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Outline of Lectures

Class 1:  Introduction & Inference Class 2: Bounds & Variational Methods

Class 3: Search Methods Class 4: Monte Carlo Methods
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Class 5: Causal Reasoning
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Graphical models
A graphical model consists of:
          -- variables
     -- domains
     -- functions or CPTs

     and a combination operator 

The combination operator defines an overall function from the individual factors,
      e.g.,  “+”  : 

(we’ll assume discrete)

Notation:
     Discrete  Xi  values called “states”
     “Tuple” or “configuration”: states taken by a set of variables
     “Scope” of f: set of variables that are arguments to a factor f
              often index factors by their scope, e.g., 
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Wet

P(S)

P(K|S)

P(W|K,S)

P(R|S)
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Probabilistic Reasoning Problems
• Exact inference time, space exponential in induced width 
• Casual reasoning is a sum-inference task.

(e.g., decisions, planning)

(e.g., causal effects)
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Outline: Causal Inference

Causal Models: Queries

Estimand Methods

Learning Methods

Causal Models: Semantics

Identifiability
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Level  
(Symbol
)

Typical  
Activit
y

Typical  
Questio
n

1
Association

P(y | x)

Seeing What is?

How would 
seeing X change 
my belief in Y?

What does a  
symptom tell 
us about the 
disease?

2
Intervention
P(y | do(x), c)

Doing What if?

What if I do X?

What if I take  
aspirin, will  
my headache  
be cured?

3
Counterfactual

P(yx | x’, y’)

Imagining,  
Retrospection

Why? Was it the  
aspirin that  
stopped my 
headache?

What if I had 
acted differently?

Pearl’s Causal Hierarchy (PCH)

ExamplesLevel  
(Symbol)

Typical  
Activity

Typical  
Question
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• Endogenous (visible) variables V
– Season, Sprinkler, Rain, Wet…

• Exogenous (latent) variables U
– Temp, Humidity, Day, Month

• V are deterministic (     ) given parents
–  

• Randomness arises from U
–  

• We can only observe the variables V
– SCM defines a causal diagram 
 and the observational distribution p(V)

Dechter & Ihler

Season

Sprinkler Rain

Wet

Day

Temp
Humid

Month

Ex: Sprinkler

Structural Causal Models
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Causal Diagram
A graph over the visible variables V that describes their causal structure

A B

CD

U1
U2

U3

A B

CD

directional 
dependence from 

visible parents
bi-directional 

dependence from 
shared latent variables 

(confounders)

Causal DiagramStructural Causal Model

Observational Distribution

visible and latent 
parents of Vi

Markovian
• Each Ui has no parents, one child
 (equivalent to a Bayesian network)

Semi-Markovian
• Each Ui has no parents, ≤ 2 children

Special Cases
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Outline: Causal Inference

Causal Models: Queries

Estimand Methods

Learning Methods

Causal Models: Semantics

Identifiability
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Z : age, sex
X : action
W : mediator
Y : outcomeX W Y

Z

X W Y

Z

Real World Hypothetical World

The Challenge of Causal Inference
“Causal Effect”
• How much does outcome Y change with X, if we vary X between two constants 

free of the influence of other (possibly unobserved) causes Z?

• Randomized control experiments
– Sample from hypothetical world directly
– What if we cannot do this? (e.g., can’t control X directly, or too much delay)

• Can we estimate using data only from the left model?
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Computing Causal Effects

Season

Sprinkler Rain

Wet

P(S)

P(K=1|S)

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1

p2

Season

Sprinkler Rain

Wet

P(S)

K=1

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1
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Computing Causal Effects

Season

Sprinkler Rain

Wet

P(S)

P(K=1|S)

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1

p2

Season

Sprinkler Rain

Wet

P(S)

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1

Dechter & Ihler ESSAI 2024 12

K=1



Dechter & Ihler ESSAI 2024 15

Season

Sprinkler Rain

Wet

Dy

Temp
Humid

Season

Sprinkler Rain

Wet

Temp
Humid

K=0

P(S|K=1,W=1)

K=1

W=1

Observe the sprinkler is on & grass is wet: 
(K=1,W=1)

What is the probability it would still be wet if we 
had turned the sprinkler off?

Abduction: Observing K=1 tells us it is more likely 
to be summer;
Observing K=1,W=1 tells us it is not too hot & dry.

Action and Prediction: Then, apply this 
knowledge to compute the counterfactual:

Counterfactual Queries
Counterfactual Query:
Probability of an event in contradiction with the observations 
What would have happened if the sprinkler had been turned off?

Requires that we transfer information about random 
outcomes that happened, to a different setting



Computing Counterfactuals
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S

K=1 R

W=1

Ex: Observe the sprinkler is on & grass is wet: (K=1,W=1). What is the probability it 
would still be wet if we had turned the sprinkler off? Observing K=1 tells us it is 
more likely to be summer; Observing K=1,W=1 tells us it is not too hot & dry.
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𝐾𝐾𝐾𝐾=0 𝑅𝑅𝐾𝐾=0

𝑊𝑊𝐾𝐾=0

Idea: Consider a new joint M* that includes both M and M_K  treating the variables.
In M and M_k as different variables. the real and the hypothetical worlds. This yields graph G*  
Compute                                                in M*

World we see World we imagine

Counterfactual Queries

If we have the full model, Counterfactual queries can
Be answered by PGM methods over the twin network model (Classes 1-4)



Computing Causal Effects

Season

Sprinkler Rain

Wet

P(S)

P(K=1|S)

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1

p2

Season

Sprinkler Rain

Wet

P(S)

do(K=1)

P(W|K,S)

P(R|S)

Slippery P(L|W)

p1

If the model is known:
• Causal effects and counterfactual queries can be computed using inference 
• (classes 1-4)

What if model is unknown?
• When is it possible to estimate the causal effect from observed data?
• When possible, how can we do it?
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Outline: Causal Inference

Identifiability

Estimand Methods

Learning Methods

Causal Models: Semantics

Causal Models: Queries
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Identifiability
• When can we answer p(Y|do(X)) from observations?

• Intuition
– If a query is not identifiable, it cannot be answered uniquely 

for any amount of data – no consistent estimator exists!
– Conversely, if we can express p(Y|do(X)) in terms of p(V), the 

query must be identifiable.

We say a query p(Y|do(X)) is identifiable on graph G if, for any two 
distributions p1(V,U), p2(V,U) on G,

Definition

Let’s look at a few useful special cases, before the general setting…

Dechter & Ihler ESSAI 2024 20



Identifiability: Markovian models
• For a Markovian graph G:

– Causal effect p(Y|do(X)) is 
identifiable whenever X and all its 
parents are observed

– In general,

We “adjust” for the values of paX!

• Why is this necessary?
– The problem of confounding

X Y

Z

Markovian model

Dechter & Ihler ESSAI 2024 21



age
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C
ho
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Increase exercise → increase cholesterol?

Exercise (hours/week)

What’s the causal effect of Exercise on Cholesterol?  
What about P(cholesterol | exercise) ?

exercise

Ex: Confounding Bias
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What’s the causal effect of Exercise on Cholesterol?  
What about P(cholesterol | exercise) ?

exercise

More exercise → Lower cholesterol (per age group)
Age I Age II Age III

Exercise (hours/week)
Age IV Age V

ESSAI 2024

Ex: Confounding Bias
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What’s the causal effect of Exercise on Cholesterol?  
What about P(cholesterol | exercise) ?

age

exercise cholesterol

C
ho

le
st

er
ol

Le
ve

l

P(cholesterol | exercise)
≠

P(cholesterol | do(exercise))

This difference is called confounding bias  
and represents one of the major obstacles  

to causal inference & interpretability.

More exercise → Lower cholesterol (per age group)
Age I Age II Age III

Exercise (hours/week)
Age IV Age V

ESSAI 2024

Ex: Confounding Bias
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Identifiability: Backdoor Criterion
• A set Z satisifies the backdoor criterion if

– No 𝑍𝑍𝑖𝑖  𝑖𝑖𝑖𝑖 𝑍𝑍 is a descendant of X
– Z blocks every path between X,Y that has an arrow into X

• Then,

p1

p2
Season

Sprinkler Rain

Wet

Slippery

• Z={Rain} for X=Sprinkler, Y=Wet
– Conditioning on Rain blocks the non-causal 

path 𝑝𝑝2 
– Leaves the causal path 𝑝𝑝1 unaffected!

Ex: What if Season is latent?
Rain

Dechter & Ihler ESSAI 2024 26



Identifiability: Frontdoor Criterion
• A set Z satisifies the frontdoor criterion if

– Z intercepts all directed paths from X to Y
– There is no unblocked backdoor path from X to Z
– All backdoor paths from Z to Y are blocked by X

• Then,

Genotype

Smoking Cancer

Tar

• Z={Tar} for X=Smoking, Y=Cancer

Ex: Smoking & Cancer

”mediating variable” 
in causation processp(Y|do(Z))p(Z|do(X))

Dechter & Ihler ESSAI 2024 27



The Do-Calculus
• Semantics for rewriting expressions with do-operators

If we can rewrite p(Y|do(X)) in terms of p(V), the query is identifiable!

The following transformations are valid for any do-distribution induced by a 
causal model M:

Rule 1: Adding/Removing Observations

Rule 2: Action/Observation Exchange

Rule 3: Adding/Removing Actions

 where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G–X

Theorem

Dechter & Ihler ESSAI 2024 28



Algorithmic approach for identification



3
0

The distribution generated by an intervention do(X=x)  
in a Semi-Markovian model M is given by the  
(generalized) truncated factorization product, namely,

Truncated Product in  Semi-Markovian Models

Dechter & Ihler 30



V1 V2 V3 V4 V5

U1

• Start from a simple Markovian model:

P(v) = P(v1)P(v2|v1)P(v3|v2)P(v4|v3)P(v5|v4)
V1 V2 V3 V4 V5

• Let’s add an unobservable U1, that affects two observables,
and  breaking Markovianity:

u1

= P(v2|v1)P(v4|v3)P(v5|v4) ∑ P(u1)P(v1|u1)P(v3|v2,u1)

u1

P(v) =∑ P(u1)P(v1|u1)P(v2|v1)P(v3|v2,u1)P(v4|v3)P(v5|v4)

3
1

Factorizing the observed distribution
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u1

1 1 1 2 1 3 2 1 4 3 5 4P(v) = ∑ P(u )P(v |u )P(v |v )P(v | v ,u )P(v |v )P(v | v )

u1

= P(v2|v1)P(v4|v3)P(v5|v4) ∑ P(u1)P(v1|u1)P(v3|v2,u1)V1 V2 V3 V4 V5

• From the previous model …

U1

V1 V2 V3 V4 V5

U1 U2

• Add another unobservable U2,

u1,u2

= P(v2|v1)P(v4|v3) ∑ P(u1,u2)P(v1|u1)P(v3|v2,u1,u2)P(v5|v4,u2)

u1,u2

P(v) =∑ P(u1,u2)P(v1|u1)P(v2|v1)P(v3|v2,u1,u2)P(v4|v3)P(v5|v4,u2)

3
2

Factorizing the observed distribution
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• From the previous model…

u3

= ∑ P(u3)P(v2|v1,u3)P(v4|v3,u3)
u1,u2

∑ P(u1,u2)P(v1|u1)P(v3|v2,u1,u2)P(v5|v4,u2)

U1 U2

V1 V2 V3 V4 V5

• Let’s add one more, U3,  

U1 U2

V1 V2 V3 V4 V5 

U3

u1,u2

P(v) =∑ P(u1,u2)P(v1|u1)P(v2|v1)P(v3|v2,u1,u2)P(v4|v3)P(v5|v4,u2)

u1,u2

= P(v2|v1)P(v4|v3) ∑ P(u1,u2)P(v1|u1)P(v3|v2,u1,u2)P(v5|v4,u2)

u1,u2,u3

P(v) = ∑ P(u1,u2,u3)P(v1|u1)P(v2|v1,u3)P(v3|v2,u1,u2)

P(v4|v3,u3)P(v5|v4,u2)

3
3

Factorizing the observed distribution
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• Recall our example
V1 V2 V4 V5

U1 U2

V3  

U3

• These factors made of sums may be long to write in terms of P(v,u).  
However, their structure follows from the topology of the diagram, then  
we can abstract this concept out by defining a new function Q:

P(v) =
u3

∑ P(u3)P(v2|v1,u3)P(v4|v3,u3)
u1,u2

∑ P(u1,u2)P(v1|u1)P(v3|v2,u1,u2)P(v5|v4,u2)

Then P(v) can be re-written as
P(v) = Q[V2, V4](v2, v4,v1,v3)Q[V1, V3,V5](v1, v3,v5,v2,v4)

C-Factors
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• For convenience Q[C](c,pac) can be written just as Q[C]

• Then, for our example, we can just write
U1

V1 V2 V4 V5

U2

V3  

U3

P(v) = Q[V2,V4]Q[V1,V3,V5]

• Note that for the whole set of variables V
Q[V] =∑ P(u)∏ P(vi|pai,ui) = P(v)

u Vi∈V

• For consistency define Q[∅]=1

C-Factors
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• V1  is in the same c-component as V3,
• V3  is in the same c-component as V5,
• By extension, V1 is in the same c-

component as V5 too.
• V2 is in the same c-component as V4.

U1 U2

V1 V2 V3 V4 V5 

U3

V1 V2 V3 V4 V5

• To see it easily, consider the graph  
induced over the bidirected edges!

• Obs. The C-Component relation defines  
a partition over the observable  
variables, hence it is Reflexive,  
Symmetric and Transitive.

C-components: A partition of the observed variables where any 2 variables connected
 by a path of bi-directed edges is in the same component.

Confounding Components
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• The distribution P(v) factorizes into  
c-factors associated with the
c-components of the graph.

P(v)= Q[V2, V4] Q[V1, V3, V5]

V1 V2 V4 V5

U1 U2

V3  

U3

P(v) =
u3

∑ P(u3)P(v2|v1,u3)P(v4|v3,u3)
u1,u2

∑ P(u1,u2)P(v1|u1)P(v3|v2,u1,u2)P(v5|v4,u2)

Q1  ={V2, V4} Q2 = {V1, V3,V5}

C-Component Factorization

Dechter & Ihler 39



j

• For any H ⊆ V, consider a graph GH.

• Let H1, H2, …, Hk be the c-components of GH.

• Then

Q[H] = ∏ Q[Hj]

C-Component Factorization

Dechter & Ihler 40

And, the Q factor of any c component can be computed from Q(H)



C-factor Algebra - Summary

We have two basic operations over c-factors

1. Reduce to an ancestral set

c∖w

2. Factorize into c-components

Q[W] = ∑ Q[C] If W is ancestral in GC

j

Q[H] = ∏ Q[Hj] Where H1,…Hk, are the  
c-components in GH



v∖(x∪y)

• Given G and the query variables X,Y

P(y |do(x)) = ∑ Q[V∖X]

where D=An(Y) in GX

• Suppose the graph GD has C-components
D1,D2,…,Dk, then

P(y|do(x)) =∑ ∏ Q[Di]
d∖y i

= �
𝒅𝒅\y

𝑄𝑄[𝑫𝑫]

The Identification Algorithm

Dechter & Ihler 43



The Identification Algorithm

Dechter & Ihler ESSAI 2024 44



Theorem [Huang and Valtorta, 2008]

The causal effect P(y|do(x)) is identifiable from  
causal diagram G and P(v) if and only if each of  
the C-factors Q[Di  is identifiable by  
Identify(Di,Ci,Q[Ci],G).

Where Ci is the C-component of G containing Di.

Completeness

Dechter & Ihler 45



Examples of Estimand Expressions

𝑃𝑃(𝑉𝑉7 ∣ 𝑑𝑑𝑑𝑑(𝑉𝑉1)) = ∑
𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5,𝑉𝑉6

𝑃𝑃(𝑉𝑉6 ∣ 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5)𝑃𝑃(𝑉𝑉4 ∣ 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)𝑃𝑃(𝑉𝑉2 ∣ 𝑉𝑉1)

×∑
𝑉𝑉1′
𝑃𝑃(𝑉𝑉7 ∣ 𝑉𝑉1′,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5,𝑉𝑉6)𝑃𝑃(𝑉𝑉5 ∣ 𝑉𝑉1′,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4)𝑃𝑃(𝑉𝑉3 ∣ 𝑉𝑉1′,𝑉𝑉2)𝑃𝑃(𝑉𝑉1′)

Dechter & Ihler ESSAI 2024 46



Examples of Estimand Expressions

An estimand  often corresponds to inference over a Bayesian network
Which is sometime very dense.

The treewidth of the above example is  sqrt of n, when n is the number of variables

So, is evalution Exp(w)?.
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Outline: Causal Inference

Estimand Methods

Identifiability

Learning Methods

Causal Models: Semantics

Causal Models: Queries
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The Plug-in estimate
• The Plug-in methods uses the “empirical 

distributions extracted from the data to estimate 
observed probabilistic quantities.

• Complexity of generating a table is O(|D|).
• Complexity of evaluation is  exponential in the 

hyper-tree width. 
• Computation can explore the graph and 

sparseness of the probabilistic quantities.
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Empirical Factors, Sparse Representation

Dechter & Ihler ESSAI 2024 51



Estimands Tree-Decomposition (Cones)

hw=2,w=14

Dual join-graph

hypertree

Dechter & Ihler ESSAI 2024 52

Hyper-tree width: is the mximum number of functions placed in any cluster 
of a tree-decomposition



Complexity of Plug-In Scheme

Dechter & Ihler ESSAI 2024 53

Theorem: The complexity of evaluating an extimands whose expression has a 
tree-decomposition having hyper tree-width hw is O(n  𝑡𝑡ℎ𝑤𝑤 ) if it has no 
denominators,  where n = number of variables, t is the data size and k is the 
variables domain size.  The complexity is also exponential in the tree-width is 
O(n  𝑘𝑘𝑤𝑤 ). 

In all the examples we saw hw=1,2. w=1 or O( 𝑖𝑖).

But what about statistical accuracy?

Note: The Plug-in can be viewed as using maximum –likelihood learning 
when data is fully observed over  a Bayesian network graph extracted from 
the estimand.



Outline: Causal Inference

Learning Methods

Identifiability

Estimand Methods

Causal Models: Semantics

Causal Models: Queries
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Learning Bayesian networks
• Maximum Likelihood estimation

– Select model that makes the data most probable

• For discrete Xi & no shared parameters
– ML estimates are empirical probabilities

Known Unknown

Co
m
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et

e
M

is
si

ngDa
ta

Graph

A

W H

P(A)

3/8
A P(W|A)

0 2/5

1 2/3

A W H

0 0 0

0 0 0

0 1 0

0 1 1

0 0 0

1 0 1

1 1 0

1 1 1
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0 1/5

1 2/3

O
bs

er
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d 
D
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Learning with missing data
• Latent / hidden variables

– Value is never observed
– No unique model (e.g., symmetry)
– No closed form solution; iterative ML

• More general missing values?
– May depend on the reason for missingness!

Known Unknown
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Dechter & Ihler ESSAI 2024 57



Learning Idea: 
Input: G, P(V)
1.Learn a full causal 𝐵𝐵𝐵𝐵, from G and samples from P(V) using EM. 
2. Truncate the learned model 𝐵𝐵  into B_x.
3. Compute 𝑃𝑃(𝒀𝒀) by Bucket elimination over B_x and return.
End Algorithm

Accuracy: EM is a mximum likelihood learning scheme that converges to a local maxima.
Complexity of Inference of both learning and inference is exponential in the tree-width.

𝑃𝑃(𝑉𝑉7 ∣ 𝑑𝑑𝑑𝑑(𝑉𝑉1)) = ∑
𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5,𝑉𝑉6

𝑃𝑃(𝑉𝑉6 ∣ 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5)𝑃𝑃(𝑉𝑉4 ∣ 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)𝑃𝑃(𝑉𝑉2 ∣ 𝑉𝑉1)

×∑
𝑉𝑉1′
𝑃𝑃(𝑉𝑉7 ∣ 𝑉𝑉1′,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5,𝑉𝑉6)𝑃𝑃(𝑉𝑉5 ∣ 𝑉𝑉1′,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4)𝑃𝑃(𝑉𝑉3 ∣ 𝑉𝑉1′,𝑉𝑉2)𝑃𝑃(𝑉𝑉1′)

Motivation: Bucket-elimination on this network has tree-width 3 while the observational distribution has a tree-width of 7 and 
hypertree width of 1

Motivation: Use PGM algorithms for Causal Reasoning

Theorem: Given a model M yielding observational distribution P(V) and  graph G, then any causal Bayesian 
Network over G having the same P(V), will agree with M on any identifiable causal  effect query P(Y|do(X)).

Learning-Based Approach
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latent domains, CPT’s parameters U= {1,2,3}

P(V6|V5,U2)

What about the latent variables? Their domains?

Learning-Based Approach
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Fit a good domain size for latent variables
using  the BIC score.



Small Synthetic models

Empirical Evaluation: Small Graphs

Dechter & Ihler ESSAI 2024 60



More accuracy for learning in all cases but 1

Empirical Evaluation: Large Synthetic
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Trajectory over Cone Instances Trajectory over Chain Instances Trajectory over Diamond Instances

Dependence on Model Size

Dechter & Ihler ESSAI 2024 62



Empirical Evaluation: Results

• 4 Real Networks
•“Alarm”, “A”, “Barley”, and 
“Win95pts” network

•We created unobserved 
confounders by making 
source variables with at 
least two children latent

Figure: A Model
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Summary: Causal queries
• Causal Bayesian networks and SCM  encodes causal 

assumptions explicitly. 
• Causal effects and counterfactual queries can be 

computed from the full causal model by PGM methods.
• Given only the causal diagram and observational data 

queries can be evaluated if identifiable.
• Causal effect queries can be done by statistical estimation 

of estimands (defined by observation quantities).
• Estimands can be generated by Backdoor, Frontdoor, do-

calculous.  The ID algorithm. 
• Model completion by learning is a promising  alternative 

for causal inference that exploit PGM methods.
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Summary of Lectures

Class 1:  Introduction & Inference Class 2: Bounds & Variational Methods

Class 3: Search Methods Class 4: Monte Carlo Methods

E
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M
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J

D

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0101010101010101010101010101010101010101010101010101010101010101

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1
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Class 5: Causal Reasoning

S
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W

do(K=1)
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Software
• My software page

pyGMs : Python Toolbox for Graphical Models by Alexander Ihler. 
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https://ics.uci.edu/%7Edechter/software.html
https://github.com/ihler/pyGM


UAI Probabilistic Inference Competitions

• 2006

• 2008

• 2012

• 2014

(aolib)

(aolib)

(daoopt)

(daoopt) (daoopt) (merlin)

Marginal Map
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New UAI Competition
• UAI Competition 2022

Simon Institute 10/17/2023

Solver 20sec 1200sec 3600sec

uai14-pr 61.7 96.8 96.7

ibia-pr 53.6 96.6 97.1

AbstractionSampling 78.9 91.7 93.9

lbp-pr 90.3 89.9 90.2

https://uaicompetition.github.io/uci-2022/
https://uaicompetition.github.io/uci-2022/results/final-leader-board/solver-scores/uai14-pr-scores
https://uaicompetition.github.io/uci-2022/results/final-leader-board/solver-scores/ibia-pr-scores
https://uaicompetition.github.io/uci-2022/results/final-leader-board/solver-scores/AbstractionSampling-scores
https://uaicompetition.github.io/uci-2022/results/final-leader-board/solver-scores/lbp-pr-scores
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For publication see: 
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https://www.google.com/search?q=Natasha+Flerova&sourceid=ie7&rls=com.microsoft:en-us:IE-SearchBox&ie=&oe=&rlz=1I7ADFA_enUS406&tbs=ppl_ids:--114910851348258187686-,ppl_nps:natasha+flerova&sa=X&ei=LPaGT9uwLZLAtgeBp4CBCA&ved=0CEAQ_RYwAw
https://www.google.com/search?q=Natasha+Flerova&sourceid=ie7&rls=com.microsoft:en-us:IE-SearchBox&ie=&oe=&rlz=1I7ADFA_enUS406&tbs=ppl_ids:--114910851348258187686-,ppl_nps:natasha+flerova&sa=X&ei=LPaGT9uwLZLAtgeBp4CBCA&ved=0CEAQ_RYwAw

	Algorithms for Causal Probabilistic Graphical Models
	Outline of Lectures
	Graphical models
	Probabilistic Reasoning Problems
	Outline: Causal Inference
	Pearl’s Causal Hierarchy (PCH)
	Structural Causal Models
	Causal Diagram
	Outline: Causal Inference
	The Challenge of Causal Inference
	Computing Causal Effects
	Computing Causal Effects
	Counterfactual Queries
	Computing Counterfactuals
	Counterfactual Queries
	Computing Causal Effects
	Outline: Causal Inference
	Identifiability
	Identifiability: Markovian models
	Ex: Confounding Bias
	Ex: Confounding Bias
	Ex: Confounding Bias
	Identifiability: Backdoor Criterion
	Identifiability: Frontdoor Criterion
	The Do-Calculus
	Algorithmic approach for identification
	Truncated Product in  Semi-Markovian Models
	Factorizing the observed distribution
	Factorizing the observed distribution
	Factorizing the observed distribution
	C-Factors
	C-Factors
	Confounding Components
	C-Component Factorization
	C-Component Factorization
	C-factor Algebra - Summary
	The Identification Algorithm
	The Identification Algorithm
	Completeness
	Examples of Estimand Expressions
	Examples of Estimand Expressions
	Outline: Causal Inference
	The Plug-in estimate
	Empirical Factors, Sparse Representation
	Estimands Tree-Decomposition (Cones)
	Complexity of Plug-In Scheme
	Outline: Causal Inference
	Learning Bayesian networks
	Learning with missing data
	Learning-Based Approach
	Learning-Based Approach
	Empirical Evaluation: Small Graphs
	Empirical Evaluation: Large Synthetic
	Dependence on Model Size
	Empirical Evaluation: Results
	Summary: Causal queries
	Summary of Lectures
	Software
	UAI Probabilistic Inference Competitions
	New UAI Competition
	Slide Number 69

