
Formal Aspects of Strategic Reasoning and
Game Playing

Munyque Mittelmann, Aniello Murano, Laurent Perrussel

University of Naples Federico II
University Toulouse Capitole

ESSAI 2024
Athens Greece

July 2024

1

Fellow

Fellow

ASTREA
https://people.na.infn.it/~murano/

Outline

Day 3

1.1 Basic concepts of formal verification for monolithic systems (45 slides/45 min)

➢ Introduction to closed system verification: Model Checking
➢ Linear and Branching-time Temporal Logics: LTL, CTL, and CTL*
➢ An automata-theoretic approach to solve model checking

1.2 From one player to two players (30 sides/30 min)

➢ Introduction to open systems verification: Module checking as a two-player game

Day 4
2.1 From two-players to multiple players (75 slides/75 min)

➢ Logics for strategic reasoning: ATL and ATL*
➢ An automata-theoretic approach and a fixed-point algorithm to solve model checking

➢ From ATL to Strategy Logic

Aniello Murano - Strategy Reasoning 2

Preface: System Correctness

❑ Hardware and software systems are growing up in their abilities and applications.

❑ From health-care and transportation to smartphones, systems are becoming more and
more complex and intelligent!

❑ System failure can affect safety and induces a lost of money, as well as time and market
reputation.

❑ A notable example: Pentium IV bag: 4195835 – 4195835 / 3145727 * 3145727, doesn’t
return 0, but 256. It costed $500 million.

❑ System failure is not an option!!!

Aniello Murano - Strategy Reasoning 3

Preface: A Solution Approach

❑ Formal verification:

➢ We can check whether a system is correct with respect to a desired behavior (specification), by
formally checking whether a representation of the system meets the specification.

Formal
Analysis

Model
(System Requirement)

Specification
(System Property)

No

The model does not meet

 the specification

(counterexample)

Yes

The model meets

 the specification

Aniello Murano - Strategy Reasoning 4

Advantages of Formal Methods

❑ Apply to system models

❑ Used at a very early stage of a project

❑ Based on robust mathematical theories

❑ Exhaustive as they can check all possible computations

❑ Diagnostic counterexamples

❑ No problem with partial specifications

❑ Several existing tools!

Aniello Murano - Strategy Reasoning 5

Example: Scheduler

❑ A scheduler should be designed so that jobs of the two users are not printed
simultaneously, and whenever a user sends a job, the job is printed eventually.

Aniello Murano - Strategy Reasoning 6

Example: Scheduler

❑ A scheduler should be designed so that jobs of the two users are not printed
simultaneously, and whenever a user sends a job, the job is printed eventually.

Aniello Murano - Strategy Reasoning 6

❑ Using formal methods, we can check reliability for such a scheduler by:

➢ Providing an appropriate model for the scheduler M

➢ A specification for the desired behavior ϕ

➢ A formal technique that allows to check that M meets ϕ

System Verification Scenarios

❑ The model and specification framework depend on the specific system and
behavior we are dealing with.

❑ The decision problem (algorithm analysis) also depends on the specific
setting we are facing.

Aniello Murano - Strategy Reasoning 7

Possible System Scenarios

Aniello Murano - Strategy Reasoning 8

Possible System Scenarios

❑ Closed systems:

❑ Open (system vs. environment) systems:

❑ Multi-agent systems:

Aniello Murano - Strategy Reasoning 8

Possible System Scenarios

❑ Closed systems:

➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems:

❑ Multi-agent systems:

Aniello Murano - Strategy Reasoning 8

Possible System Scenarios

❑ Closed systems:

➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems:

➢ Interaction with an unpredictable environment (two source of non-determinism)

❑ Multi-agent systems:

Aniello Murano - Strategy Reasoning 8

Possible System Scenarios

❑ Closed systems:

➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems:

➢ Interaction with an unpredictable environment (two source of non-determinism)

❑ Multi-agent systems:

➢ The system is composed of several entities acting adversarial or in a cooperative way.

Aniello Murano - Strategy Reasoning 8

Possible Specification Formalisms

❑ Temporal logics:

➢ Linear such as LTL

➢ Branching such as CTL, and CTL*

❑ Multi-agent temporal logics:

➢ Alternating-time temporal logic (ATL)

➢ Strategy Logic (SL)

Aniello Murano - Strategy Reasoning 9

System Analysis

❑ Decision problems:

➢ Model Checking

➢ Satisfiability

➢ Module Checking/Games

➢ Reactive Synthesis

Aniello Murano - Strategy Reasoning 10

Part 1.1

✓ Introduction to formal verification;

→ Models for closed systems: Kripke Structures;

➢ Linear and branching-time temporal logics: LTL, CTL, and CTL*;

➢ Decision problems: model checking and satisfiability.

➢ Automata on infinite words and trees.

Aniello Murano - Strategy Reasoning 11

A Basic Model: Kripke Structure

❑ Systems can be represented as labeled-state transition graphs: Kripke Structures

❑ Formally,

M= (AP, S, S0, R, Lab)

❑ AP is a set of atomic propositions

❑ S is a finite set of states

❑ S0 ⊆ S is the set of initial states

❑ R ⊆ S x S is a transition relation, total: ∀s є S, ∃ s’ . R(s, s’)

❑ Lab : S → 2AP labels each state with propositions true in the state

Aniello Murano - Strategy Reasoning 12

Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:

1 Aniello Murano - Strategy Reasoning

Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:

➢ In a traffic-light system, we can model: “if the light was red at the previous state and is orange
now, it must turn green at the next state”.

1 Aniello Murano - Strategy Reasoning

Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:

➢ In a traffic-light system, we can model: “if the light was red at the previous state and is orange
now, it must turn green at the next state”.

➢ In a train system , we can model: “If a train is entering the tunnel now, the semaphore has been
switched red on the other side at the previous moment”.

1 Aniello Murano - Strategy Reasoning

A concrete example: Microwave Oven

➢ AP = {Start, Close, Heat, Error}

➢ S = {s0,s1,s2,s3,s4,s5,s6}

➢ S0 = {s0}

➢ R and Lab are as in the figure

¬ Start

¬ Close

¬ Heat

¬ Error

Start

¬ Close

¬ Heat

Error

¬ Start

Close

¬ Heat

¬ Error

¬ Start

Close

Heat

¬ Error

Start

Close

Heat

¬ Error

Start

Close

¬ Heat

¬ Error

Start

Close

¬ Heat

Error

s0

s1 s2
s3

s4
s5 s6

Aniello Murano - Strategy Reasoning 14

Part 1.1

✓ Introduction to formal verification;

✓ Models for closed systems: Kripke Structures;

→ Linear and branching-time temporal logics: LTL, CTL and CTL*

➢ Decision problems: model checking and satisfiability.

➢ Automata on infinite words and trees.

Aniello Murano - Strategy Reasoning 15

Temporal Logic Specification

❑ Temporal logics allows to describe the evolution of system along the time.

➢ We intrinsically assume that system computations are infinite.

❑ Temporal logics extend classical proposition logic with temporal operators.

❑ Depending on the underling nature of the time, we distinguish between:

➢ Linear-time temporal-logics

➢ Branching-time temporal-logics

Aniello Murano - Strategy Reasoning 16

Temporal Logic Specification

❑ Temporal logics allows to describe the evolution of system along the time.

➢ We intrinsically assume that system computations are infinite.

❑ Temporal logics extend classical proposition logic with temporal operators.

❑ Depending on the underling nature of the time, we distinguish between:

➢ Linear-time temporal-logics
❖Every moment has a unique successor
❖ Infinite sequences (words)

➢ Branching-time temporal-logics

Aniello Murano - Strategy Reasoning 16

Temporal Logic Specification

❑ Temporal logics allows to describe the evolution of system along the time.

➢ We intrinsically assume that system computations are infinite.

❑ Temporal logics extend classical proposition logic with temporal operators.

❑ Depending on the underling nature of the time, we distinguish between:

➢ Linear-time temporal-logics
❖Every moment has a unique successor
❖ Infinite sequences (words)

➢ Branching-time temporal-logics
❖Every moment has several successors
❖ Infinite trees

Aniello Murano - Strategy Reasoning 16

History of Temporal Logic and Formal Verification

Aniello Murano - Strategy Reasoning 17

History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

Aniello Murano - Strategy Reasoning 17

History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”.

Aniello Murano - Strategy Reasoning 17

History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”.

❑ Edmund Clarke and Ernest Allen Emerson in the early 1980’s developed a framework to temporal logic
reasoning about programs (CTL and Model Checking);

❑ Independently, Jean-Pierre Queille and Joseph Sifakis essentially proposed the same method at this time.

Aniello Murano - Strategy Reasoning 17

History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”.

❑ Edmund Clarke and Ernest Allen Emerson in the early 1980’s developed a framework to temporal logic
reasoning about programs (CTL and Model Checking);

❑ Independently, Jean-Pierre Queille and Joseph Sifakis essentially proposed the same method at this time.

❑ Pnueli won the 1996 Turing award for his contribution to temporal logic specifications

Aniello Murano - Strategy Reasoning 17

History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”.

❑ Edmund Clarke and Ernest Allen Emerson in the early 1980’s developed a framework to temporal logic
reasoning about programs (CTL and Model Checking);

❑ Independently, Jean-Pierre Queille and Joseph Sifakis essentially proposed the same method at this time.

❑ Pnueli won the 1996 Turing award for his contribution to temporal logic specifications

❑ Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking

Aniello Murano - Strategy Reasoning 17

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

Aniello Murano - Strategy Reasoning 18

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

Aniello Murano - Strategy Reasoning 18

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Aniello Murano - Strategy Reasoning 18

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Aniello Murano - Strategy Reasoning 18

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Aniello Murano - Strategy Reasoning 18

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Aniello Murano - Strategy Reasoning 18

p

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

Aniello Murano - Strategy Reasoning 18

p

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

Aniello Murano - Strategy Reasoning 18

p p p p

p

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

pUq “p will hold true Until q becomes true”

Aniello Murano - Strategy Reasoning 18

p p p p

p

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

pUq “p will hold true Until q becomes true” p p q

Aniello Murano - Strategy Reasoning 18

p p p p

p

p

p

LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”

Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

pUq “p will hold true Until q becomes true” p p q

Aniello Murano - Strategy Reasoning 18

p p p p

p

p

p

π ╞ φ means that the LTL formula φ holds on π

Example: Safety and Liveness

Aniello Murano - Strategy Reasoning 20

Example: Safety and Liveness

❑ Safety: Something bad never happens

Two processes can never be in a critical section at the same time:
¬F(p1cr ⋀ p2cr)

A process will never meet a critical state:
G(¬error_state)

Aniello Murano - Strategy Reasoning 20

Example: Safety and Liveness

❑ Safety: Something bad never happens

Two processes can never be in a critical section at the same time:
¬F(p1cr ⋀ p2cr)

A process will never meet a critical state:
G(¬error_state)

❑ Liveness: Something desired will happen

Always, every print request is eventually granted:
G(req → F grant)

The microwave doesn’t heat up until the door is closed:

¬heat_up U door_closed

Always, every repeated request is eventually granted.
G(GF req → F grant)

Aniello Murano - Strategy Reasoning 20

LTL Model Checking

❑ Given,

➢ A Kripke structure M = (AP, S, S0, R, Lab) modelling the system, an initial state s0 є S0 and

➢ An LTL formula φ over AP representing the specification

Aniello Murano - Strategy Reasoning 21

LTL Model Checking

❑ Given,

➢ A Kripke structure M = (AP, S, S0, R, Lab) modelling the system, an initial state s0 є S0 and

➢ An LTL formula φ over AP representing the specification

The LTL model checking problem

M,s0 ╞ φ

Aniello Murano - Strategy Reasoning 21

LTL Model Checking

❑ Given,

➢ A Kripke structure M = (AP, S, S0, R, Lab) modelling the system, an initial state s0 є S0 and

➢ An LTL formula φ over AP representing the specification

The LTL model checking problem

M,s0 ╞ φ

concerns checking whether, for each path π of M starting in s0, we have that π╞ φ

Aniello Murano - Strategy Reasoning 21

LTL Satisfiability

❑ Given an LTL formula φ, is there a Kripke structure satisfying the formula?

Aniello Murano - Strategy Reasoning 22

LTL Satisfiability

❑ Given an LTL formula φ, is there a Kripke structure satisfying the formula?

❑ Examples:

➢ p U q is satisfiable, and the model above is a witness

➢ (p U q) ⋀ G¬q is not satisfiable

Aniello Murano - Strategy Reasoning

p

q

p q

22

Branching-Time Temporal Logics

❑ An LTL formula is satisfied over a Kripke structure M if it is satisfied on all its paths

❑ Paths in M represent all possible system computations

❑ To restrict the check of a formula to some paths of M, we need a logic that allows to talk
about model branches

❑ To this purpose, we use CTL and CTL*

Aniello Murano - Strategy Reasoning 23

CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

Aniello Murano - Strategy Reasoning 24

CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

Aniello Murano - Strategy Reasoning 24

CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

❑ In CTL, formulas are evaluated on states rather than paths.

Aniello Murano - Strategy Reasoning 24

CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

❑ In CTL, formulas are evaluated on states rather than paths.

❑ CTL* allows more complex nesting such as

AXX, EFG, AGX, AFG, EXFG, ...

❑ CTL* strictly includes both LTL and CTL. Note that LTL and CTL are incomparable

Aniello Murano - Strategy Reasoning 24

CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

❑ In CTL, formulas are evaluated on states rather than paths.

❑ CTL* allows more complex nesting such as

AXX, EFG, AGX, AFG, EXFG, ...

❑ CTL* strictly includes both LTL and CTL. Note that LTL and CTL are incomparable

.
Aniello Murano - Strategy Reasoning 24

Tree model unwinding

Aniello Murano - Strategy Reasoning 25

An infinite computation tree

Tree model unwinding

Aniello Murano - Strategy Reasoning 25

An infinite computation tree

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 26

EF red
“F , red will possibly become true”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 26

EF red
“For at least a path, red will possibly become true”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 27

AF red
“F v y , red w v y b ”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 27

AF red
“For every path, red will eventually become true ”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 28

EG red
For at least a path, red remains always true”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 28

EG red
For at least a path, red remains always true”

CTL: Computation Tree Logic

Aniello Murano - Strategy Reasoning 29

AG red
“ v y , red is always true”

⊨ 𝑬𝝋𝑼𝝍?K

K ⊨ 𝑬𝝋𝑼𝝍

⊨ 𝑨𝝋𝑹𝝍?M

M ⊨ 𝑨𝝋𝑹𝝍

Part 1.1

✓ Introduction to formal verification;

✓ Models for closed systems: Kripke Structures;

✓ Linear and branching-time temporal logics: LTL, CTL, and CTL*;

→ An automata-theoretic approach to model checking: word and tree automata

Aniello Murano - Strategy Reasoning 34

Decision Problems Using Automata

Model Checking

Aniello Murano - Strategy Reasoning 35

Decision Problems Using Automata

Model Checking

❑ Given an automaton AM for the system model M and an automaton A¬φ

accepting all models of the complement of a specification φ, M is
correct with respect to φ iff

L(AM) ∩ L(A¬ᵩ) = Ø

Aniello Murano - Strategy Reasoning 35

Decision Problems Using Automata

Satisfiability

Aniello Murano - Strategy Reasoning 36

Decision Problems Using Automata

Satisfiability

❑ Given a temporal logic specification φ, using an automaton Aφ

accepting all models of φ, we have that φ is satisfiable iff

L(Aφ) ≠ Φ

Aniello Murano - Strategy Reasoning 36

Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

Aniello Murano - Strategy Reasoning 37

Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

❑ Which kind of automata

➢ Branching mode: deterministic – nondeterministic – universal – alternating.

➢ Acceptance mode: Buchi – co-Buchi – parity – Streett – Rabin – Muller

➢ Input: words – trees

Aniello Murano - Strategy Reasoning 37

Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

❑ Which kind of automata

➢ Branching mode: deterministic – nondeterministic – universal – alternating.

➢ Acceptance mode: Buchi – co-Buchi – parity – Streett – Rabin – Muller

➢ Input: words – trees

❑ How to implement model and specification translations

Aniello Murano - Strategy Reasoning 37

Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

❑ Which kind of automata

➢ Branching mode: deterministic – nondeterministic – universal – alternating.

➢ Acceptance mode: Buchi – co-Buchi – parity – Streett – Rabin – Muller

➢ Input: words – trees

❑ How to implement model and specification translations

❑ How to check the (non-)emptiness problem

Aniello Murano - Strategy Reasoning 37

Büchi Word Automata (NBW) [1/2]

❑ For LTL model checking, we can use Büchi word automata (NBW)

❑ NBW extend classical finite automata in order to accept ω-words

❑ An NBW is a tuple A = < Q, , , Q0, F >

➢ Q is the set of states

➢ Q0 ⊆ Q is the set of initial states

➢ is the alphabet

➢ : Q x → 2Q is the transition relation (note, it is nondeterministic)

➢ F ⊆ Q is an acceptance condition for infinite words, defined w.r.t. runs

Aniello Murano - Strategy Reasoning 39

Büchi Word Automata (NBW) [1/2]

❑ For LTL model checking, we can use Büchi word automata (NBW)

❑ NBW extend classical finite automata in order to accept ω-words

❑ An NBW is a tuple A = < Q, , , Q0, F >

➢ Q is the set of states

➢ Q0 ⊆ Q is the set of initial states

➢ is the alphabet

➢ : Q x → 2Q is the transition relation (note, it is nondeterministic)

➢ F ⊆ Q is an acceptance condition for infinite words, defined w.r.t. runs

❑ A run over an ω-word -labeled (when it exists) is a Q-labeled ω-word, build in
accordance with , whose first state is q0

❑ A word is accepted if there exists and accepting run (next slide)

❑ The language L of A, denoted L(A), is the set of all words accepted by A

Aniello Murano - Strategy Reasoning 39

Büchi Word Automata (NBW) [2/2]

❑ Let inf() = {q | q appears infinitely often on },

❑ A word * is accepted by an NBW A (with F Q) iff there is a run of A on s.t.

Inf() ∩ F

❑ In other words, is accepted by A iff there is a run of A on visiting a final state qF infinitely often

❑ Such a run is called an accepting run.

Aniello Murano - Strategy Reasoning 40

Example

Aniello Murano - Strategy Reasoning 41

Example

L := {{a, b}| ends with a or with (ab)}

Aniello Murano - Strategy Reasoning 41

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

Aniello Murano - Strategy Reasoning 43

From a Kripke structure to a Buchi automaton

❑ Given a Kripke structure

M= (AP, S, S0, R, Lab)

❑ …… we can build an equivalent Buchi automaton

AM = < Q, , , Q0, F >

❑ Where:

Aniello Murano - Strategy Reasoning 57

From a Kripke structure to a Buchi automaton

❑ Given a Kripke structure

M= (AP, S, S0, R, Lab)

❑ …… we can build an equivalent Buchi automaton

AM = < Q, , , Q0, F >

❑ Where:

➢ = 2AP

➢ Q = S: same initial state

➢ (s, a, t) є iff (s,t) є R and a = Lab(s)

➢ Q0 = S0 : same initial state

➢ F = S : every state is accepting

Aniello Murano - Strategy Reasoning 57

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

Aniello Murano - Strategy Reasoning
45

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

❑ Xp

Aniello Murano - Strategy Reasoning
45

pT T

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

❑ Xp

❑ Fp

Aniello Murano - Strategy Reasoning
45

pT T

pT

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

❑ Xp

❑ Fp

❑ Gp

Aniello Murano - Strategy Reasoning
45

p

pT T

pT

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

❑ Xp

❑ Fp

❑ Gp

❑ P U q

Aniello Murano - Strategy Reasoning
45

p

pT T

qp T

pT

From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ

❑ Xp

❑ Fp

❑ Gp

❑ P U q

❑ We skip the formal construction. All you need to know is that the automaton is exponential
in the size of the formula (e.g., nesting of temporal operators) [Vardi, Wolper 1986]

Aniello Murano - Strategy Reasoning
45

p

pT T

qp T

pT

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

❑ A¬ is an NBW and its size is exponential in the size of

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

❑ A¬ is an NBW and its size is exponential in the size of

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime.

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

❑ A¬ is an NBW and its size is exponential in the size of

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime.

❑ So, the size of B is polynomial in the size of M and exponential in the size of .

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

❑ A¬ is an NBW and its size is exponential in the size of

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime.

❑ So, the size of B is polynomial in the size of M and exponential in the size of .

❑ The nonemptiness of B can be checked in LogSpace (look for a lasso with double reachability).

Aniello Murano - Strategy Reasoning 46

An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula we check whether M╞ by checking whether:

L(AM) ∩ L(A¬) = Ø

❑ The size of AM is linear in the size of M

❑ A¬ is an NBW and its size is exponential in the size of

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime.

❑ So, the size of B is polynomial in the size of M and exponential in the size of .

❑ The nonemptiness of B can be checked in LogSpace (look for a lasso with double reachability).

❑ Finally, we get that model checking question is PSPACE-complete and only PTime in the size of M

Aniello Murano - Strategy Reasoning 46

Büchi Tree Automata (NBT)

Aniello Murano - Strategy Reasoning 47

❑ For CTL model checking, we can use Büchi tree automata (NBT)

❑ An infinite (binary) tree is t : {0,1}* →

❑ A path is an infinite sequence of nodes starting at the root

❑ An NBT is a tuple A = < Q, , , Q0, F >

➢ : Q x → 2QxQ is a tree transition relation

➢ F is an acceptance condition for infinite trees

➢ Acceptance is defined with respect to runs…. (next slide)

❑ Note: we can extend A to deal with any branching degree by means of a degree parameter

a (-labeled) tree t

a

a b

b a bb

Runs

❑ A run r : {01}*→ Q is built in accordance with and r() є Q0. Thus, runs are Q-labeled trees.

q0

p

p p

p

q q

b

b a

a b ba

❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r

Aniello Murano - Strategy Reasoning 48

Runs

❑ A run r : {01}*→ Q is built in accordance with and r() є Q0. Thus, runs are Q-labeled trees.

q0

p

p p

p

q q

b

b a

a b ba

❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r

Aniello Murano - Strategy Reasoning 48

Runs

❑ Büchi condition (F ⊆ Q):

❑ A run r : {01}*→ Q is built in accordance with and r() є Q0. Thus, runs are Q-labeled trees.

q0

p

p p

p

q q

b

b a

a b ba

❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r

Aniello Murano - Strategy Reasoning 48

Runs

❑ Büchi condition (F ⊆ Q):
➢ A run r is accepting for a Nonderministic Buchi tree automaton (NBT) if for every path

Inf(r|) ⋂ F Ø

❑ A run r : {01}*→ Q is built in accordance with and r() є Q0. Thus, runs are Q-labeled trees.

q0

p

p p

p

q q

b

b a

a b ba

❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r

Aniello Murano - Strategy Reasoning 48

An Automata Approach to CTL/CTL* Model Checking

Aniello Murano - Strategy Reasoning 54

An Automata Approach to CTL/CTL* Model Checking

❑ We can repeat the same argument for NBW and LTL model checking

Aniello Murano - Strategy Reasoning 54

An Automata Approach to CTL/CTL* Model Checking

❑ We can repeat the same argument for NBW and LTL model checking

❑ An efficient upper bound can be obtained via Alternating Buchi tree automata

➢ CTL Model checking is PTIME-complete

Aniello Murano - Strategy Reasoning 54

An Automata Approach to CTL/CTL* Model Checking

❑ We can repeat the same argument for NBW and LTL model checking

❑ An efficient upper bound can be obtained via Alternating Buchi tree automata

➢ CTL Model checking is PTIME-complete

❑ For CTL* we need a more complex acceptance condition, such as Parity

➢ CTL* Model checking is also PSPACE-complete

Aniello Murano - Strategy Reasoning 54

Some References

❑ Moshe Y. Vardi, Pierre Wolper: An Automata-Theoretic Approach to Automatic Program
Verification (Preliminary Report). LICS 1986: 332-344 *

❑ Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher
Order Workshop 1995: 238-266

❑ O.Kupferman, M. Y. Vardi, and P. Wolper: An Automata-Theoretic Approach to Branching-
Time Model Checking Journal of the ACM (JACM) , 47, pp 312 – 360, 2000.

❑ E. Clarke, O. Grumberg, D. Peled, Model Checking. MIT Press, 2000

❑ Orna Kupferman, Gila Morgenstern, Aniello Murano: Typeness for omega-regular Automata.
Int. J. Found. Comput. Sci. 17(4): 869-884 (2006)

❑ *Godel prize

Aniello Murano - Strategy Reasoning 50

Let us have a break!

Part 1.2

From one player to two players

51

Model Checking

❑ Let S be a finite-state system and P its desired behavior

❑ S → labelled state-transition graph M

❑ P→ a temporal logic formula

The system has
the required

behavior

M satisfies

Is the system correct?

Picture credits to Orna Kupferman

Classes of Models
❑ Closed Systems

➢ Behavior is fully characterized by system state

❑ Open Systems

➢ Behavior depends on the interaction with the environment

Classes of Models
❑ Closed Systems

➢ Behavior is fully characterized by system state

❑ Open Systems

➢ Behavior depends on the interaction with the environment

➢ Open System Model: Labelled State-Transition Graph

It must be

“reactive”

Classes of Models
❑ Closed Systems

➢ Behavior is fully characterized by system state

❑ Open Systems

➢ Behavior depends on the interaction with the environment

➢ Open System Model: Labelled State-Transition Graph

➢ A solution for Open Finite-State Systems: Module Checking [Kupferman,
Vardi, Wolper 2001]

It must be

“reactive”

Model checking a closed system
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

Model checking a closed system
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

M: Welcome Choose

Withdraw

Show Ad

❑ M is a labeled-state transition graph modeling the machine

Model checking a closed system
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

❑ A desired behavior:

“It is always possible to show an ad”

M: Welcome Choose

Withdraw

Show Ad

❑ M is a labeled-state transition graph modeling the machine

φ = GF Show Ad

Model checking a closed system
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

❑ A desired behavior:

“It is always possible to show an ad”

M: Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

T

M⊨φ iff T⊨φ

❑ M is a labeled-state transition graph modeling the machine

❑ T is an infinite tree obtained by unwinding M

φ = GF Show Ad

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

❑ The ATM can always eventually show an Ad iff

It may be impossible to show an ad!

T⊨G F Show Ad

M: Welcome Choose

Withdraw

Show Ad

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with
a partition into system and environment nodes

s
s

s
e

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-

trees rooted in successors of environment nodes (but one).

s
s

s
e

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-

trees rooted in successors of environment nodes (but one).

s
s

s
e

Show Ad Welcomee
s s

Show Ad Welcome

s s

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Welcome Choose

Withdraw

T
Welcome

Welcome
e

e

s
s

s

s
s s s

s s

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-

trees rooted in successors of environment nodes (but one).

s
s

s
e

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Welcome Choose

Withdraw

T
Welcome

Welcome
e

e

s
s

s

s
s s s

s s

Open
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-

trees rooted in successors of environment nodes (but one).
❑ M (reactively) satisfies φ iff φ holds in all trees of Exec(M).

s
s

s
e

M ⊨r φModule checking

General Observations

❑ In open systems, the environment can modify internal variables.

❑ The executions of the system depend on this modification

❑ The system must be correct no matter how the environment behaves.

❑ Each possible environment choice induces a different tree in Exec(M)*

❑ All such trees must satisfy the specification

* In the MAS framework, Exec(M) can be seen as a nondeterministic outcome

Modules: Formal Definition

❑ A module is a Kripke structure with a partitioning of the states in system
states and environment states

M= (AP, WSys, WEnv, s0, R, Lab)

❑ AP, s0, R, and Lab are as in Kripke structures

❑ WSys and WEnv are a partitioning of the set of states S

➢ WSys ⋂ WEnv =

➢ WSys ⋃ WEnv = S

Exec(M): Formal Definition

❑ Let TM be the S-labeled tree unwinding of M (it is labeled with the states of M)

❑ A tree t is in Exec(M) if a subtree of TM build as follow

➢ The root of t as in TM (i.e., it is labeled with s0)

➢ For each node x in t, corresponding to a node ws є WSys, the children of x are all
successors of ws in M

➢ For each node x in t, corresponding to a node we є WEnv, children of x are a
nonempty subset of successors of we in M

❑ The Size of Exec(M) can be infinite!

The Module Checking Problem

❑ Given a module M and a CTL formula ϕ, we say that M reactively satisfies ϕ, denoted:

M ⊨r ϕ

if all trees in exec(M) satisfy ϕ

The Module Checking Problem

❑ Given a module M and a CTL formula ϕ, we say that M reactively satisfies ϕ, denoted:

M ⊨r ϕ

if all trees in exec(M) satisfy ϕ

❑ Note that

➢ M ⊨r ϕ implies M ⊨ ϕ, while the converse may not be true

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

❑ Upper Bound: automata-theoretic approach via BTA

➢ Let M be a module and φ be a CTL specification

➢ In PTime, we buid a BTA AExec(M) that accepts all trees in exec(M)

➢ In EXPTime, we buid a BTA A¬φ that accepts all tree models of ¬φ

➢ Then, we check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) =

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

❑ Upper Bound: automata-theoretic approach via BTA

➢ Let M be a module and φ be a CTL specification

➢ In PTime, we buid a BTA AExec(M) that accepts all trees in exec(M)

➢ In EXPTime, we buid a BTA A¬φ that accepts all tree models of ¬φ

➢ Then, we check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) =

❑ The resulting automaton is a BTA, polynomial in |M| and exponential in | φ |

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

❑ Upper Bound: automata-theoretic approach via BTA

➢ Let M be a module and φ be a CTL specification

➢ In PTime, we buid a BTA AExec(M) that accepts all trees in exec(M)

➢ In EXPTime, we buid a BTA A¬φ that accepts all tree models of ¬φ

➢ Then, we check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) =

❑ The resulting automaton is a BTA, polynomial in |M| and exponential in | φ |

❑ The emptiness of a BTA can be checked in quadratic time, therefore:

CTL Module checking is EXPTIME in |φ| and PTime in M

Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

❑ Upper Bound: automata-theoretic approach via BTA

➢ Let M be a module and φ be a CTL specification

➢ In PTime, we buid a BTA AExec(M) that accepts all trees in exec(M)

➢ In EXPTime, we buid a BTA A¬φ that accepts all tree models of ¬φ

➢ Then, we check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) =

❑ The resulting automaton is a BTA, polynomial in |M| and exponential in | φ |

❑ The emptiness of a BTA can be checked in quadratic time, therefore:

CTL Module checking is EXPTIME in |φ| and PTime in M

❑ The construction of AExec(M) is very clever and interesting by its own!

CTL* Module Checking

❑ Given a Module M and a CTL* formula φ, we can check whether M╞r φ as for CTL

CTL* Module Checking

❑ Given a Module M and a CTL* formula φ, we can check whether M╞r φ as for CTL

❑ However, we need a more powerful automaton, such as Parity.

CTL* Module Checking

❑ Given a Module M and a CTL* formula φ, we can check whether M╞r φ as for CTL

❑ However, we need a more powerful automaton, such as Parity.

❑ Consequently, checking for the emptiness is more expensive: CTL* module checking is

double-exponential in the size of the specification and PTime in the size of the model.

Aniello Murano - Strategy Reasoning 152

Complexity results

Class
Model

Checking
Model C. w.r.t.

system
Module Checking

Module C.
w.r.t.system

LTL
PSpace-

Complete
nlogspace PSpace-Complete nlogspace

CTL Linear Time [1] nlogspace[3] EXPTime-Complete
Ptime

Exptime (for i.i.)

CTL*
PSpace-

Complete [2]
nlogspace[3]

2EXPTime-
Complete

Ptime

Exptime (for i.i.)

1. [Clarke, Emerson, Sistla 1986]

2. [Emerson and Lei 1985]

3. [Kupferman, Vardi, Wolper 2000]

[Kupferman,Vardi,Wolper 1996 & 2001]

[Kupferman,Vardi, 1997] (for i.i.)

63

Main References to Module Checking

❑ Kuperman, Vardi, Wolper. Module Cheking. Information and Computation 2001 [Pre. Ver. in CAV 1996]

❑ Kuperman, Vardi. Revisited Module Checking (with imperfect information). CAV 1997

❑ Bozzelli, Murano, Peron. Pushdown Module Checking. Formal Methods in Sys. Des. 2010 [Pre. Ver. LPAR 2005]

❑ Ferrante, Murano, Parente. Enriched μ-Calculi Module Checking. Logical Methods in Computer Science 2008.
[Pre. Ver. FOSSACS'07 and LPAR'07]

❑ Aminof, Legay, Murano, Serre, Vardi. Pushdown Module Checking with Imperfect Information. Information
and Computation 2013 [Pre. Ver. in CONCUR 2007 and IFIP TCS 2008

❑ Murano, Parente, Napoli. Program Complexity in Hierarchical Module Checking. LPAR 2008

❑ Jamroga and Murano. On module checking and strategies. AAMAS 2014

❑ Jamroga and Murano. Module Checking of Strategic Ability. AAMAS 2015

❑ Bozzelli, Murano, Peron. Module Checking of Pushdown Multi-agent Systems. KR 2020

❑ Jamroga, Mittelmann, Murano, Perelli. Playing Quantitative Games Against an Authority: On the Module
Checking Problem. AAMAS 2024

	Diapositiva 1: Formal Aspects of Strategic Reasoning and Game Playing
	Diapositiva 2: Outline
	Diapositiva 3: Preface: System Correctness
	Diapositiva 4: Preface: A Solution Approach
	Diapositiva 5: Advantages of Formal Methods
	Diapositiva 6: Example: Scheduler
	Diapositiva 7: Example: Scheduler
	Diapositiva 8: System Verification Scenarios
	Diapositiva 9: Possible System Scenarios
	Diapositiva 10: Possible System Scenarios
	Diapositiva 11: Possible System Scenarios
	Diapositiva 12: Possible System Scenarios
	Diapositiva 13: Possible System Scenarios
	Diapositiva 14: Possible Specification Formalisms
	Diapositiva 15: System Analysis
	Diapositiva 16: Part 1.1
	Diapositiva 17: A Basic Model: Kripke Structure
	Diapositiva 18: Kripke Structure Applications
	Diapositiva 19: Kripke Structure Applications
	Diapositiva 20: Kripke Structure Applications
	Diapositiva 21: A concrete example: Microwave Oven
	Diapositiva 22: Part 1.1
	Diapositiva 23: Temporal Logic Specification
	Diapositiva 24: Temporal Logic Specification
	Diapositiva 25: Temporal Logic Specification
	Diapositiva 26: History of Temporal Logic and Formal Verification
	Diapositiva 27: History of Temporal Logic and Formal Verification
	Diapositiva 28: History of Temporal Logic and Formal Verification
	Diapositiva 29: History of Temporal Logic and Formal Verification
	Diapositiva 30: History of Temporal Logic and Formal Verification
	Diapositiva 31: History of Temporal Logic and Formal Verification
	Diapositiva 32: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 33: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 34: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 35: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 36: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 37: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 38: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 39: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 40: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 41: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 42: LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
	Diapositiva 46: Example: Safety and Liveness
	Diapositiva 47: Example: Safety and Liveness
	Diapositiva 48: Example: Safety and Liveness
	Diapositiva 49: LTL Model Checking
	Diapositiva 50: LTL Model Checking
	Diapositiva 51: LTL Model Checking
	Diapositiva 52: LTL Satisfiability
	Diapositiva 53: LTL Satisfiability
	Diapositiva 54: Branching-Time Temporal Logics
	Diapositiva 55: CTL: Computation Tree Logic
	Diapositiva 56: CTL: Computation Tree Logic
	Diapositiva 57: CTL: Computation Tree Logic
	Diapositiva 58: CTL: Computation Tree Logic
	Diapositiva 59: CTL: Computation Tree Logic
	Diapositiva 60: Tree model unwinding
	Diapositiva 61: Tree model unwinding
	Diapositiva 62: CTL: Computation Tree Logic
	Diapositiva 63: CTL: Computation Tree Logic
	Diapositiva 64: CTL: Computation Tree Logic
	Diapositiva 65: CTL: Computation Tree Logic
	Diapositiva 66: CTL: Computation Tree Logic
	Diapositiva 67: CTL: Computation Tree Logic
	Diapositiva 68: CTL: Computation Tree Logic
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73: Part 1.1
	Diapositiva 74: Decision Problems Using Automata
	Diapositiva 75: Decision Problems Using Automata
	Diapositiva 76: Decision Problems Using Automata
	Diapositiva 77: Decision Problems Using Automata
	Diapositiva 78: Automata-Theoretic approach
	Diapositiva 79: Automata-Theoretic approach
	Diapositiva 80: Automata-Theoretic approach
	Diapositiva 81: Automata-Theoretic approach
	Diapositiva 84: Büchi Word Automata (NBW) [1/2]
	Diapositiva 85: Büchi Word Automata (NBW) [1/2]
	Diapositiva 86: Büchi Word Automata (NBW) [2/2]
	Diapositiva 87: Example
	Diapositiva 88: Example
	Diapositiva 96: An Automata Approach to LTL Model Checking
	Diapositiva 97: From a Kripke structure to a Buchi automaton
	Diapositiva 98: From a Kripke structure to a Buchi automaton
	Diapositiva 99: From LTL to NBW: Some examples
	Diapositiva 100: From LTL to NBW: Some examples
	Diapositiva 101: From LTL to NBW: Some examples
	Diapositiva 102: From LTL to NBW: Some examples
	Diapositiva 103: From LTL to NBW: Some examples
	Diapositiva 104: From LTL to NBW: Some examples
	Diapositiva 105: An Automata Approach to LTL Model Checking
	Diapositiva 106: An Automata Approach to LTL Model Checking
	Diapositiva 107: An Automata Approach to LTL Model Checking
	Diapositiva 108: An Automata Approach to LTL Model Checking
	Diapositiva 109: An Automata Approach to LTL Model Checking
	Diapositiva 110: An Automata Approach to LTL Model Checking
	Diapositiva 111: An Automata Approach to LTL Model Checking
	Diapositiva 112: Büchi Tree Automata (NBT)
	Diapositiva 113: Runs
	Diapositiva 114: Runs
	Diapositiva 115: Runs
	Diapositiva 116: Runs
	Diapositiva 117: An Automata Approach to CTL/CTL* Model Checking
	Diapositiva 118: An Automata Approach to CTL/CTL* Model Checking
	Diapositiva 119: An Automata Approach to CTL/CTL* Model Checking
	Diapositiva 120: An Automata Approach to CTL/CTL* Model Checking
	Diapositiva 121: Some References
	Diapositiva 122
	Diapositiva 123: Model Checking
	Diapositiva 124: Classes of Models
	Diapositiva 125: Classes of Models
	Diapositiva 126: Classes of Models
	Diapositiva 127: Model checking a closed system
	Diapositiva 128: Model checking a closed system
	Diapositiva 129: Model checking a closed system
	Diapositiva 130: Model checking a closed system
	Diapositiva 131: Model checking an open system
	Diapositiva 132: Model checking an open system
	Diapositiva 133: Model checking an open system
	Diapositiva 134: Model checking an open system
	Diapositiva 135: Model checking an open system
	Diapositiva 136: Model checking an open system
	Diapositiva 137: Model checking an open system
	Diapositiva 138: General Observations
	Diapositiva 139: Modules: Formal Definition
	Diapositiva 140: Exec(M): Formal Definition
	Diapositiva 141: The Module Checking Problem
	Diapositiva 142: The Module Checking Problem
	Diapositiva 143: Solving Module Checking
	Diapositiva 144: Solving Module Checking
	Diapositiva 145: Solving Module Checking
	Diapositiva 146: Solving Module Checking
	Diapositiva 147: Solving Module Checking
	Diapositiva 148: Solving Module Checking
	Diapositiva 149: CTL* Module Checking
	Diapositiva 150: CTL* Module Checking
	Diapositiva 151: CTL* Module Checking
	Diapositiva 152
	Diapositiva 153: Main References to Module Checking

