	Query	k_{lrn}	mad	Learn-time(s)	inf-time(s)	mad	time(s)
5-CH	$P(V_4 do(V_0))$	4	0.0508	17.3	0.0001	0.0537	2.5
9-CH	$P(V_8 do(V_0))$	4	0.0236	150.0	0.0002	0.1074	3.1
25-CH	$P(V_{2}4 do(V_{0}))$	6	0.0068	697.1	0.0005	0.0714	26.4
49-CH	$P(V_{4}8 do(V_{0}))$	10	0.0017	2412.6	0.0036	0.0160	133.7
99-CH	$P(V_{9}8 do(V_{0}))$	6	0.0028	3887.9	0.0022	0.0433	850.6
9-D	$P(V_8 do(V_0))$	4	0.0611	390.7	0.0002	0.1481	3.0
17-D	$P(V_{16} do(V_0))$	6	0.0360	1849.6	0.0007	0.0582	8.4
65-D	$P(V_{64} do(V_0))$	4	0.0022	4787.2	0.0013	0.1376	2258.5
6-CC	$P(V_0 do(V_5))$	6	0.0138	116.9	0.0003	0.0136	2.7
15-CC	$P(V_0 do(V_{14}))$	4	0.0022	489.5	0.0043	0.0321	10.9
$45\text{-}\mathrm{CC}$	$P(V_0 do(V_{14}, V_{36}, V_{44}))$	6	0.0026	1833.7	2.757	0.1561	105.8

Dependence on Model Size

Trajectory over Cone Instances

Trajectory over Chain Instances

Trajectory over Diamond Instances

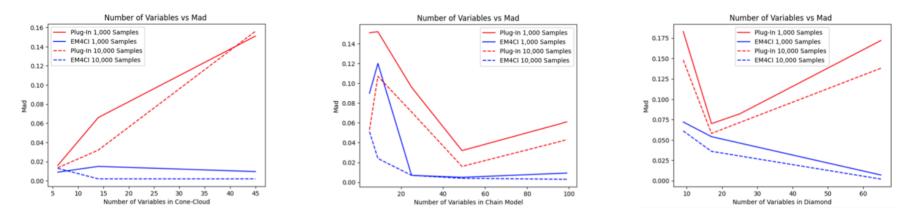


Figure 4: Comparing the accuracy of EM4CI and Plug-In. While both methods improve with more samples (solid to dashed lines), the error (mad) of EM4CI is smaller, even when compared to Plug-In with more samples.

Empirical Evaluation: Results

• 4 Real Networks

"Alarm", "A", "Barley", and "Win95pts" network

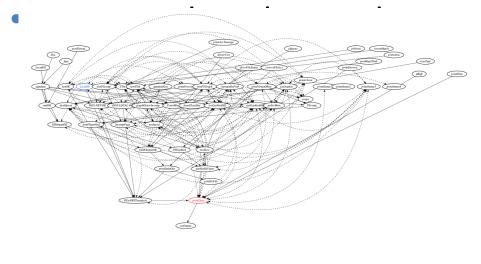


Figure: A Model

Table 8: Plug-In & EM4CI results on the A Network |V| = 46; |U| = 8; d = 2; k = 2 treewidth ≈ 16

(a) Plug-In

	1,000 \$	Samples	10,000	Samples
Query	mad	time(s)	mad	time(s)
$P(V_{51} do(V_{10}))$	0.0584	8.0	0.0114	55.7
$P(V_{51} do(V_{14}))$	0.0319	8.3	0.0056	51.3
$P(V_{51} do(V_{41}))$	0.0255	13.9	0.0092	48.3
$P(V_{51} do(V_{45}))$	0.0496	9.8	0.0206	49.1

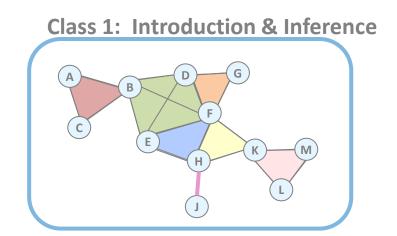
(**b**) EM4CI

	1,000 San	nples	10,000 Samples		
Learning	time = 71(s)	$k_{lrn}=4$	time(s) = 541	$k_{lrn}=4$	
Inference: Query	mad	time(s)	mad	time(s)	
$\begin{array}{l} P(V_{51} {\rm do}(V_{10})) \\ P(V_{51} {\rm do}(V_{14})) \\ P(V_{51} {\rm do}(V_{41})) \\ P(V_{51} {\rm do}(V_{45})) \end{array}$	0.0139 0.0143 0.0147 0.0140	0.0012 0.0047 0.0042 0.0031	0.0083 0.0086 0.0079 0.0082	0.0012 0.0046 0.0041 0.0030	

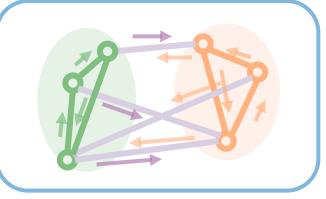
Summary: Causal queries

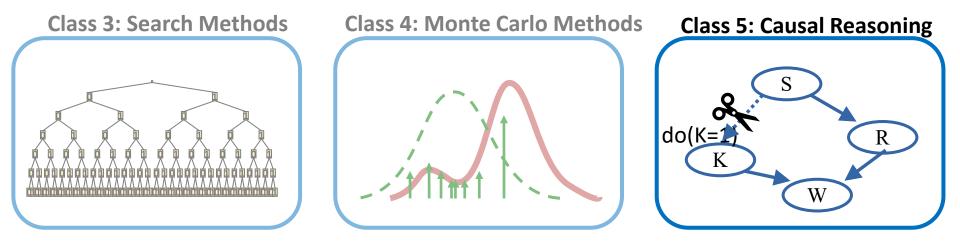
- Causal Bayesian networks and SCM encodes causal assumptions explicitly.
- Causal effects and counterfactual queries can be computed from the full causal model by PGM methods.
- Given only the causal diagram and observational data queries can be evaluated if identifiable.
- Causal effect queries can be done by statistical estimation of estimands (defined by observation quantities).
- Estimands can be generated by Backdoor, Frontdoor, docalculous. The ID algorithm.
- Model completion by learning is a promising alternative for causal inference that exploit PGM methods.

Summary of Lectures



Class 2: Bounds & Variational Methods





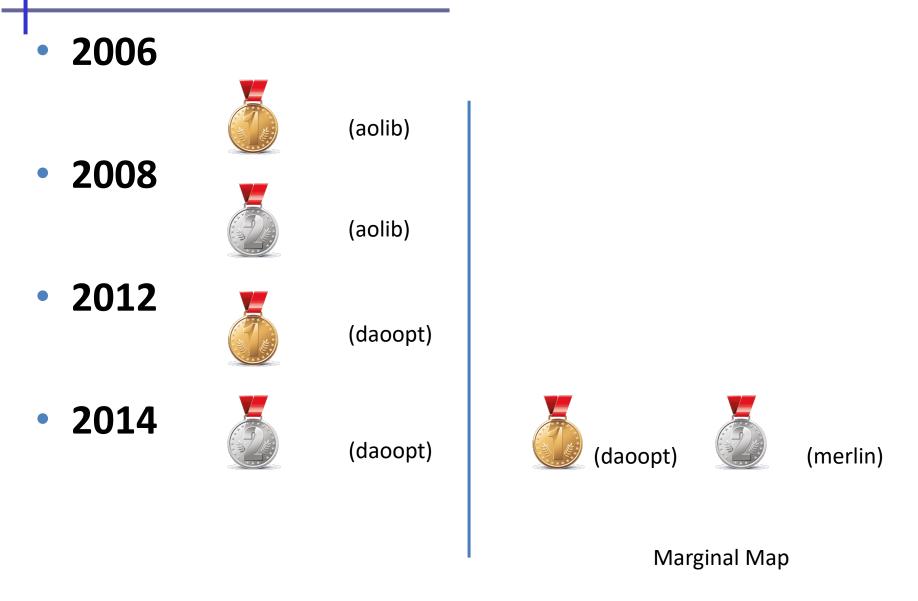
ESSAI 2024

Software

My software page

<u>pyGMs</u>: Python Toolbox for Graphical Models by Alexander Ihler.

UAI Probabilistic Inference Competitions



New UAI Competition

UAl Competition 2022

Solver	20sec	1200sec	3600sec
<u>uai14-pr</u>	61.7	96.8	96.7
<u>ibia-pr</u>	53.6	96.6	97.1
AbstractionSampling	78.9	91.7	93.9
<u>lbp-pr</u>	90.3	89.9	90.2

Thank You !

For publication see: http://www.ics.uci.edu/~dechter/publications.html

Rina Dechter Alex Ihler

Kalev Kask Irina Rish Bozhena Bidyuk Robert Mateescu **Radu Marinescu** Vibhav Gogate Lars Otten Natalia Flerova Andrew Gelfand William Lam Filjor Broka Junkyu Lee Qi Lou **Bobak** Pezeshki

UNIVERSITY of CALIFORNIA O IRVINE