Explainable AI via Argumentation: Theory & Practice

Antonis Kakas antonis@ucy.ac.cy

University of Cyprus, Cyprus

Nikos Spanoudakis <u>nispanoudakis@tuc.gr</u>

Technical University of Crete, Greece

Co-founders (with Pavlos Moraitis) of Argument Theory

https://www.argument-theory.com/

ESSAI 2024 School: 22-26 July, Athens

Lecture 2

Authoring Arg-based Knowledge/Systems

SoDA Methodology (in practice)

- Options, Scenarios and Scenario-based Preferences
- Group Preferences and Contraindications
- Examples of Call Assistant & Travel Assistant
 - From Nat. Language to Hierarchies of Scenario-based Preferences
- Gorgias Code Generation from SBPs (Examples)
 - Gorgias Cloud
 - Queries: Answers & Explanations in Gorgias Cloud
- Preparation for rAIson (create account).
- Further Discussion of Student Projects
 - Exercise to expand Call Assistant SBPs and Code

Software Development for Argumentation (SoDA)

facilitates the principled modeling of real-life problems

SoDA Methodology – summary

□ In SoDA we consider the following ordered questions:

- 1. What is the decision problem? What are the options?
- 2. What are the object level arguments (what conditions unlock the options, also type the parameters)?
- 3. What are the possible scenarios given the object-level arguments?
- 4. What are the contexts that refine the scenarios?
- 5. Is the model/representation complete?
- 6. How do we extend the model?

Decision Making via Argumentation

- Policy Options, e.g. different levels of access
- Policy Preferences
 - Dynamic preferences over changing environment of the application of the policy
 - Multi-Level preferences over different CONTEXTS of policy
- **General form of Preferences:**
 - "Normally, in SITUATION prefer O_i, but in particular CONTEXT prefer O_i."
 - Generally, don't give access but for the owner give full access."
 - Generally, allow full access to owner but when critical tests suspend access. "

Medical Data Access

A very important domain based on legislation.

E.g. EU law in Cyprus:

- Law <u>138(I)/2001</u>: Personal Data Protection
- Law <u>N. 1(I)/2005</u>: Patient Rights
- Possible options for a decision:
 - Full Access
 - Partial Access
 - Read Only Access
 - Restricted Read Access
 - Suspended Access
 - No Access

■ A real-world problem addressed using Gorgias and the medica app:

http://medica.cs.ucy.ac.cy/home_page.php

Medical records access form

Medical Data Access – with SoDA

Requirements of a decision problem in high level form, (controlled) natural language:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Phase 1:

Mark Decision Factors and Preference Keys to aid the modeling process

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

□ SBPs:

SoDA step 1: What are the options? Identify and place on columns.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

SBPS: Level Scenario Full access No access Image: Image

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

□ SBPs: SoDA step 2: What are the **Full access** Level Scenario No access object level 1a Х true arguments? Define initial 1b Х Owner scenarios in level 1. Mark the enabled Object level arguments level is 1 indicating that they are at the bottom of options the hierarchy of scenarios. To differentiate between them we can add a 13 letter after the level.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

□ SBPs:

Refinement

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Successive scenario refinements and combinations indicate a next level in the hierarchy of scenarios (starting from the initial scenario).

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Guidelines: When defining SBPs

Start with object level (initial) scenarios

- They enable (unlock) the options
- Continue with Combinations
 - Two scenarios are combined to form a composite scenario
 - The composite scenario supports the union of the options supported by the combined scenarios
 - The combined scenario elements is the union of the elements of the combined scenarios

Guidelines: When defining SBPs (cont.)

Continue with a refinement

- At least one element is added to an existing scenario to define a refined (next level) scenario
- The refined scenario supports a genuine subset of options supported by the previous level scenario
- If an existing scenario supports more than one refinements (branches), then the modeler may choose to continue in another table of SBPs

Example Problems (1)

Contextual Decision Policy/Making Example D1: Call Assistant (Personal Policy)

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager."

Options: allow a call, deny a call.

Example Problems (1)

Contextual Decision Policy/Making Example D1: Call Assistant (Personal Policy)

"Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager. "

Options: allow a call, deny a call.

Mark Decision Factors and Preference Keys to aid the modeling process

Call Assistant–Scenario-based Preferences (1)

Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager.

SBPs	Leve	I S	cenario		Deny	/ call	Allow	call	
	1	A	t work		2	<	Х		
	2a	A	t work, I	Jnknown number	2	<			
		Lev	el Sce	nario		Deny ca	II <i>I</i>	Allow call	
		1	At w	ork		Х		Х	
		2b	At w	ork, Busy		Х			
		3ba	At w	ork, Busy, Family o	call			Х	
			Level	Scenario		Der	ny call	Allow ca	
			1	At work			Х	Х	
			2b	At work, Busy			Х		
			3bb	At work, Busy, Bo	ss call			Х	

Call Assistant–Scenario-based Preferences (1)

Call Assistant–Scenario-based Preferences (2)

Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager.

SBPs

	Leve	el Scer	nario		Deny		call Allow		
	1	At w	ork			Х	Х		
	2a	At w	ork, U	nknown number		Х			
		Level	Scen	ario		Deny cal		Allow call	
Call from my		1	At wo	ork		Х		Х	
manager is		2b	At wo	ork, Busy		Х			
considered as		3b	At wo	ork, Busy, Family call				Х	
an object		L	evel	Scenario		Der	ıy call	Allow	w call
level			1	Boss call			Х		Х
argument			2c	Boss call, At work			Х		

Example Problems (2)

Contextual Decision Policy/Making Example D2: Travel Assistant (Personal Policy)

"For long distance travel it is possible to use all means of transport. If the bus stop is near, I prefer to get the bus. If it is a cold day, I can take the metro or a taxi. If the bus stop is near and it is a cold day, I prefer to take the metro, except if it rains, in which case I will take a taxi. I do not take the taxi when I am short on funds."

Options: take a taxi, take the bus, take the metro.

Travel assistant-Scenario-based Preferences (1)

For long distance travel it is possible to use all means of transport. If the bus stop is near, I prefer to get the bus. If it is a cold day, I can take the metro or a taxi. If the bus stop is near and it is a cold day, I prefer to take the metro, except if it rains, in which case I will take a taxi. I do not take the taxi when I am short on funds.

SBPs	Level	Sce	enario	metro	tax	i bus		
	1	Visi	t friend	Х	Х	Х		
	2a	Visi	t friend, bus stop nearby			Х		
	Lev	vel	Scenario			metro	taxi	bus
	1	L	Visit friend			Х	Х	Х
	2	b	Visit friend, cold			Х	Х	
	3	b	Visit friend, cold, bus stop nearby			Х		
	4	b	Visit friend, cold, bus stop nearby, rains				Х	
	5	b	Visit friend, cold, bus stop nearby, rains, sho	rt on fun	ds	Х		

Travel assistant-Scenario-based Preferences (2)

For long distance travel it is possible to use all means of transport. If the bus stop is near, I prefer to get the bus. If it is a cold day, I can take the metro or a taxi. If the bus stop is near and it is a cold day, I prefer to take the metro, except if it rains, in which case I will take a taxi. I do not take the taxi when I am short on funds.

SBPs	Level	Sce	nari	0	not taxi	me	tro	taxi	bus			
	1	Visit	t frie	nd		Х		Х	Х			
	2a	Visit	t frie	nd, bus stop nearby					Х			
	Le	vel	Sce	nario		r	not ta	ixi r	netro	taxi	bus	5
		1	Visi	t friend					Х	Х	Х	
	2	2b	Visi	t friend, cold					Х	Х		
	3	b	Visi	t friend, cold, bus stop nearby	/				Х			
	4	b	Visi	t friend, cold, bus stop nearby	, rains					Х		
		Le	vel	Scenario			no	ot taxi	me	tro	taxi	bus
		1	1	Short on funds				Х				
		2	C	Short on funds, Visit friend				Х				

Translating/Mapping hierarchies of SBPs to

Gorgias Argumentation Theories

Gorgias is an open source general argumentation framework that combines the ideas of preference reasoning and abduction

http://www.cs.ucy.ac.cy/~nkd/gorgias

Decision Making in Argumentation (see Lecture 1)

□ A decision problem consists of:

- A set of *Options*.
- A set of *Values* that parametrize the options.
- Object level Arguments: a structure, e.g., a rule of conditions (could be empty) that makes an option available or not in a given situation.
- Priority Arguments that give relative strength to the arguments for the various options

Writing arguments in Gorgias source code

The language for representing the arguments is given by sentences with the syntax in formula:

rule(Signature, Head, Body).

where Head is a literal, Body is a list of literals and Signature is a (compound) term composed of the "rule" name with (optional) selected variables from the Head and Body of the argument.

Adding preferences

The predicate prefer/2 is used to capture the higher priority relation ">" defined in the theoretical framework. It should only be used as the head of an argument. Using the "rule" syntax we can write:

rule(Signature, prefer(Sig1, Sig2), Body).

which means that the argument with signature Sig1 has higher priority than the argument with signature Sig2, when the preconditions in the Body hold

Complements

A literal's negation is considered by default as conflicting with the literal itself. A negative literal is a term of the form neg(L).

There is also the possibility to define conflicting predicates that are used as heads of rules using the *complement/2* predicate: *complement(Head1, Head2)*.

Medical Data Access – Translation to Gorgias

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Code in GORGIAS:

```
rule(r1(Agn), access(Agn, no_access), []).
rule(r2(Agn), access(Agn, full_access), []) :- owner(Agn).
rule(p21(Agn), prefer(r2(Agn), r1(Agn)), []).
rule(p12(Agn), prefer(r1(Agn), r2(Agn)), []):- critical_tests(Agn).
rule(c12_21(Agn), prefer(p12(Agn), p21(Agn)), []).
complement(access(Agn, no_access), access(Agn, full_access)).
complement(access(Agn, full_access), access(Agn, no_access)).
```

Medical Data Access – Translation to Gorgias

Requirements:

- Generally, don't give access but for the owner give full access.
- Generally, allow full access to owner but when he is taking critical tests suspend access.

Code in GORGIAS:

Scenario-based Preferences to Gorgias code

Level	Scenario	Full access	No access
1	true		Х
1	Owner	Х	
2	Owner	Х	
3	Owner, Taking critical tests		Х

Code in GORGIAS: Take SBP tables one after the other

rule(r1(Agn), access(Agn, no_access), []).

rule(r2(Agn), access(Agn, full_access), []):- owner(Agn).

rule(p21(Agn), prefer(r2(Agn), r1(Agn)),[]).

rule(p12(Agn), prefer(r1(Agn), r2(Agn)),[]):- critical_tests(Agn).

rule(c12_21(Agn), prefer(p12(Agn), p21(Agn)),[]).

Call Assistant–SBPs to code (1)

	Level	Scenario	Deny call	Allow call				
□ JDPS.	1	At work	Х	Х				
	2a	At work, Unknown number	Х					
	2b	At work, Busy	Х					
	3ba	At work, Busy, Family call		Х				
	3bb	At work, Busy, Boss call		Х				
Code i	Code in GORGIAS:							
	rule(r1, al	low_call, []):-at_work.						
	rule(r2, d	eny_call, []):-at_work.						
	rule(p21a	, prefer(r2, r1), []):- at_work, unknow	vn_number.					
	rule(p21b	, prefer(r2, r1), []):- at_work, busy.						
	rule(p12b	a, prefer(r1, r2), []):- at_work, busy,	family_call.					
	rule(c12b	a, prefer(p12ba, p21b), []):- at_work	, busy, family_call.					
	rule(p12b	b, prefer(r1, r2), []):- at_work, busy,	boss_call.					
	rule(c12b	b, prefer(p12bb, p21b), []):- at_work	, busy, boss_call.					

Hands on : Gorgias Cloud

- Live Demo Gorgias Cloud
 - Upload code
 - Run scenarios
 - Read and discuss the explanations

Gorgias cloud

Gorgias cloud

ExecutionPanel

prove([allow_call], InternalExplanation).
 Solution 1

Internal Explanation: [c12ba,p12ba,r1],

'Application Level Explanation

The statement "allow_call" is supported by:

- "at_work"

This reason is :

- Stronger than the reason of "at_work" and "busy" supporting "deny_call" when "at_work" and "busy" and "family_call"

1

Hands on : Gorgias Cloud

- Create accounts for those not already done so
- Load and Run the call assistant for various scenarios
- Exercise 1: Extend the gorgias code of the Call assistant with the further requirement:
 - "Allow the call when at work I have a family call"
- Exercise 2: Extend it further with your own one sentence requirement

Exercise 1 in SBPs

Call Assistant-Scenario-based Preferences (3)

Normally, allow a call. When at work deny a call from an unknown number. When busy at work also deny a call from a known number unless it is an emergency family call. Always allow a call from my manager.

□ SBPs

Level	Scenario	Deny call	Allow call	
1	At work	Х	Х	
2a	At work, Unknown number	Х		
2b	At work, Busy	Х		
2c	At work, Family call		Х	
3c	At work, Busy, Family call		Х	
1	Boss call		X	
2d	At work, Boss call		Х	

I want family call to allow the call whenever at work – not a refinement. Combination of previous level conflicting scenarios

Gorgias cloud 🌰

Gorgias/Background Files • prove([deny call], InternalExplanation). Scenario Test Files essai2024/callAssistant4.pl 0 essai2024 -• prove([allow call], InternalExplanation). Solution 1 Internal Explanation: [p2d,r1,r3], Add/Expand scenario :-dynamic at work/0, unknown number/0, boss call/0, busy/0, family call/0. 'Application Level Explanation Add scenario ... rule(r1, allow call, []):-at work. The statement "allow call" is supported by: rule(r2, deny call, []):-at work. boss call rule(p21a, prefer(r2, r1), []):- at work, - "at_work" and "boss_call" at work unknown number. rule(p21b, prefer(r2, r1), []):- at_work, busy. This reason is : busy rule(p12c, prefer(r1, r2), []):- at work, family call. - Stronger than the reason of "at work" supporting "deny call" when "at work" and "boss call" rule(c12c, prefer(p12c, p21b), []):- at work, busy, family call. Gorgias Prompt Maximum number of answers: 1 rule(r3, allow call, []):- boss call. Clear panel 🎸 rule(p2d, prefer(r3, r2), []):- at work, boss call. Gorgias?: allow call ≻Run

SoDA Methodology – summary

□ In SoDA we consider the following ordered questions:

- 1. What is the decision problem? What are the options?
- 2. What are the object level arguments (what conditions unlock the options, also type the parameters)?
- 3. What are the possible scenarios given the object-level arguments?
- 4. What are the contexts that refine the scenarios?
- 5. Is the model/representation complete?
- 6. How do we extend the model?
 - With new refined contexts (in existing scenarios)
 - With new scenarios.
 - Revisiting scenarios

Preview : raison

- Translation to Gorgias can be automated
- **raison:** Authoring SBPs
 - Create accounts
 - Visit <u>https://ai-raison.com/</u> and register
- Added value
 - Work in high level no code platform
 - Helps the stakeholder to clarify the requirements
 - Revise the requirements easily

Hands on project

- □ Finalize your decision policy in Natural Language.
- Extract the hierarchies of SBPs for your project policy
 - Submit both the Natural Language description and the hierarchies of SBPs to our emails with subject "Hands on – day 2"

Reading

For details

- Spanoudakis, N. I., Gligoris, G., Koumi, A., & Kakas, A. C. (2023). Explainable argumentation as a service. Journal of Web Semantics, 76, 100772.
- Kakas, A. C., Moraitis, P., & Spanoudakis, N. I. (2019). GORGIAS: Applying argumentation. Argument & Computation, 10(1), 55-81.
- Kakas, A., & Moraitis, P. (2003, July). Argumentation based decision making for autonomous agents. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems (pp. 883-890).
- Dimopoulos, Y., & Kakas, A. (1995). Logic programming without negation as failure. In Proceedings of the 1995 International Symposium of Logic Programming (pp. 369– 383).
- Spanoudakis, N. I., Constantinou, E., Koumi, A., & Kakas, A. C. (2017). Modeling data access legislation with Gorgias. In 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2017), Arras, France, June 27-30, Proceedings, Part II 30 (pp. 317-327). Springer
- See the following slides

Call Assistant–SBPs to code (2)

X

	Level	Scenario	Deny call	Allow call				
L JDFS.	1	At work	Х	Х				
	2a	At work, Unknown number	Х					
	2b	At work, Busy	Х					
	3b	At work, Busy, Family call		X				
	1	Boss call		Х				
	2c	At work, Boss call		Х				
	rule(r1, al	low_call, []):-at_work.						
	rule(r2, de	eny_call, []):-at_work.						
	rule(p21a	,	vn_number.					
	rule(p21b	, prefer(r2, r1), []):- at_work, busy.						
	rule(p12b	, prefer(r1, r2), []):- at_work, busy, fa	amily_call.					
	rule(c12b, prefer(p12b, p21b), []):- at_work, busy, family_call.							
	rule(r3, allow_call, []):- boss_call.							
	rule(p32c, prefer(r3, r2), []):- at_work, boss_call.							

Travel Assistant–SBPs to code (1)

	Level	Scenario	metro	taxi	bus
SBPS:	1	Visit friend	Х	Х	Х
	2a	Visit friend, bus stop nearby			Х
	2b	Visit friend, cold	Х	Х	
	3b	Visit friend, bus stop nearby, cold	Х		
	4b	Visit friend, bus stop nearby, cold, rains		Х	
	5b	Visit friend, bus stop nearby, cold, rains, short on funds	Х		

Gorgias code

rule(r1, taxi, []):- visit_friend.

rule(r2, bus, []):- visit_friend.

rule(r3, metro, []):- visit_friend.

rule(p1, prefer(r2, r3), []):- visit_friend, bus_stop_nearby.

rule(p2, prefer(r2, r1), []):- visit_friend, bus_stop_nearby.

rule(p3, prefer(r3, r2), []):- visit_friend, cold.

rule(p4, prefer(r1, r2), []):- visit_friend, cold.

Travel Assistant–SBPs to code (1)

	Level	Scenario	metro	taxi	bus
□ SBPs:	1	Visit friend	Х	Х	Х
	2a	Visit friend, bus stop nearby			Х
	2b	Visit friend, cold	Х	Х	
	3b	Visit friend, bus stop nearby, cold	Х		
	4b	Visit friend, bus stop nearby, cold, rains		Х	
	5b	Visit friend, bus stop nearby, cold, rains, short on funds	Х		

Gorgias code:

rule(c1, prefer(p3, p1), []):- visit_friend, bus_stop_nearby, cold. rule(c2, prefer(p4, p2), []):- visit_friend, bus_stop_nearby, cold.

rule(d1, taxi, []):-visit_friend, bus_stop_nearby, cold.
orule(d2, metro, []):-visit_friend, bus_stop_nearby, cold.
rule(pd1, prefer(d1, r3), []):-visit_friend, bus_stop_nearby, cold.
rule(pd2, prefer(d2, r1), []):-visit_friend, bus_stop_nearby, cold.
rule(pd3, prefer(d2, d1), []):- visit_friend, bus_stop_nearby, cold.

Here I want to discriminate in a group. I have no conflict

Give priority of these object level rules over those of the initial scenario

Finally give priority to metro according to 3b

Travel Assistant–SBPs to code (1)

	Level	Scenario	metro	taxi	bus
SBPs:	1	Visit friend	Х	Х	Х
	2a	Visit friend, bus stop nearby			Х
	2b	Visit friend, cold	Х	Х	
	3b	Visit friend, bus stop nearby, cold	Х		
	4b	Visit friend, bus stop nearby, cold, rains		Х	
	5b	Visit friend, bus stop nearby, cold, rains, short on funds	Х		

Code

rule(pd4, prefer(d1, d2), []):- visit_friend, bus_stop_nearby, cold, rains.

rule(cd1, prefer(pd4, pd3), []):-visit_friend, bus_stop_nearby, cold, rains.

rule(cd2, prefer(pd3, pd4), []):-visit_friend, bus_stop_nearby, cold, rains, short_on_funds. rule(cd3, prefer(cd2, cd1), []):-visit_friend, bus_stop_nearby, cold, rains, short_on_funds.