Explainable AI via Argumentation: Theory & Practice

Antonis Kakas

University of Cyprus, Cyprus

Nikos Spanoudakis

Technical University of Crete, Greece

Co-founders (with Pavlos Moraitis) of Argument Theory

https://www.argument-theory.com/

ESSAI 2024 School: 22-26 July, Athens

Course Contents & Structure

Theory of Argumentation: Concepts & Methodologies
 Lecture 1 – Overall Exposition.

Hands on Development of XAI Arg-based system(s)

- Lecture 1 Student start their Choice of Problem
- Lecture 2 Argumentation in Practice & Technology GORGIAS and RAISON
- Lecture 3 & 4 Further Study of Practice of Argumentation
 Student Systems development
- Lecture 4 & 5 Student Presentations

Brief Exposition of Advanced Topics - Lecture 5

- Explainable Machine Learning via Argumentation: ArgEML
- Argumentation in Natural Language: COGNICA with LLM

Your Background

Course on Argumentation?

Read on Argumentation?

Research on Argumentation?

Practice of Argumentation?

- Used a System of Argumentation?
- Studied Application Problem via Argumentation?

Lecture 1

- Motivation
 - Explainable AI (XAI) & Why Argumentation for XAI?
- **Theory of Argumentation**
 - Validity of Argument
 - Argumentative Reasoning
- Argumentation in Practice
 - Structured Argumentation for Knowledge Representation.
 - Gorgias Argumentation Framework.
 - Preview: Basics of a Methodology for Contextual Knowledge Acquisition
- Preview: Building Arg-based Systems
 - High-level Systems Architecture
 - Arg-based Technology Systems and Authoring Tools
- Start of hands-on Development
 - Students choose their own application problem.
 - Open accounts in Gorgias Cloud

MOTIVATION

Why Explainable AI (XAI)?

The Era of AI: Industry 4.0 – Automated Decision

Explainable Decision Making

What is Explainable AI?

What is Explainable AI?

"AI concerned not (only) with what is the solution but with how it comes about."

With HOW that is: Informative, Debatable, Contestable

FOR

Accountability, Trust, Ethicacy But also, Usefulness with "Human in Loop"

Explainable AI

Explanations for Informative, Debatable/Auditable, Contestable AI Systems

What is an Explanation?

Tim Miller: Explanation in artificial intelligence: Insights from the social sciences, 2019. Richard Feynman Why?: Video

The *Science* of *Explanations*

Factor	Description
Explanations are contrastive	Explanations are contrastive: people usually don't only ask why a certain prediction was
	made but rather why this prediction was made instead of another prediction.
Explanations are selective	Explanations are selective and focus on one or two possible causes and not all causes for the recommendation.
Explanations are social	Explanations are part of social interaction between the explainer and the explainee. This
	means that the social context determines the content, the communication, and the nature of the explanations.
Explanations are contextual	Explainable AI systems should be able to explain their capabilities and understandings,
	however every explanation is set within a context that depends on the task, abilities, and expectations of the user of the AI systems.
Explanations need to be	Trust must be considered in terms of the accuracy and reliability of the system, but also in
trustworthy	terms of how much individuals trust the explanations give. Mistrust of the whole system can result from explanations that are too complicated, incomplete or inaccurate.
Explanation recipient	The "intended audience" is another factor that needs to be considered when generating explanations as different user types have different needs. For example, a computer engineer may need more detailed explanations when auditing the system from a patient or a
	physician.

Evaluation *Metrics* for *Explanations*

	Co-12 Property (*)	Description
	Correctness	Describes how faithful the explanation is w.r.t the black box.
	Completeness	Describes how much the black box behavior is described in the explanation.
ent	Consistency	Describes how deterministic and implementation-invariant the explanation method is.
Content	Continuity	Describes how continuous and generalizable the explanation function is.
	Contrastivity	Describes how discriminative the explanation is w.r.t. other events or targets.
	Covariate complexity	Describe how complex the (interaction of) features in the explanation are.
tion	Compactness	Describes the size of the explanation.
presentation	composition	Describes the presentation format and organization of the explanation.
pres	confidence	Describes the presence and accuracy of probability information in the explanation.
	Context	Describes how relevant the explanation is to the user and their needs.
user	Coherence	Describes how accordant the explanation is with prior knowledge and beliefs.
	Controllability	Describes how interactive and controllable an explanation is for a user.

Properties of Explanation

Explanations need to be:

Attributive – Why this solution?

Contrastive – Why not some other solution?

Actionable – Where does this solution lead?

Why Argumentation for AI & XAI

Argumentation: Reasoning Universalis Formal Logical & Informal Reasoning

Argumentation: Naturally Explanatory Debate for and against a claim/position

Dietz et al, Argumentation: A calculus for Human-Centric AI, 2022.

The Big Picture

Argumentation is a Natural Calculus for Explainable AI

How do we Reason in Argumentation?

How do we Model and Acquire Knowledge for Argumentation (in a practical way)?

How do we **Build** Arg-based systems?

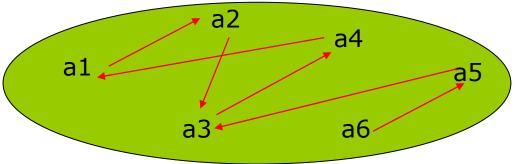
Building XAI Systems from Natural Specifications Example of Contextual Decision Problem Call Assistant (Personal Policy)

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager."

Options: allow a call, deny a call.

ARGUMENTATION THEORY

Theory of Argumentation


Abstract Argumentation Validity of Arguments Admissibility Semantics

Structured Argumentation
 Realization of Abstract Argumentation
 Dynamic - Contextual Argumentation

Abstract Argumentation Frameworks <<u>Args</u>, ATT>

Args : Set of Arguments

- Ex: {a1,a2,a3,a4,a5,a6}
- **ATT : Relation on Args: Conflict & Strength**

Forms a STATIC ARENA for Argumentation
 A Snap-short of a (the current) context of debate
 A current argumentative debate takes place.

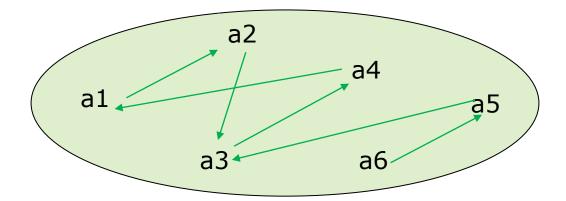
Abstract Argumentation Frameworks <<u>Arg</u>, <u>Att</u>, <u>Def</u>>

 Arg is a set of Arguments
 Att is weak attack or conflict relation between arguments
 Def is a strong defense or defeat relation between arguments.

In <Args, ATT> ATT combines Att and Def. (See Extra Slides: Connection of AAFs)¹⁸

Validity of Arguments <Args, Att, Def>

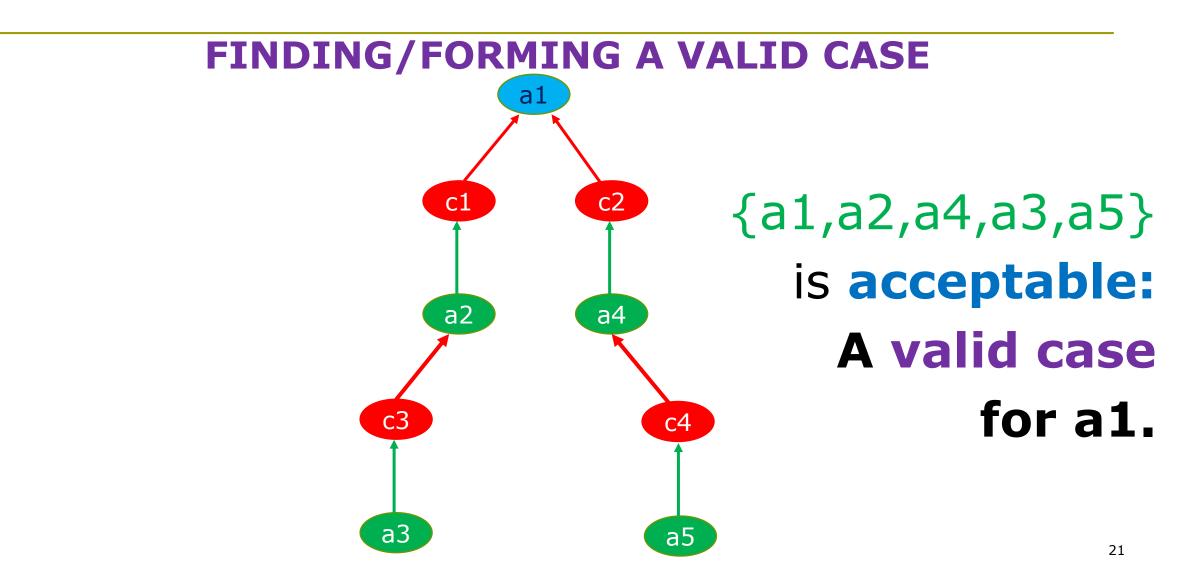
Acceptable set of Arguments:

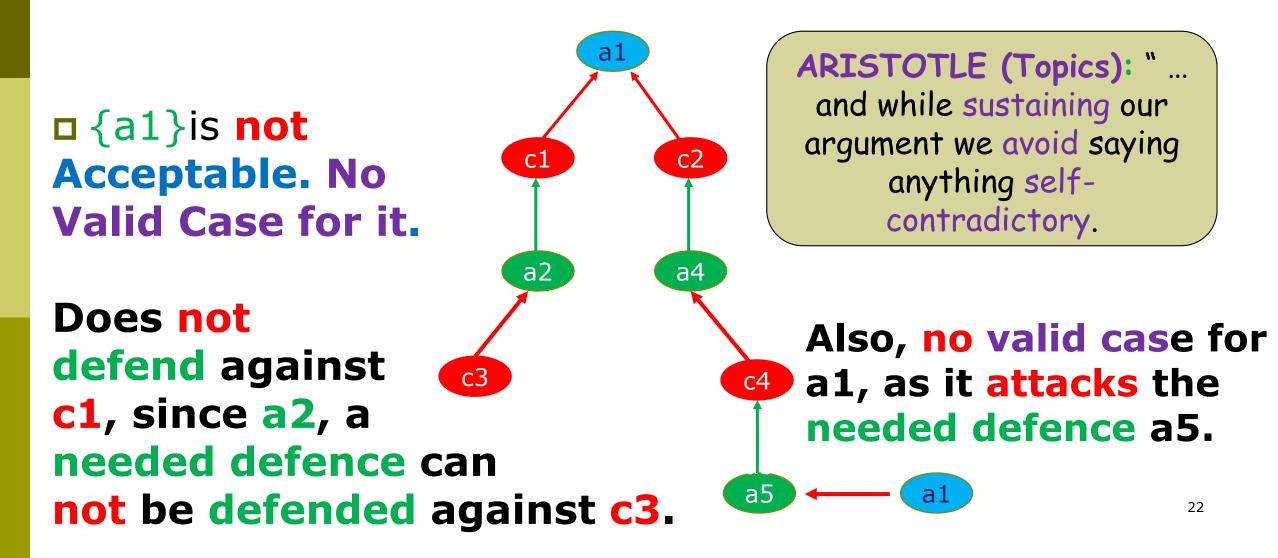

Arguments that can defend against (all) their counter-arguments

Example: Admissible set of Arguments:

 Set is not self-attacking
 Set defends against any attacking set (In <Arg,ATT>: Defends = ATTACKS back)

Valid Coalitions/Cases of Arguments


Q: Is argument a1 valid/admissible?


Only in coalition {a1,a3,a6}: a CASE for a1!

Reasoning/Computation in <Args, Att, Def>

Reasoning/Computation in <Args, Att, Def> FIND/FORM A CASE

Reasoning in Argumentation

Reasoning: Building valid (admissible) Cases

Reasoning for φ:
 Build a case for φ

■ Show no case' for ¬φ

Could be in Dilemma:
 Have a case for φ
 Have a case' for ¬φ

Reasoning in Argumentation

Building valid (admissible) Cases

Practical Features of Arg-based Reasoning

On Demand/Lazy computation Argumentation Arena is NOT static but Dynamic

Depends on the Current Environment/Audience to:
 Produce Counter-Arguments
 Strengthen the subsequent defense arguments.

ARGUMENTATION THEORY for PRACTICE

Realizing Argumentation Abstract => Structured Argumentation

Arguments build via a set of Argument Schemes, AS: a1=AS1(t), a2=AS2(t) ... t some world parameters.

 \Box Att \equiv C, an application dependent conflict notion, C.

□ **Def** via an application relative strength, **D**, on **AS**

"a defends against b" iff in conflict and not weaker

 $(a,b) \in Def$ iff they are *conflict* $(i.e.(a,b) \in Att)$ & a is not weaker than b, i.e. if $(b,a) \in \Box$ then $(a,b) \in \Box$.

Application Argumentation Frameworks

<**Args, Att, Def>** <**AS, C,**

> Conflict, C, is Static

Strength, J, is Dynamic/Application Dependent

Strength, J, is Context Dependent - Conditional on perceived current environment

Construction of Arguments (Args)

Arguments are constructed as instantiations of argument schemes As

As="Premises --> Position/Claim"

Argument Schemes are programmed or authored or learned from data/experience ²⁸

Construction of Arguments (Args)

Argument Schemes: Licenses/Topoi for arguments

□ These are links (not rules): ■ Premises/ἐνδοξα --- Position □ E.g. arg1: Ambulance --- Serious_Injury

Arguments "enter" activated dynamically from "sensory" premise information

E.g. Activated from the text: "An ambulance arrived."

Construction of Attacks/Conflict (Att/C)

Attacks result from a conflict on the claim or the premises of an argument (that is attacked).

arg: Premises --- > Claim

Three types of Attacks:

Rebuttal: Conflict on the Claim

Undermining: Conflict on a/the Premises

Undercutting: Conflict on the Link

Construction of Defense/Strength (])

□ The strength/priority relation, □, between arguments is Context Sensitive - Not statically Global.

Dynamically Conditional on the (partially) perceived state of current environment.

Need to decide on lat any given situation! HOW?

In the GORGIAS FRAMEWORK via Argumentation \Rightarrow Priority Arguments

GORGIAS ARGUMENTATION

GORGIAS Argumentation Framework

- As a set of Object-level argument schemes
- C negation and other application incompatibilities
- □ □ a Set of Priority Argument Schemes, *Prs, of the form:*
 - "Premises/Conditions ---> as1 > as2"

<As, C, >>

 $\langle As, C, Prs \rangle \equiv \langle As U Prs, C \rangle$

GORGIAS Argumentation Framework <As U Prs, C >

Composite Arguments $\Delta = (O, P)$

 Δ =(O,P) is admissible iff
 Δ is Conflict-free
 Δ defends against any attack, A=(O1,P1): if P1 supports a>δ then P supports δ'>a'

∆ defends against A: (1) it contains a stronger argument or (2) **∆** and **A** are non-comparable

GORGIAS Reasoning/Decision Making EXAMPLE SAF1

Gorgias theory SAF1 = <As U *Prs*, *C* >:

C given by two conflicting options: opt1 & opt2
 As = {r1: cond1 ----> opt1 & r2 : cond1 ----> opt2}
 Prs = {R1: true ---> r1>r2 & R2: cond2 ---> r2>r1}

1. First, consider a Scenario where only cond1 holds.

2. Then extend the Scenario with cond2 also holding.

GORGIAS Reasoning/Decision Making SAF1 = <As U Prs, C >

Consider a Scenario where cond1 holds.

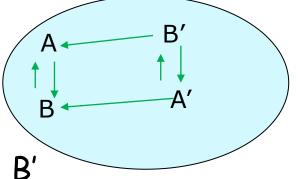
As = {r1: cond1 ---> opt1 & r2 : cond1 ---> opt2}
 Prs = {R1: true ---> r1>r2 & R2: cond2 -> r2>r1}

Phase 1: Reasoning at Object-level: Composite arguments A=(r1, {}), B= (r2, {}) attack and defend against each other. Phase 2: Reasoning at Higer/Priority-level: Can these arguments be strengthened?

GORGIAS Reasoning/Decision Making SAF1 = <As U Prs, C >

- Phase 2: Reasoning at Higer/Priority-level:
- □ A'={r1, R1}, strengthens A
- A' defends against B but B does not defend against A'
 - R1 makes r1>r2 but B does not make its argument r2 stronger.
- □ Also, B cannot be strengthened.

Therefore, only admissible arguments for opt1. Hence Definite Decision of opt 1.


Consider an Extended Scenario where cond2 holds. Can B can be strengthened?

GORGIAS Reasoning/Decision Making SAF1 = <As U Prs, C >

Consider the extended Scenario where cond2 also holds. Then R2: cond2 ---> r2>r1 is also active.

Phase 2: Reasoning at Priority-level:

□ B'={r2, R2} strengthens B

B' defends against A but A does not defend B'
 A' defends B' (R1 in A' makes r1>r2) and vice versa (R2 in B' makes r2>r1)

Now A' and B' are admissible: both options are validly supported. Hence the Decision is in Dilemma

Explanations in Argumentation

Argumentation generates Explanations!

- Explanations are directly extracted from the Valid/Admissible set, S, of arguments, i.e. from the Case for a conclusion
- Argument in S in support : Attributive part of Explanation
- Defending arguments in S: Contrastive part of Explanation

Explanation from GORGIAS

- Attributive: from Object-level arguments
- Contrastive: from Priority Arguments
- Actionable: from Hypotheses/Abducibles

Exercise

Consider the story below in the following 3 scenes:

- Mary was very busy at the office.
- She did not want to be distracted.
- Her phone rang.
- It was her mother phoning.
- Mary's mother fell ill last week.
- She was still (very) ill in the hospital.

For **each scene** consider the question **"Will Mary answer the phone, Yes or No?"** Construct the arguments **for** and **against** answering the phone, showing also the **attack** and defense or priority relations between the arguments.

Draw the argumentation arena for each scene and in each case find the acceptable (set of) arguments supporting the two possible options/conclusions of Yes or No.

PREVIEW

Argumentation-based Software Methodologies &

Systems Design/Architectures

Computational Argumentation: a "Roadmap"

From <Args, ATT> ... to <Args, Att, Def> ... to

.... to <As, C, <pre>>

... to GORGIAS <As U Prs, C > ...

From Theory to Practice

... to SoDA Methodology for Knowledge Acquisition

... to rAIson

... to Applications

From Theory to Practice

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager."

Methodology for Knowledge Representation

Options: allow a call, deny a call.

Factors: at work, known/unknown, busy, ..., manager

Keys for Preferences: Normally, unless, always, ...

STEP 1: Identify 2 + 1 groups of information

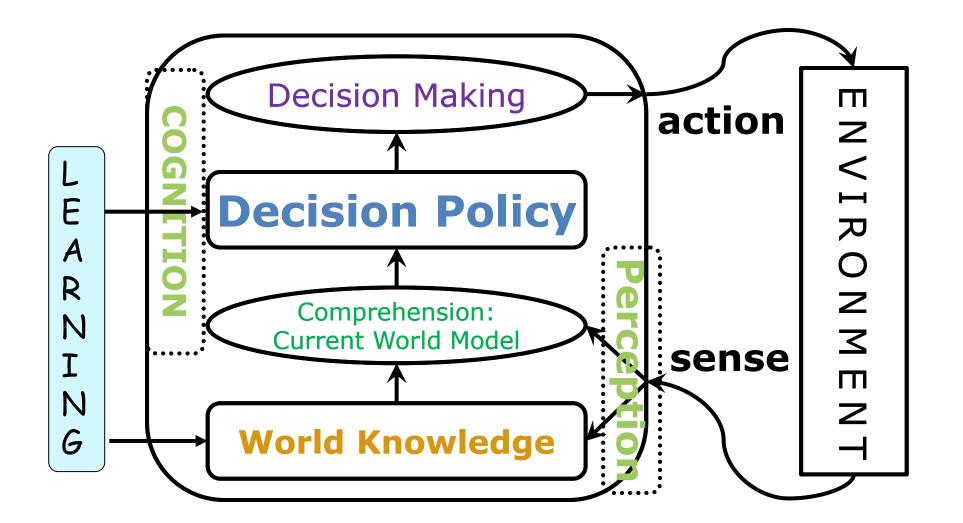
Challenge of Acquiring Knowledge

Acquisition of Contextual Knowledge From Experts or Policy Document From Data of Examples

CHALLENCE: Facilitate the extraction of the hidden/implied preferences in high-level specs.

SoDA Methodology

Acquisition from high-level Problem Specs


From Natural Language specs.

From Theory to Practice

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager.

SoDA: Methodology for Knowledge Representation **STEP 2: Identify Scenario-based Preferences** [SEE EXTRA SLIDES DETAILS OF THIS EXAMPLE: **STEP2: Scenario-based Preferences STEP3:** Gorgias Representation/Code 45

Building Decision Machines System Architecture

HANDS-ON DEVELOPMENT

Your Decision Problem/Policy

Professional Problem/Policy

 Insurance Policy, Risk Management, Liability, Marketing, ...

Personal Policy – Cognitive Assistant

- Hotel Assistant, ...
- Email/Social Media/Calendar Assistant

Submit a one paragraph high-level description of your Decision Policy Email us with Subject "Hands on Day 1"

Example Problems (1)

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager."

Methodology for Knowledge Representation

Options: allow a call, deny a call.

Factors: at work, known/unknown, busy, ..., manager

Keys for Preferences: Normally, unless, always, ...

STEP 1: Identify 2 + 1 groups of information

Example Problems (2)

Example D2: Travel Assistant (Personal Policy)

"For long distance travel it is possible to use all means of transport. If the bus stop is near, I prefer to get the bus. If it is a cold day, I can take the metro or a taxi. If the bus stop is near and it is a cold day, I prefer to take the metro, except if it rains, in which case I will take a taxi. I do not take the taxi when I am short on funds."

Options: take a taxi, take the bus, take the metro.

Example Problems (3)

DEXAMPLE D3: Seller Policy

"The primary choice is to sell at regular price. However, if a customer has spent more than 200 euros during the last month then sell at a promotional price. During the high season still sell at regular price. If the quantity of the product is low and the customer is not regular, then cannot sell. Special products are not sold at promotional price. "

Options: sell at regular price, sell at promotional price, cannot sell

Example Problems (4)

Example D3: Medical Liability (Legal Policy)

"When a professional misconduct is committed by a doctor in a public sector establishment then we have either personal accountability of the doctor, or public sector support. If the doctor is tenured then we have public sector support, except if the doctor has committed the misconduct while practicing outside their specialty, in which case the doctor is personally accountable. When the professional misconduct is committed by a doctor in a private sector establishment and the doctor is tenured then the doctor has private sector support. Always, the doctor has personal accountability if they practice as an independent entity."

Options: personal accountability of a doctor, private sector support, public sector support

EXTRA SLIDES

READING for Details

Theory of Argumentation Some References

- Kakas, Mancarella, Dung & Dimopoulos (1994 & 1995), "Logic Programing without Negation as Failure", ICLP94 and ISLP95.
- A. C. Kakas, P. Moraitis (2003), Argumentation based decision making for autonomous agents. AAMAS 2003: 883-890.
- N. I. Spanoudakis, A. C. Kakas & A. Koumi (2022), Application Level Explanations for Argumentation-based Decision Making. ArgXAI@COMMA 2022.

Extra READING

Theory of Argumentation Extra READING

- Dung (1995), On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, JAI Vol. 77(2): 321-357
- Tutorials on Structured Argumentation, Argument & Computation, vol. 5, no. 1, 2014.
- E. Dietz et al, (2021) Computational Argumentation and Cognitive AI, ACAI 2021: 363-388.

SoDA Methodology: Example of Call Assistant

SoDA: Example Call Assistant

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager."

Methodology for Knowledge Representation

STEP 1: Identify 2 + 1 groups of information

Options: allow a call, deny a call. Factors: at work, known/unknown, busy, ..., manager Keys for Preferences: Normally, unless, always, ... 59

SoDA: Example Call Assistant

"Normally, allow a call."

This asks us to consider a scenario with no extra information. In which there is a preference of allow over deny. We express this via Scenario-based Preference:<1, {}, allow(call)>

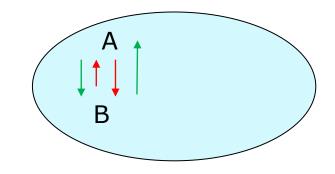
This is automatically translated to GORGIAS Arg. Theory $A \rightarrow A \rightarrow A$ $\Box As = \{r1: call ---> allow; r2: call ---> deny; ...\}$ $\Box Prs = \{R1: true ---> r1>r2; ... \}$

Then follow Reasoning as above (opt1=allow, opt2=deny) to give allow as a definite decision. [Given in next 6 Slides.]

Reasoning/Decision Making in GORGIAS: Call Assistant

"Normally, allow a call."

This asks us to consider a scenario with no extra information. In which there is a preference of allow over deny. We express this via Scenario-based Preference:<1, {}, allow(call)>


Phase 1: Reasoning at Object-level:

□ A={r1(call1)} object-level argument supports allow.

B={r2(call1)} object-level argument supports deny.

A attacks and defends B and vice versa.

Phase 2: Reasoning at Higer/Priority-level:Can these arguments be strengthened?

Reasoning/Decision Making in GORGIAS Argumentation

"Normally, allow a call."

Phase 2: Reasoning at Higer/Priority-level:
Can these arguments be strengthened?

A'={r1(call1), R1(call1)}, with R1: true --> r1 > r2 strengthens A
 A' defends against B but B does not defend against A'

□ B cannot be strengthened (in this scenario no other active priority arg.)

Hence A' admissible and B cannot be made admissible

Hence definite decision: allow call 1.

SoDA: Example Call Assistant cnt

"When busy ... deny a call ... unless it is an emergency family call."

Hierarchy of Scenario-based Preferences:
 <1, {}, allow(call)>
 <2, {busy}, deny(call)>
 <3, {busy, efamily(call)}, allow(call)>

New Priority arg.: R2: busy ---> r2>r1

Priority-level Reasoning in Scenario {busy}:

- A'={r1(call), R1(call)} strengthens A and B'={r2(call), R2(call)}
- A' defends B' (R1 in A' makes r1>r2) and vice versa (R2 in B' makes)

A' and B' are admissible, i.e. both options are validly supported: In Dilemma [See next three slides for details & extension of reasoning when efamily holds]

A

B

SoDA: Example Call Assistant cnt

"When busy ... deny a call ... unless it is an emergency family call."

Hierarchy of Scenario-based Preferences:
 <1, {}, allow(call)>
 <2, {busy}, deny(call)>
 <3, {busy, efamily(call)}, allow(call)>

Priority-level Reasoning in Scenario {busy}:

B

□ A'={r1(call), R1(call)} strengthens A

- A' defends B but B does not defend A'
- B'={r2(call), R2(call)} R2: busy ---> r2>r1 strengthens B
 - B' defend A but A does not defend B'

□ A' defends B' (R1 in A' makes r1>r2) and vice versa (R2 in B' makes r2>r1)

A' and B' are admissible, i.e. both options are validly supported: in Dilemma

Reasoning/Decision Making in GORGIAS Argumentation

Hierarchy of Scenario-based Preferences:
 <1, {}, allow(call)>
 <2, {busy}, deny(call)>
Priority-level Phase in scenario {busy}:
 We should NOT be in a Dilemma

B"={r2(call), R2(call), C2(call)} with the higher-level priority argument C2: true --- > R2>R1 strengthens B'
B" defends against A' but not vice-versa

Their conflict is on priority between R1 and R2

Also, A' cannot be strengthened (in this scenario by any active priority arg.) Hence B cannot be made admissible. Hence sceptical decision: deny the call.

Reasoning/Decision Making in GORGIAS Argumentation

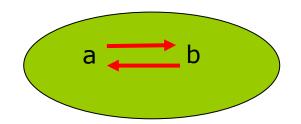
"When busy ... deny a call ... unless it is an emergency family call."

Hierarchy of Scenario-based Preferences:
 <1, {}, allow(call)>
 <2, {busy}, deny(call)>
 <3, {busy, efamily(call)}, allow(call)>

Reasoning in Scenario {busy, efamily(call2)}:

Exercise or Lecture 2

Connection between Abstract Argumentation Frameworks


Abstract Argumentation Frameworks Connection

Argumentation Frameworks: <Args, ATT> & <Args, Att, Def>

□ One connection: ■ Argument "a" Attacks "b" : (a,b) ∈ ATT iff:

□ a and b are in conflict (i.e. (a,b) ∈ Att) □ If (b,a) ∈ Def then (a,b) ∈ Def

If (a,b) ∈ ATT and (b,a) ∉ ATT then b is weaker than a, i. e. (b,a) ∉ Def

Commonsense Reasoning in Argumentation

Example: Reasoning about Action & Change

"Bob came home and found the house in darkness. He turned on the light switch."

Is the house still in darkness?

"The power cut had turned the house into darkness. Bob came home and turned on the light switch."

Defense/Strength ()

□ The strength relation, □, between arguments

Application Dependent - Sensitive

Conditional on the partially perceived state of current environment.

I In some rare cases, we have almost global priorities:


- Causal Arguments Persistence Arguments
- Precondition Arguments Causal Arguments
 Necessary Conditions Conditions
- Pragmatic Arguments Motivational Arguments

Commonsense Example 1

"Bob came home and found the house in darkness. He turned on the light switch. ..."

- □ **a1**={turn_on_switch -> light_on ; light_on -> no darkness}
 - a1 supports no darkness@T+
- □ **a2**={darkness@T -> darkness@T+}
 - a2 supports darkness@T+

a1 is a causal argument; a2 is a persistence argument => a1] a2

{a1} acceptable

Case for no darkness at T⁺

No Case for darkness at T⁺

Commonsense Example 1 (alt)

"The power cut had turned the house into darkness. Bob came home and turned on the light switch."

- a1={turn_on_switch -> light_on, light_on -> no darkness}
- **a2**={darkness@T -> darkness@T+}

New arguments:

- **a3**={power_cut@T, power_cut -> no electricity}
- a4 = {no power_cut@T}

With a3 > a1 and a3 ≈ a4 (subjective!).

a2 a1 a4 a3

{a2,a3} acceptable
{a1,a4} acceptable

Case for either darkness or not at T⁺

Dilemma for darkness at T⁺

SoDA Methodology

Software Development via Argumentation SoDA Methodology

Identify the Language of Options & Factors for Preference

Consider application scenarios and state the preferred/desired option(s) in each scenario.
 Identify different initial scenarios.

Successively refine the scenarios, restating at each refinement the new preferred option(s).

Considering combinations of conflicting of scenarios

Hierarchies of Scenario-based Preferences (SBPs)

Software Development via Argumentation SoDA Methodology

Hierarchies of Scenario-based Preferences (SBPs)

Authoring - no coding - Knowledge Representation

[See Extra Slides for Call Assistant Example]

Practical Challenges

Building Decision Machines

Two major challenges

1. Acquisition of problem Knowledge - Decision Policy

- At a Language Level of the Application Natural Language?
- Extracting Hidden Preferences from Natural Language Specs

2. Middleware from Sensory Information to Policy Concepts

 Comprehension of current Context of the application environment from its low-level sensory information

Intelligence is in the Abstraction of the Decision Policy Large number of cases grouped into high-level concepts