

Formal Aspects of Strategic Reasoning

Aniello Murano

Università degli Studi di Napoli Federico II

ESSAI 2024 Athens Greece July 2024

Alternating-Time Temporal-Logic

[…from two…to multi-player games…]

From Two-Player to Multi-Player

- ❑ Module Checking is a basic setting to check for system correctness against an adversarial environment: two-player game «**Sys vs. Env**»
- \Box It is suitable for several system verification scenario, but very specific:
	- The system has only **one strategy**

The environment has the ability to **non-deterministically** disable possible evolution of the game

- ❑ Nowadays systems are composed of **several agents**, autonomous and rational, each one with its own goal, interacting among them and sensing the other agents.
- ❑ An important contribution in this field:

Alternating-Time Temporal Logic [Alur, Kupferman, Henzinger. J. of ACM 2002]

Agents in ATL

- ❑ ATL generalizes CTL: temporal operators are indexed by coalitions of agents.
- ❑ Formally, path quantifiers A and E are replaced with the strategic cooperative quantifiers ≪**A**≫ and **[[A]]**, where **A is a team of agents**.
- $\Box \ll$ A \gg φ means that coalition A has a (collective) strategy to enforce φ, no matter what the other agents (not in A) will behave.
- ❑ Strategic quantifiers allow for a selective extraction of paths over a (game) model.
- \Box As for CTL^{*}, we can have ATL^{*}

Syntax of ATL and ATL*

❑ ATL* contains state-formulas and path-formulas.

❑ ATL* state-formulas are formed according to the grammar:

 ρ \Rightarrow ϕ := true | p | φ Λ φ | ¬φ | ≪Α \gg ψ where $p \in AP$ and ψ is a path-formula

❑ ATL* path-formulas are as in CTL*: $\rho \Rightarrow \psi := \phi | \psi \land \psi | \neg \psi | X \psi | \psi \cup \psi$ where ϕ is a state-formula, and ψ a path-formula

Syntax of ATL and ATL*

❑ ATL* contains state-formulas and path-formulas.

❑ ATL* state-formulas are formed according to the grammar:

 ρ \rightarrow ϕ := true | p | φ Λ φ | ¬φ | ≪Α \gg ψ where $p \in AP$ and ψ is a path-formula

 \Box ATL* path-formulas are as in CTL*: \triangleright ψ := φ| ψ Λ ψ | ¬ψ | Χψ | ψ U ψ where ϕ is a state-formula, and ψ a path-formula

❑ In ATL path-formulas are reduced to: \rightharpoonup ψ := Χ φ | φ U φ

where ϕ is a state-formula.

 \Box Note that in ATL, X and U alternate with $\langle\langle A \rangle\rangle$ and its dual [[A]]

Example

\Box Agents ={

❑ ≪Lupin≫ (G run away ⋀ F diamods)

"Lupin has a strategy to stay (always) away from Zenigata and eventually get some diamonds"

Example

\Box Agents ={

❑ ≪Lupin≫ (G run away ⋀ F diamods)

"Lupin has a strategy to stay (always) away from Zenigata and eventually get some diamonds"

❑ ≪Lupin, Margot≫ fun Until caught

"Lupin and Margot have fun with money until they get caught from Zenigata"

ATL Semantics: CGS

❑ ATL can be interpreted over **Concurrent Game Structures** (CGS):

C = (AP, Ag, Ac, S, S⁰ , R, Lab)

- ❑ AP is a set of atomic propositions
- \Box Ag is a set of agents
- □ Ac is a set of Actions
- \Box S is a set of states
- \Box S₀ \subseteq S is the set of initial states
- \Box Lab : $S \rightarrow 2^{AP}$ labels each state with propositions true in the state
- \Box Let Dc: Ag \rightarrow Ac be the set of agent's decisions (action choices). Then, we have $R : S \times Dc \rightarrow S$

 \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- $> Ag = \{L, Z\}$

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- \geq Ag = {L, Z} \triangleright Ac = {B, M, H}

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- $> Ag = \{L, Z\}$ \triangleright Ac = {B, M, H} $S = Ag \times Ac$ $> S_0 = Ag x {H}$

Example

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- \geq Ag = {L, Z}
	- \triangleright Ac = {B, M, H}
	- $S = Ag \times Ac$
	- $> S_0 = Ag \times \{H\}$
	- \triangleright AP ={Win_L, Win_z}
	- ➢ Lab:
		- Lupin's winning states \rightarrow Win_L Lupin's losing states \rightarrow Win_z

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- \geq Ag = {L, Z}
	- \triangleright Ac = {B, M, H}
	- $S = Ag \times Ac$
	- $> S_0 = Ag \times \{H\}$
	- \triangleright AP ={Win_L, Win_z}
	- ➢ Lab:
		- Lupin's winning states \rightarrow Win_L Lupin's losing states \rightarrow Win_z
	- \triangleright R is as in the figure

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- \geq Ag = {L, Z}
	- \triangleright Ac = {B, M, H}
	- $S = Ag \times Ac$
	- $> S_0 = Ag \times \{H\}$
	- \triangleright AP ={Win_L, Win_z}
	- ➢ Lab:
		- Lupin's winning states \rightarrow Win₁ Lupin's losing states \rightarrow Win_z
	- \triangleright R is as in the figure

- \Box Let M = (AP, Ag, Ac, S, S₀, R, Lab) be a GCS representing a city with a Bank and a Museum in which Lupin and Zenigata, startiting from Home, compete
- ❑ We have:
	- \geq Ag = {L, Z}
	- \triangleright Ac = {B, M, H}
	- $S = Ag \times Ac$
	- $> S_0 = Ag \times \{H\}$
	- \triangleright AP ={Win_L, Win_z}
	- ➢ Lab:
		- Lupin's winning states \rightarrow Win_L Lupin's losing states \rightarrow Win_z
	- \triangleright R is as in the figure

ATL Semantics: Strategies

- \Box A strategy for an agent a is s_a : St⁺ \rightarrow Act
- ❑ It is a **memoryfull** conditional plan that specifies which decision the agent a has to take in every possible situation.
- ❑ Formally, it is considered a **perfect recall** strategy
- □ As in Module Checking, we can have a memoryless (imperfect recall) strategy is_a: St → Act. We will come back on this later…
- \Box A collective strategy S_A for a group of agents A is a tuple of strategies, one for each agent in A.
- □ The **outcome** of the team A from a state q, out(q,S_A), is the set of all paths that result from agents A executing S_A (concurrently)
- \Box M, q \models ≪A \gg ϕ iff there is S_A, such that M, $\pi \models \phi$ for every $\pi \in \text{out}(q, S_A)$.
- ❑ CTL path quantifiers can be embedded in ATL:
	- ➢ Eφ≡ ≪Agt≫ φ
	- ➢ Aφ≡ ≪∅≫ φ

❑ Let us consider again the Lupin-Zenigata game M

- ❑ Let us consider again the Lupin-Zenigata game M
- **■** Recall that M, q $\models \langle\langle A \rangle\rangle$ ϕ iff there exists a collective strategy S_A, such that G, π $\models \phi$ for every $\pi \in \mathsf{out}(\mathsf{q}, \mathsf{S}_\mathsf{A})$

- ❑ Let us consider again the Lupin-Zenigata game M
- **■** Recall that M, q $\models \langle\langle A \rangle\rangle$ ϕ iff there exists a collective strategy S_A, such that G, π $\models \phi$ for every $\pi \in \mathsf{out}(\mathsf{q}, \mathsf{S}_\mathsf{A})$
- \Box M $\neq \ll$ Lupin \gg G Win_L
	- ➢ Lupin does not have a strategy to Win

- ❑ Let us consider again the Lupin-Zenigata game M
- **■** Recall that M, q $\models \langle\langle A \rangle\rangle$ ϕ iff there exists a collective strategy S_A, such that G, π $\models \phi$ for every $\pi \in \mathsf{out}(\mathsf{q}, \mathsf{S}_\mathsf{A})$

\Box M $\neq \ll$ Lupin \gg G Win_i

- ➢ Lupin does not have a strategy to Win
- \Box M = «Lupin, Zenigata» F Win
	- \triangleright Lupin wins if he cooperates with Zenigata
	- \triangleright Note: this is a Liveness property, e.g., something good will happen

ATL and ATL* Model checking

\Box For ATL, a fix-point algorithm is easy and effective:

- \triangleright You need to calculate Pre(A, Q): the states q from which the coalition A con force the game to reach Q, no matter how the other agents will play.
- ❑ For ATL*, one can reduce to parity games, or use and automata-theoretic approach via Parity condition. The latter extends the one used for CTL*

function $mcheck(\mathcal{M}, \varphi)$. Global model checking formulae of ATL. Returns the exact subset of St for which formula φ holds. **case** $\varphi \equiv p$: return $V(p)$ **case** $\varphi \equiv \neg \psi$: return $St \setminus \mathit{mcheck}(\mathcal{M}, \psi)$ **case** $\varphi \equiv \psi_1 \wedge \psi_2$: return mcheck(\mathcal{M}, ψ_1) \cap mcheck(\mathcal{M}, ψ_2) **case** $\varphi \equiv \langle \langle A \rangle \rangle X \psi$: return $pre(A, meheck(\mathcal{M}, \psi))$ case $\varphi \equiv \langle \langle A \rangle \rangle \mathrm{G} \psi$: $Q_1 := Q$; $Q_2 := Q_3 := \text{mcheck}(\mathcal{M}, \psi)$; while $Q_1 \nsubseteq Q_2$ do $Q_1 := Q_1 \cap Q_2$; $Q_2 := pre(A, Q_1) \cap Q_3$ od; return Q_1 case $\varphi \equiv \langle \langle A \rangle \rangle \psi_1 \mathbf{U} \psi_2$: $Q_1 := \emptyset; \quad Q_2 := \mathit{mcheck}(\mathcal{M}, \psi_2); \quad Q_3 := \mathit{mcheck}(\mathcal{M}, \psi_1);$ while $Q_2 \nsubseteq Q_1$ do $Q_1 := Q_1 \cup Q_2$; $Q_2 := pre(A, Q_1) \cap Q_3$ od; return Q_1 end case

 $\mathsf{pre}(A,Q) = \{q \mid \exists \alpha_A \forall \alpha_{\mathbb{A}\mathrm{gt}} \setminus A} o(q, \alpha_A, \alpha_{\mathbb{A}\mathrm{gt}} \setminus A) \in Q\}$

ATL decision problems

- [2] Clarke, Emerson: Logics of Programs 1981
- [3] Alur, Henzinger, Kupferman: JACM 2002
- [4] Emerson: Temporal and modal logic. MIT Press 1990
- [5] Clarke, Emerson, Sistla. TOPLAS 1986
- [6] Kupferman, Vardi, Wolper. JACM 2000
- [7] Walther, Lutz, Wolter, Wooldridge: J. of Logic and Computation 2006
- [8] Schewe. ICALP 2008

ATL vs. Module Checking

❑ Module checking

- ➢ Two-player game (system vs. environment)
- \triangleright Environment strategies come through Exec(M)
- ➢ CTL Module Ckecking is EXPTIME-complete (PTime in the model)

❑ ATL

- ➢ Multi-player
- ➢ Strategies come from coalition of agents.
- ➢ ATL model checking is PTIME in |states| of M and |ϕ|, but notice that |M| is exponential in the number of agents

Part 2

❑ We keep talking about logics for strategic reasoning

- ❑ We introduce Strategy Logic as a powerful extension of ATL
- ❑ In ATL
	- \triangleright Strategies are treated implicitly
	- ➢ Agents cannot share strategies nor reuse some from the past.
	- \triangleright Every time an agent appears in a formula, previous strategies are reset

❑ In Strategy Logic

- ➢ Strategies are unpacked from agents and used as first order objects.
- ➢ Strategies can be reused and shared among agents.
- ➢ Several complex and useful specifications can be expressed without effecting the overall decision complexities. Among the others: Nash Equilibrium.

Let's have a break!

❑ Moshe Y. Vardi, Pierre Wolper: An Automata-Theoretic Approach to Automatic Program

 \mathcal{L} , \mathcal{L} ,

 \mathcal{A} or \mathcal{B} . An Automatic Approach to \mathcal{A} to \mathcal{B}

❑ Orna Kupferman, Gila Morgenstern, Aniello Murano: Typeness for omega-regular Automata.

Aniel Murano - Strategy Reasoning 78, 2002 - Strategy Reasoning 78, 2002 - Strategy Reasoning 78, 2003

The Model Checking Journal of the ACM (JACK) , 47, pp 312 – 360, 2000.

❑ E. Clarke, O. Grumberg, D. Peled, Model Checking. MIT Press, 2000

Verification (Preliminary Report). License and the contraction (Preliminary Report). License and the contraction (

INT. J. J. Found. Computer Science of the Little Little Little Little Little Little Little Little Little Little

OF 1995: 238-2666

 $\frac{1}{2}$