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Outline

Day 3

1.1 Basic concepts of formal verification for monolithic systems (45 slides/45 min)

➢ Introduction to closed system verification: Model Checking
➢ Linear and Branching-time Temporal Logics: LTL, CTL, and CTL*
➢ An automata-theoretic approach to solve model checking

1.2 From one player to two players (30 sides/30 min)

➢ Introduction to open systems verification: Module checking as a two-player game

Day 4
2.1 From two-players to multiple players (75 slides/75 min)

➢ Logics for strategic reasoning: ATL and ATL*
➢ An automata-theoretic approach and a fixed-point algorithm to solve model checking

➢ From ATL to Strategy Logic
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Preface: System Correctness

❑ Hardware and software systems are growing up in their abilities and applications.

❑ From health-care and transportation to smartphones, systems are becoming more and 
more complex and intelligent! 

❑ System failure can affect safety and induces a lost of money, as well as time and market 
reputation.

❑ A notable example: Pentium IV bag: 4195835 – 4195835 / 3145727 * 3145727, doesn’t 
return 0, but 256. It costed $500 million.

❑ System failure is not an option!!!
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Preface: A Solution Approach

❑ Formal verification: 

➢ We can check whether a system is correct with respect to a desired behavior (specification), by 
formally checking whether a representation of the system meets the specification.

Formal
Analysis

Model
(System Requirement)

Specification
(System Property)

No

The model does not meet

 the specification

(counterexample)

Yes 

The model meets

 the specification
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Advantages of Formal Methods

❑ Apply to system models 

❑ Used at a very early stage of a project

❑ Based on robust mathematical theories

❑ Exhaustive as they can check all possible computations

❑ Diagnostic counterexamples

❑ No problem with partial specifications

❑ Several existing tools!
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Example: Scheduler

❑ A scheduler should be designed so that jobs of the two users are not printed 
simultaneously, and whenever a user sends a job, the job is printed eventually.
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Example: Scheduler

❑ A scheduler should be designed so that jobs of the two users are not printed 
simultaneously, and whenever a user sends a job, the job is printed eventually.
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❑ Using formal methods, we can check reliability for such a scheduler by:

➢ Providing an appropriate model for the scheduler M

➢ A specification for the desired behavior ϕ

➢ A formal technique that allows to check that M meets ϕ



System Verification Scenarios

❑ The model and specification framework depend on the specific system and 
behavior we are dealing with.

❑ The decision problem (algorithm analysis) also depends on the specific 
setting we are facing.
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Possible System Scenarios
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Possible System Scenarios

❑ Closed systems: 

❑ Open (system vs. environment) systems: 

❑ Multi-agent systems: 
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➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems: 

❑ Multi-agent systems: 

Aniello Murano  -  Strategy Reasoning 8



Possible System Scenarios

❑ Closed systems: 

➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems: 

➢ Interaction with an unpredictable environment (two source of non-determinism)

❑ Multi-agent systems: 

Aniello Murano  -  Strategy Reasoning 8



Possible System Scenarios

❑ Closed systems: 

➢ Behavior is fully characterized by system states (one source of nondeterminism).

❑ Open (system vs. environment) systems: 

➢ Interaction with an unpredictable environment (two source of non-determinism)

❑ Multi-agent systems: 

➢ The system is composed of several entities acting adversarial or in a cooperative way.
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Possible Specification Formalisms

❑ Temporal logics: 

➢ Linear such as LTL

➢ Branching such as CTL, and CTL*

❑ Multi-agent temporal logics:

➢ Alternating-time temporal logic (ATL)

➢ Strategy Logic (SL)
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System Analysis

❑ Decision problems:

➢ Model Checking

➢ Satisfiability 

➢ Module Checking/Games

➢ Reactive Synthesis
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Part 1.1

✓ Introduction to formal verification; 

→ Models for closed systems: Kripke Structures; 

➢ Linear and branching-time temporal logics: LTL, CTL, and CTL*;

➢ Decision problems: model checking and satisfiability. 

➢ Automata on infinite words and trees.

Aniello Murano  -  Strategy Reasoning 11



A Basic Model: Kripke Structure

❑ Systems can be represented as labeled-state transition graphs: Kripke Structures

❑ Formally, 

M= (AP, S, S0, R, Lab)

❑ AP is a set of atomic propositions 

❑ S is a finite set of states

❑ S0 ⊆ S is the set of initial states

❑ R ⊆ S x S is a transition relation, total: ∀s є S, ∃ s’ . R(s, s’)

❑ Lab : S → 2AP labels each state with propositions true in the state
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Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:
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Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:

➢ In a traffic-light system, we can model:  “if the light was red at the previous state and is orange 
now, it must turn green at the next state”.
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Kripke Structure Applications

❑ Kripke structures are suitable to model basic system behaviors in a very natural way.

❑ They are very efficient in modelling controllers:

➢ In a traffic-light system, we can model:  “if the light was red at the previous state and is orange 
now, it must turn green at the next state”.

➢ In a train system , we can model: “If a train is entering the tunnel now, the semaphore has been 
switched red on the other side at the previous moment”.
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A concrete example: Microwave Oven 

➢ AP = {Start, Close, Heat, Error}

➢ S = {s0,s1,s2,s3,s4,s5,s6}

➢ S0 = {s0}

➢ R and Lab are as in the figure

¬ Start

¬ Close

¬ Heat

¬ Error

Start

¬ Close

¬ Heat

Error

¬ Start

Close

¬ Heat

¬ Error

¬ Start

Close

Heat

¬ Error

Start

Close

Heat

¬ Error

Start

Close

¬ Heat

¬ Error

Start

Close

¬ Heat

Error

s0

s1 s2
s3

s4
s5 s6
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Part 1.1

✓ Introduction to formal verification; 

✓ Models for closed systems: Kripke Structures; 

→ Linear and branching-time temporal logics: LTL, CTL and CTL*

➢ Decision problems: model checking and satisfiability. 

➢ Automata on infinite words and trees.
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Temporal Logic Specification

❑ Temporal logics allows to describe the evolution of system along the time. 

➢ We intrinsically assume that system computations are infinite.

❑ Temporal logics extend classical proposition logic with temporal operators.

❑ Depending on the underling nature of the time, we distinguish between:

➢ Linear-time temporal-logics

➢ Branching-time temporal-logics
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Temporal Logic Specification

❑ Temporal logics allows to describe the evolution of system along the time. 

➢ We intrinsically assume that system computations are infinite.

❑ Temporal logics extend classical proposition logic with temporal operators.

❑ Depending on the underling nature of the time, we distinguish between:

➢ Linear-time temporal-logics
❖Every moment has a unique successor
❖ Infinite sequences (words)

➢ Branching-time temporal-logics
❖Every moment has several successors
❖ Infinite trees
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History of Temporal Logic and Formal Verification
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History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use 
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.
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terminating and concurrent programs: A temporal logic with “next” and “until”. 
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❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”. 

❑ Edmund Clarke and Ernest Allen Emerson in the early 1980’s developed a framework to temporal logic 
reasoning about programs (CTL and Model Checking); 

❑ Independently, Jean-Pierre Queille and Joseph Sifakis essentially proposed the same method at this time.
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History of Temporal Logic and Formal Verification

❑ Temporal logic begat as a philosophical study: ethics, free will, etc. Arthur Prior in the ‘50 is the first to use 
a concept of time-delay in computer circuits. With his Tense Logic, Prior has inspired many researcher.

❑ In 1977, Amir Pnueli is the first to use a future linear temporal logic (LTL) for the specification of non-
terminating and concurrent programs: A temporal logic with “next” and “until”. 

❑ Edmund Clarke and Ernest Allen Emerson in the early 1980’s developed a framework to temporal logic 
reasoning about programs (CTL and Model Checking); 

❑ Independently, Jean-Pierre Queille and Joseph Sifakis essentially proposed the same method at this time.

❑ Pnueli won the 1996 Turing award for his contribution to temporal logic specifications

❑ Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking
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LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….   

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)
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❑ Determines patterns on infinite traces π= s0s1s2….   

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}

p “p is true now” (p ∈ AP)

X p “p is true in the neXt state”
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LTL: Linear-Time Temporal-Logic [Pnueli’ 77]
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➢ Boolean Operations: {¬,⋁,⋀}
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Fp “p will be true in the Future”

Gp “p will be Globally true in the future”

pUq “p will hold true Until q becomes true”
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LTL: Linear-Time Temporal-Logic [Pnueli’ 77]

❑ Determines patterns on infinite traces π= s0s1s2….   

❑ Elements:

➢ Atomic Propositions: AP

➢ Boolean Operations: {¬,⋁,⋀}

➢ Temporal operators: {X, F, G, U}
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pUq “p will hold true Until q becomes true” p p q
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Example: Safety and Liveness
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Example: Safety and Liveness

❑ Safety: Something bad never happens 

Two processes can never be in a critical section at the same time: 
¬F(p1cr ⋀ p2cr)

A process will never meet a critical state: 
G(¬error_state)
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Example: Safety and Liveness

❑ Safety: Something bad never happens 

Two processes can never be in a critical section at the same time: 
¬F(p1cr ⋀ p2cr)

A process will never meet a critical state: 
G(¬error_state)

❑ Liveness: Something desired will happen

Always, every print request is eventually granted: 
G(req → F grant)

The microwave doesn’t heat up until the door is closed: 

¬heat_up U door_closed

Always, every repeated request is eventually granted. 
G(GF req → F grant)
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LTL Model Checking

❑ Given, 

➢ A Kripke structure M = (AP, S, S0, R, Lab) modelling the system, an initial state s0 є S0 and

➢ An LTL formula φ over AP representing the specification
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LTL Model Checking

❑ Given, 

➢ A Kripke structure M = (AP, S, S0, R, Lab) modelling the system, an initial state s0 є S0 and

➢ An LTL formula φ over AP representing the specification

The LTL model checking problem

M,s0 ╞ φ

concerns checking whether, for each path π of M starting in s0, we have that π╞ φ
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LTL Satisfiability

❑ Given an LTL formula φ, is there a Kripke structure satisfying the formula?
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LTL Satisfiability

❑ Given an LTL formula φ, is there a Kripke structure satisfying the formula?

❑ Examples:

➢ p U q is satisfiable, and the model above is a witness

➢ (p U q) ⋀ G¬q is not satisfiable

Aniello Murano  -  Strategy Reasoning
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Branching-Time Temporal Logics

❑ An LTL formula is satisfied over a Kripke structure M if it is satisfied on all its paths

❑ Paths in M represent all possible system computations

❑ To restrict the check of a formula to some paths of M, we need a logic that allows to talk 
about model branches

❑ To this purpose, we use CTL and CTL*
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CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.
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CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU
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❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

❑ In CTL, formulas are evaluated on states rather than paths.

❑ CTL*  allows more complex nesting such as

AXX, EFG, AGX, AFG, EXFG, ...

❑ CTL*  strictly includes both LTL and CTL. Note that LTL and CTL are incomparable
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CTL: Computation Tree Logic

❑ CTL uses the same temporal operators of LTL.

❑ Additionally, we use two path quantifiers:

➢ A means ‘for all computation paths’

➢ E means ‘there exists a computation path’

AX, AG, AF, AU

EX, EG, EF, EU

❑ In CTL, formulas are evaluated on states rather than paths.

❑ CTL*  allows more complex nesting such as

AXX, EFG, AGX, AFG, EXFG, ...

❑ CTL*  strictly includes both LTL and CTL. Note that LTL and CTL are incomparable

.
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Tree model unwinding
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Tree model unwinding
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CTL: Computation Tree Logic
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CTL: Computation Tree Logic
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EF red 
“For at least a path, red will possibly become true”



CTL: Computation Tree Logic
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CTL: Computation Tree Logic
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AF red 
“For every  path, red will eventually become true ”



CTL: Computation Tree Logic
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CTL: Computation Tree Logic
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EG red 
For at least a path, red remains always true”



CTL: Computation Tree Logic
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AG red
“    v  y     , red is always true”
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M ⊨ 𝑨𝝋𝑹𝝍



Part 1.1

✓ Introduction to formal verification; 

✓ Models for closed systems: Kripke Structures; 

✓ Linear and branching-time temporal logics: LTL, CTL, and CTL*;

→ An automata-theoretic approach to model checking: word and tree automata
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Decision Problems Using Automata

Model Checking
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Decision Problems Using Automata

Model Checking

❑ Given an automaton AM for the system model M and an automaton A¬φ

accepting all models of the complement of a specification φ, M is
correct with respect to φ iff

L(AM) ∩ L(A¬ᵩ ) = Ø
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Decision Problems Using Automata

Satisfiability
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Decision Problems Using Automata

Satisfiability

❑ Given a temporal logic specification φ, using an automaton Aφ

accepting all models of φ, we have that φ is satisfiable iff

L(Aφ ) ≠ Φ
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Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:
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Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

❑ Which kind of automata

➢ Branching mode: deterministic – nondeterministic – universal – alternating.

➢ Acceptance mode: Buchi – co-Buchi – parity – Streett – Rabin – Muller

➢ Input: words – trees
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Automata-Theoretic approach

❑ In order to use an automata-theoretic approach, we need to discuss:

❑ Which kind of automata

➢ Branching mode: deterministic – nondeterministic – universal – alternating.

➢ Acceptance mode: Buchi – co-Buchi – parity – Streett – Rabin – Muller

➢ Input: words – trees

❑ How to implement model and specification translations

❑ How to check the (non-)emptiness problem
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Büchi Word Automata (NBW) [1/2]

❑ For LTL model checking, we can use Büchi word automata (NBW) 

❑ NBW extend classical finite automata in order to accept ω-words

❑ An NBW is a tuple A = < Q, , , Q0, F >

➢ Q is the set of states 

➢ Q0 ⊆ Q is the set of initial states

➢  is the alphabet

➢  : Q x → 2Q is the transition relation (note, it is nondeterministic)

➢ F ⊆ Q is an acceptance condition for infinite words, defined w.r.t. runs
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❑ For LTL model checking, we can use Büchi word automata (NBW) 

❑ NBW extend classical finite automata in order to accept ω-words

❑ An NBW is a tuple A = < Q, , , Q0, F >

➢ Q is the set of states 

➢ Q0 ⊆ Q is the set of initial states

➢  is the alphabet

➢  : Q x → 2Q is the transition relation (note, it is nondeterministic)

➢ F ⊆ Q is an acceptance condition for infinite words, defined w.r.t. runs

❑ A run  over an ω-word -labeled (when it exists) is a Q-labeled ω-word, build in 
accordance with , whose first state is q0

❑ A word is accepted if there exists and accepting run (next slide)

❑ The language L of A, denoted L(A), is the set of all words accepted by A
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Büchi Word Automata (NBW) [2/2]

❑ Let inf() = {q | q appears infinitely often on }, 

❑ A word * is accepted by an NBW A (with F  Q) iff there is a run  of A on  s.t.

Inf() ∩ F  

❑ In other words,  is accepted by A iff there is a run of A on  visiting a final state qF infinitely often

❑ Such a run is called an accepting run.

Aniello Murano  -  Strategy Reasoning 40



Example
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Example

L := {{a, b}|  ends with a or with (ab)}
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An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula  we check whether M╞  by checking whether: 

L(AM) ∩ L(A¬ ) = Ø
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From a Kripke structure to a Buchi automaton

❑ Given a Kripke structure 

M= (AP, S, S0, R, Lab)

❑ …… we can build an equivalent Buchi automaton 

AM = < Q, , , Q0, F > 

❑ Where:
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From a Kripke structure to a Buchi automaton

❑ Given a Kripke structure 

M= (AP, S, S0, R, Lab)

❑ …… we can build an equivalent Buchi automaton 

AM = < Q, , , Q0, F > 

❑ Where:

➢  = 2AP 

➢ Q = S: same initial state 

➢ (s, a, t) є  iff (s,t) є R  and a = Lab(s)

➢ Q0 = S0 : same initial state 

➢ F = S : every state is accepting
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From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ 
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❑ Xp
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From LTL to NBW: Some examples

❑ Given an LTL formula ϕ we build am NBW Aϕ that accepts all words models of ϕ 

❑ Xp

❑ Fp

❑ Gp

❑ P U q

❑ We skip the formal construction. All you need to know is that the automaton is exponential 
in the size of the formula (e.g., nesting of temporal operators) [Vardi, Wolper 1986]
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An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula  we check whether M╞  by checking whether: 

L(AM) ∩ L(A¬ ) = Ø
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An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula  we check whether M╞  by checking whether: 

L(AM) ∩ L(A¬ ) = Ø

❑ The size of AM is linear in the size of M 
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❑ A¬ is an NBW and its size is exponential in the size of 

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime. 

❑ So, the size of B is polynomial in the size of M and exponential in the size of .

❑ The nonemptiness of B can be checked in LogSpace (look for a lasso with double reachability).
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An Automata Approach to LTL Model Checking

❑ Recall that, given a Model M and an LTL formula  we check whether M╞  by checking whether: 

L(AM) ∩ L(A¬ ) = Ø

❑ The size of AM is linear in the size of M 

❑ A¬ is an NBW and its size is exponential in the size of 

❑ The intersecting language L(AM) ∩ L(A¬) is the language of an NBW B that can be built in PTime. 

❑ So, the size of B is polynomial in the size of M and exponential in the size of .

❑ The nonemptiness of B can be checked in LogSpace (look for a lasso with double reachability).

❑ Finally, we get that model checking question is PSPACE-complete and only PTime in the size of M
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Büchi Tree Automata (NBT)
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❑ For CTL model checking, we can use Büchi tree automata (NBT) 

❑ An infinite (binary) tree is t : {0,1}* → 

❑ A path is an infinite sequence of nodes starting at the root

❑ An NBT is a tuple A = < Q, , , Q0, F >

➢  : Q x → 2QxQ is a tree transition relation

➢ F is an acceptance condition for infinite trees

➢ Acceptance is defined with respect to runs…. (next slide)

❑ Note: we can extend A to deal with any branching degree by means of a degree parameter



 

   

a (-labeled) tree t

a

a b

b a bb



Runs

❑ A run r : {01}*→ Q is built in accordance with  and r() є Q0. Thus, runs are Q-labeled trees.



 

   



 

   

q0

p

p p

p

q q

b

b a

a b ba

❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r
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❑ Büchi condition (F ⊆ Q):
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Runs

❑ Büchi condition (F ⊆ Q):
➢ A run r is accepting for a Nonderministic Buchi tree automaton (NBT) if for every path 

Inf(r|) ⋂ F  Ø

❑ A run r : {01}*→ Q is built in accordance with  and r() є Q0. Thus, runs are Q-labeled trees.
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❑ Let (q,q) ϵ (p,a) and q0 initial state

a tree t the corresponding run r
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An Automata Approach to CTL/CTL* Model Checking
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An Automata Approach to CTL/CTL* Model Checking

❑ We can repeat the same argument for NBW and LTL model checking

❑ An efficient upper bound can be obtained via Alternating Buchi tree automata

➢ CTL Model checking is PTIME-complete

❑ For CTL* we need a more complex acceptance condition, such as Parity

➢ CTL* Model checking  is also PSPACE-complete
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Part 1.2

From one player to two players
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Model Checking

❑ Let S be a finite-state system and P its desired behavior

❑ S → labelled state-transition graph M

❑ P→ a temporal logic formula 

The system has 
the required 

behavior

M satisfies 

Is the system correct?

Picture credits to Orna Kupferman
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Classes of Models  
❑ Closed Systems

➢ Behavior is fully characterized by system state 

❑ Open Systems 

➢ Behavior depends on the interaction with the environment

➢ Open System Model: Labelled State-Transition Graph

➢ A solution for Open Finite-State Systems: Module Checking  [Kupferman, 
Vardi, Wolper 2001]

It must be 

“reactive”
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1. Displays a welcome screen 

2. Makes an internal nondeterministic choice 

3. Withdraws money or shows an advertisement (Ad)
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Model checking a closed system
❑ Consider an ATM machine that

1. Displays a welcome screen 

2. Makes an internal nondeterministic choice 

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

❑ A desired behavior:  

“It is always possible to show an ad”

M: Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

T

M⊨φ iff T⊨φ

❑ M is a labeled-state transition graph modeling the machine

❑ T is an infinite tree obtained by unwinding M

φ = GF Show Ad



Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money 
3. Performs the requested operation and restarts from 1



Open 
system

Model checking an open system
❑ Consider the ATM machine as an open system:
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2. Lets the environment choose to view an Ad or withdraw money 
3. Performs the requested operation and restarts from 1
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It may be impossible to show an ad!
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Withdraw

Show Ad
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❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money 
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Withdraw
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❑ To model the ATM we need a Module: a labeled transition graph with 
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Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money 
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with 
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-
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s
s

s
e

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Welcome Choose

Withdraw

T
Welcome

Welcome
e

e

s
s

s

s
s s s

s s



Open 
system

Model checking an open system
❑ Consider the ATM machine as an open system:

1. Displays a welcome screen
2. Lets the environment choose to view an Ad or withdraw money 
3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with 
a partition into system and environment nodes

❑ Let T be the unwinding of M.
❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-

trees rooted in successors of environment nodes (but one). 
❑ M (reactively) satisfies φ iff φ holds in all trees of Exec(M).

s
s

s
e

M ⊨r φModule checking



General Observations

❑ In open systems, the environment can modify internal variables.

❑ The executions of the system depend on this modification

❑ The system must be correct no matter how the environment behaves. 

❑ Each possible environment choice induces a different tree in Exec(M)* 

❑ All such trees must satisfy the specification

* In the MAS framework, Exec(M) can be seen as a nondeterministic outcome



Modules: Formal Definition

❑ A module is a Kripke  structure with a partitioning of the states in system 
states and environment states

M= (AP, WSys, WEnv, s0, R, Lab)

❑ AP, s0, R, and Lab are as in Kripke structures 

❑ WSys and WEnv are a partitioning of the set of states S

➢ WSys ⋂ WEnv = 

➢ WSys ⋃ WEnv = S



Exec(M): Formal Definition

❑ Let TM be the S-labeled tree unwinding of M (it is labeled with the states of M) 

❑ A tree t is in Exec(M) if a subtree of TM build as follow

➢ The root of t as in TM (i.e., it is labeled with s0)

➢ For each node x in t, corresponding to a node ws є WSys, the children of x are all 
successors of ws in M 

➢ For each node x in t, corresponding to a node we є WEnv, children of x are a 
nonempty subset of successors of we in M

❑ The Size of Exec(M) can be infinite!



The Module Checking Problem 

❑ Given a module M and a CTL formula ϕ, we say that M reactively satisfies ϕ, denoted:

M ⊨r ϕ

if all trees in exec(M) satisfy ϕ



The Module Checking Problem 

❑ Given a module M and a CTL formula ϕ, we say that M reactively satisfies ϕ, denoted:

M ⊨r ϕ

if all trees in exec(M) satisfy ϕ

❑ Note that 

➢ M ⊨r ϕ implies M ⊨ ϕ, while the converse may not be true
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Solving Module Checking

❑ CTL Module Checking is EXPTime-Complete[KVW’01]

❑ Lower Bound: Reduction from CTL satisfiability (intuition: SAT game simulation)

❑ Upper Bound: automata-theoretic approach via BTA

➢ Let M be a module and φ be a CTL specification

➢ In PTime, we buid a BTA AExec(M) that accepts all trees in exec(M)

➢ In EXPTime, we buid a BTA A¬φ that accepts all tree models of ¬φ

➢ Then, we check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) = 

❑ The resulting automaton is a BTA, polynomial in |M| and exponential in | φ | 

❑ The emptiness of a BTA can be checked in quadratic time, therefore:

CTL Module checking is EXPTIME in |φ| and PTime in M

❑ The construction of AExec(M) is very clever and interesting by its own!
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CTL* Module Checking

❑ Given a Module M and a CTL* formula φ, we can check whether M╞r φ as for CTL

❑ However, we need a more powerful automaton, such as Parity.

❑ Consequently, checking for the emptiness is more expensive: CTL* module checking is 

double-exponential in the size of the specification and PTime in the size of the model.
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Complexity results

Class
Model 

Checking
Model C. w.r.t. 

system
Module Checking

Module C. 
w.r.t.system

LTL
PSpace-

Complete
nlogspace PSpace-Complete nlogspace

CTL Linear Time [1] nlogspace[3] EXPTime-Complete 
Ptime

Exptime (for i.i.)

CTL*
PSpace-

Complete [2]
nlogspace[3]

2EXPTime-
Complete

Ptime

Exptime (for i.i.)

1. [Clarke, Emerson, Sistla 1986]

2. [Emerson and Lei 1985] 

3. [Kupferman, Vardi, Wolper 2000]

[Kupferman,Vardi,Wolper 1996 & 2001]

[Kupferman,Vardi, 1997] (for i.i.)
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