
Formal Aspects of Strategic Reasoning and Game Playing
Strategic Reasoning with Quantitative Goals

Munyque Mittelmann1, Aniello Murano1, Laurent Perrussel2

1 University of Naples Federico II

2 University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

Mittelmann, Murano, Perrussel 0 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 1 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 2 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 3 / 70

Strategic Reasoning with Quantitative Goals

Boolean verification
▶ Either the system satisfies a logic specification or it does not
▶ cleanRiver is either true or false in a given state

Quantitative verification
▶ Assessing the quality of Multi-Agent Systems (MAS)
▶ Levels of quality represented with weights
▶ cleanRiver may be partially true in a state

Mittelmann, Murano, Perrussel 4 / 70

Quantitative Logics for MAS

Logics with quantitative satisfaction

Goals are expressed as a fuzzy temporal constraint:
▶ Boolean satisfaction ⇝ quantitative satisfaction;
▶ Specification language ⇝ LTL[F]1, ATL∗[F]/ATL[F]2, SL[F]3

▶ System model ⇝ Weighted Game Structure.

1Almagor, Boker, and Kupferman (2016). “Formally Reasoning about Quality”. In: Journal of the ACM
2Jamroga, Mittelmann, Murano, and Perelli (2024). “Playing Quantitative Games Against an Authority: On

the Module Checking Problem”. In: AAMAS 2024
3Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). “Reasoning about Quality and

Fuzziness of Strategic Behaviours”. In: IJCAI
Mittelmann, Murano, Perrussel 5 / 70

Concurrent Game Structures (CGS)

A CGS is a tuple G = (Ap,Ag,Ac,V , d , o, ℓ), where:

Ap propositions (relevant facts)

Ag agents

Ac agents’ actions

V states

d : Ag× V → 2Ac available actions

o : V ×AcAg → V transition function

ℓ : V → 2Ap labelling function

{p, q}

{p}

{q}

∅

{q}

{p}

{p, q}

∅

{p}

{p, q}

act

act

act

act

act

actact

act

act
act

act
act

Mittelmann, Murano, Perrussel 6 / 70

Weighted CGS (wCGS)

A wCGS is a tuple G = (Ap,Ag,Ac,V , d , o, ℓ), where:

Ap propositions (relevant facts)

Ag agents

Ac agents’ actions

V states

d : Ag× V → 2Ac available actions

o : V ×AcAg → V transition function

ℓ : V × Ap → [0, 1] weight function

p=.5
q=.2

p=.5
q=.2

p=.3
q=.6

p=.7
q=0

p=.2
q=1

p=.2
q=.8

p=.3
q=.9

p=.4
q=.7

p=.5
q=.5

p=0
q=1

act

act

act

act

act

act
act

act

act
act

act
act

Weight function instead of labeling function to model degrees of truth. (fuzzy satisfaction)

Mittelmann, Murano, Perrussel 7 / 70

Quantitative logics for MAS

The logics are parametrized over a set of functions F 4:

f : [0, 1]n → [0, 1] ∈ F

Example:

x ∨ y := max(x , y) (disjunction)

x ∧ y := min(x , y) (conjunction)

¬x := 1− x (negation)

We assume that some standard functions belong to F : ≤ (Boolean), = (Boolean), bounded
sum, etc.

4We assume the functions in F to be computable in polynomial time
Mittelmann, Murano, Perrussel 8 / 70

Quantitative ATL∗ and ATL

ATL∗[F] Syntax

φ ::= p | f [φ, ..., φ] | Xφ | φUφ | φRφ | ⟨⟨A⟩⟩φ

where p is a proposition, A is a coalition, and f ∈ F

ATL[F] Syntax (no temporal nesting allowed)

φ ::= p | f [φ, ..., φ] | ⟨⟨A⟩⟩Xφ | ⟨⟨A⟩⟩φUφ | ⟨⟨A⟩⟩φRφ

ATL∗[F] and ATL[F] Semantics

“f [φ, ..., φ]” - compute the function over the satisfaction values of its inputs

“⟨⟨A⟩⟩φ” - coalition A maximizes the satisfaction value of φ

Abbreviations: [[A]]φ := ¬⟨⟨A⟩⟩¬φ Fφ := ⊤Uφ Gφ := ⊥Rφ

Mittelmann, Murano, Perrussel 9 / 70

Relation with Boolean ATL∗

Can we capture ATL∗ with ATL∗[F]?

Yes, when atomic propositions can only take values 0 and 1, and F contains only negation and
disjunction.

Mittelmann, Murano, Perrussel 10 / 70

Relation with Boolean ATL∗

Can we capture ATL∗ with ATL∗[F]?

Yes, when atomic propositions can only take values 0 and 1, and F contains only negation and
disjunction.

Mittelmann, Murano, Perrussel 10 / 70

Example: Drone battle

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it
away from the “villain” drone v :

rescued denotes whether the artifact is at the rescue point

dis computes the distance between two (normalized) positions

posx denote the position of drone x

Level of safety: minimum distance between any carrier and the villain

φsafe := ⟨⟨a, b⟩⟩ min[dis[posa,posv], dis[posb,posv]] U rescued

What does the formula φsafe captures?

Carriers a and b best-performing joint strategy to keep the villain as far as
possible from the carriers, until the artifact is rescued.
What if the artifact is never rescued?
The satisfaction value of φsafe would be 0.

Mittelmann, Murano, Perrussel 11 / 70

Example: Drone battle

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it
away from the “villain” drone v :

rescued denotes whether the artifact is at the rescue point

dis computes the distance between two (normalized) positions

posx denote the position of drone x

Level of safety: minimum distance between any carrier and the villain

φsafe := ⟨⟨a, b⟩⟩ min[dis[posa,posv], dis[posb,posv]] U rescued

What does the formula φsafe captures?
Carriers a and b best-performing joint strategy to keep the villain as far as
possible from the carriers, until the artifact is rescued.

What if the artifact is never rescued?
The satisfaction value of φsafe would be 0.

Mittelmann, Murano, Perrussel 11 / 70

Example: Drone battle

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it
away from the “villain” drone v :

rescued denotes whether the artifact is at the rescue point

dis computes the distance between two (normalized) positions

posx denote the position of drone x

Level of safety: minimum distance between any carrier and the villain

φsafe := ⟨⟨a, b⟩⟩ min[dis[posa,posv], dis[posb,posv]] U rescued

What does the formula φsafe captures?
Carriers a and b best-performing joint strategy to keep the villain as far as
possible from the carriers, until the artifact is rescued.
What if the artifact is never rescued?

The satisfaction value of φsafe would be 0.

Mittelmann, Murano, Perrussel 11 / 70

Example: Drone battle

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it
away from the “villain” drone v :

rescued denotes whether the artifact is at the rescue point

dis computes the distance between two (normalized) positions

posx denote the position of drone x

Level of safety: minimum distance between any carrier and the villain

φsafe := ⟨⟨a, b⟩⟩ min[dis[posa,posv], dis[posb,posv]] U rescued

What does the formula φsafe captures?
Carriers a and b best-performing joint strategy to keep the villain as far as
possible from the carriers, until the artifact is rescued.
What if the artifact is never rescued?
The satisfaction value of φsafe would be 0.

Mittelmann, Murano, Perrussel 11 / 70

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that
for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification
(each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Mittelmann, Murano, Perrussel 12 / 70

Quantitative SL

SL[F] Syntax

φ ::= p | ∃s.φ | (a, s)φ | f [φ, ..., φ] | Xφ | φUφ

where p is a proposition, s is a variable, a is an agent, and f ∈ F

SL[F] Semantics

Defined over assignments of strategies to variables and agents

“∃s.φ” - the maximal satisfaction value of φ for the possible assignments of strategy to s

“(a, s)φ” - the satisfaction value of φ when agent a is assigned to the str. assigned to s

Abbreviations: ∀s.φ := ¬∃s.¬φ Fφ := ⊤Uφ Gφ := ¬F¬φ φRψ := ¬(¬φU¬ψ)
We call LTL[F] the fragment without strategic operators and bindings

Mittelmann, Murano, Perrussel 13 / 70

Example: Drone battle (cont.)

There is a strategy for drone a such that for all strategies of the villain v , b has a response
strategy to keep the villain as far as possible, until the artifact is rescued:

∃s.∀t.∃s ′.(a, s)(v , t)(b, s ′) min[dis[posa, posv], dis[posb,posv]] U rescued

Mittelmann, Murano, Perrussel 14 / 70

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φa.
Let s = (sa)a∈Ag denote a strategy profile.
Ag−a denotes the set of agents without a.
s−a denotes the strategies of Ag−a in the profile s.

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a
leads to a better utility than her strategy sa (while all other agent’ strategies play s−a).

How can we express whether s is a NE in SL[F]?

NE(s) def=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)φa ≤ (Ag, s)φa

]

Mittelmann, Murano, Perrussel 15 / 70

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φa.
Let s = (sa)a∈Ag denote a strategy profile.
Ag−a denotes the set of agents without a.
s−a denotes the strategies of Ag−a in the profile s.

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a
leads to a better utility than her strategy sa (while all other agent’ strategies play s−a).

How can we express whether s is a NE in SL[F]?

NE(s) def=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)φa ≤ (Ag, s)φa

]

Mittelmann, Murano, Perrussel 15 / 70

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φa.
Let s = (sa)a∈Ag denote a strategy profile.
Ag−a denotes the set of agents without a.
s−a denotes the strategies of Ag−a in the profile s.

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a
leads to a better utility than her strategy sa (while all other agent’ strategies play s−a).

How can we express whether s is a NE in SL[F]?

NE(s) def=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)φa ≤ (Ag, s)φa

]
Mittelmann, Murano, Perrussel 15 / 70

Example: Nash equilibrium (cont)

We can also measure how much agent a can benefit from a selfish deviation using formula:

∃t.diff
[
(Ag−a, s−a)(a, t)φa, (Ag, s)φa

]
where diff (x , y) = max{0, x − y}.

Mittelmann, Murano, Perrussel 16 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 17 / 70

Model checking

Model checking problem

Given an SL[F] (similarly ATL∗[F] or ATL[F]) formula φ, a wCGS G, a state v , and a
predicate P ⊆ (0, 1], decide whether the satisfaction value of φ in v is a subset or equal to P,
denoted

[[φ]]G(v) ⊆ P

The predicate can be the set of values above a threshold ϵ ∈ (0, 1]:
Decide whether [[φ]]G(v) ≥ ϵ.

Mittelmann, Murano, Perrussel 18 / 70

Complexity of Model Checking

Using automata-theoretic approaches:

Theorem 1 (Bouyer et al., 2019)

Model-checking SL[F] in (k+1) Exptime
(where k is the number of alternations of strategic operators)

Theorem 2 (Jamroga et al., 2024)

Model-checking ATL∗[F] 2Exptime-complete

Mittelmann, Murano, Perrussel 19 / 70

Complexity of Model Checking

Algorithmic solution:

Theorem 3 (Jamroga et al., 2024)

Model-checking ATL[F] Ptime-complete

Theorem 4 (Maubert et al., 2021)

Model checking SL[F] with memoryless agents Pspace-complete

Mittelmann, Murano, Perrussel 20 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 21 / 70

Weighted Module

Weighted Module is a special wCGS G = (Ap,Ag,Ac,V , d , o, ℓ):

Ap propositions (relevant facts)

Ag ∪ {e} agents and environment

Ac actions

V states

Ve ⊆ V environment’s states

d : Ag× V → 2Ac available actions

o : V × AcAg → V transition function

ℓ : V × Ap → [0, 1] weight function

p=.5
q=.2

p=.5
q=.2

p=.3
q=.6

p=.7
q=0

p=.2
q=1

p=.2
q=.8

p=.3
q=.9

p=.4
q=.7

p=.5
q=.5

p=0
q=1

act

act

act

act

act

act
act

act

act
act

act
act

Environment states (gray) under the control of an “environmental” authority, who shapes the
game by selecting possible successors at each iteration.

Mittelmann, Murano, Perrussel 22 / 70

Module Checking

For a given weighted module G:
T ∈ exec(G) is a possible wCGS resulting from the choices of e in G.

Given an ATL∗[F] formula φ, a module G, a position v :

[[φ]]Gr (v) = {[[φ]]T (v) | T ∈ exec(G)} all possible values in v according to T

Definition 5 (Module Checking)

Deciding whether [[φ]]Gr (v) ⊆ P, for a given predicate P ⊆ [0, 1].

Mittelmann, Murano, Perrussel 23 / 70

Complexity of Module Checking

Automata-theoretic approach

Theorem 6 (Jamroga et al., 2024)

Module-checking ATL∗[F] 3Exptime-complete

Module-checking ATL[F] Exptime-complete

Mittelmann, Murano, Perrussel 24 / 70

Relation with Boolean Module Checking and Model Checking

ATL∗[F] module checking is not subsumed by ATL∗ module checking over weighted
modules

ATL∗[F] module checking is not subsumed by ATL∗[F] model checking.

Mittelmann, Murano, Perrussel 25 / 70

Contents

Quantitative extensions of SL, ATL∗, and ATL

Model and module checking problems have the same computational complexity as the
corresponding logics with Boolean semantics

MAS with quantitative goals: application to mechanism design

Mittelmann, Murano, Perrussel 26 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 27 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 28 / 70

Mechanism Design

Mittelmann, Murano, Perrussel 29 / 70

Mechanism Design

Mittelmann, Murano, Perrussel 29 / 70

Mechanism Design

Mittelmann, Murano, Perrussel 29 / 70

Motivation

Preference aggregation problems
▶ Auctions, elections, fair division protocols, etc

Logic-based approach: verification5 and synthesis of mechanisms6

▶ We use the weights [−1, 1] for convenience

5Maubert, Mittelmann, Murano, and Perrussel (2021). “Strategic Reasoning in Automated Mechanism
Design”. In: KR 2021.

6Mittelmann, Maubert, Murano, and Perrussel (2022). “Automated Synthesis of Mechanisms”. In: IJCAI
2022.

Mittelmann, Murano, Perrussel 30 / 70

Mechanisms

Alternatives Alt
▶ {(buyerBob, paysk), (buyerAnn, paysk) : 0 ≤ k ≤ 10} (selling an item)

▶ {(Ann,Bob), (Ann,Carol), (Bob,Carol)} (choosing two representatives)

▶ {(13 ,
1
3 ,

1
3), (

1
2 ,

1
2 , 0), (1, 0, 0), ...} (splitting a resource)

Many mechanisms describe monetary transfers, thus an alternative is in the form
(x , (pa)a∈Ag) where x ∈ X is a choice from a finite set of choices, and pa is the payment
for agent a.
E.g., x = buyerBob, pBob = 10, pAnn = 0

Mittelmann, Murano, Perrussel 31 / 70

Mechanisms

Alternatives Alt
▶ {(buyerBob, paysk), (buyerAnn, paysk) : 0 ≤ k ≤ 10} (selling an item)

▶ {(Ann,Bob), (Ann,Carol), (Bob,Carol)} (choosing two representatives)

▶ {(13 ,
1
3 ,

1
3), (

1
2 ,

1
2 , 0), (1, 0, 0), ...} (splitting a resource)

Many mechanisms describe monetary transfers, thus an alternative is in the form
(x , (pa)a∈Ag) where x ∈ X is a choice from a finite set of choices, and pa is the payment
for agent a.
E.g., x = buyerBob, pBob = 10, pAnn = 0

Mittelmann, Murano, Perrussel 31 / 70

Mechanisms for social choice

Agent’s type (preference) θa ∈ Θa

Valuation function vag : X ×Θa → R
Utility function uag : Alt×Θa → R

▶ E.g., Possible types in a single-item auction ΘBob = {0, ..., 10}
▶ θBob = 2 means Bob value to the item is 2 euros

▶ The valuation of Bob is
vBob(buyerBob, θBob) = θBob

vBob(buyerAnn, θBob) = 0

▶ The (quasi-linear) utility is

uBob((buyerBob, (pBob, pAnn)), θBob) = vBob(buyerBob, θBob)− pBob

uBob((buyerBob, (5, 0)), 2) = 2− 5 = −3

Mittelmann, Murano, Perrussel 32 / 70

Mechanisms for social choice

Agent’s type (preference) θa ∈ Θa

Valuation function vag : X ×Θa → R
Utility function uag : Alt×Θa → R

▶ E.g., Possible types in a single-item auction ΘBob = {0, ..., 10}
▶ θBob = 2 means Bob value to the item is 2 euros
▶ The valuation of Bob is

vBob(buyerBob, θBob) = θBob

vBob(buyerAnn, θBob) = 0

▶ The (quasi-linear) utility is

uBob((buyerBob, (pBob, pAnn)), θBob) = vBob(buyerBob, θBob)− pBob

uBob((buyerBob, (5, 0)), 2) = 2− 5 = −3

Mittelmann, Murano, Perrussel 32 / 70

Mechanisms for social choice

Types Θ =
∏

a∈AgΘa

Strategies S =
∏

a∈Ag sa

Mechanism M : S → Alt
▶ English auction: the agents increase the price until there are no other buyers interested
▶ Dutch auction: the price decreases until one agent accepts to buy

Mittelmann, Murano, Perrussel 33 / 70

Example: wCGS representing the Dutch auction

⟨1, (0, 0)⟩

⟨23 , (0, 0)⟩⟨1, (1, 0)⟩ ⟨1, (0, 1)⟩

⟨13 , (0, 0)⟩⟨23 , (1, 0)⟩ ⟨23 , (0, 1)⟩

⟨0, (0, 0)⟩⟨13 , (1, 0)⟩ ⟨13 , (0, 1)⟩

w,w

w,w

w,w

b,
w

b,
w

b,
w

w, b

w, b

w, b

Figure 2: Part of the mechanism for the Dutch auction with two agents and decrement dec = 1
3 .

Mittelmann, Murano, Perrussel 34 / 70

Mechanisms for social choice

Evaluation of a mechanism with rational agents: solution concepts

Example of properties:

Budget-balance

Strategyproof

Individual rationality

Efficiency

...

Mittelmann, Murano, Perrussel 35 / 70

Mechanisms for social choice

Evaluation of a mechanism with rational agents: solution concepts

Example of properties:

Budget-balance

Strategyproof

Individual rationality

Efficiency

...

Mittelmann, Murano, Perrussel 35 / 70

Solution concepts

Nash equilibrium (NE): considers (unilateral) deviations of individual agents

Dominant strategy equilibrium (DSE): the strategy associated with each agent weakly
maximizes her utility, for all possible strategies of other agents

m-resilient equilibrium (REm): considers deviations by coalitions of agents rather than
individuals, it tolerates deviations of up to m agents

Mittelmann, Murano, Perrussel 36 / 70

Mechanism Properties

Individual Rationality (IR):

IR
def
=

∧
a∈Ag

0 ≤ utila

The Dutch auction is IR

Mittelmann, Murano, Perrussel 37 / 70

Mechanism Properties

Strong Budget Balance (SBB):

SBB
def
= 0 =

∑
a∈Ag

paya

Weak Budget Balance (WBB):

WBB
def
= 0 ≤

∑
a∈Ag

paya

The Dutch auction is WBB and not SBB

Mittelmann, Murano, Perrussel 38 / 70

Mechanism Properties

Strategyproofness (SP)
Let θ̂a be the truth-revealing strategy for a

DSE(s) where A(sa) = θ̂a for each a

The Dutch auction is not SP

Efficiency, Pareto optimality, ...

Mittelmann, Murano, Perrussel 39 / 70

Mechanism Properties

Strategyproofness (SP)
Let θ̂a be the truth-revealing strategy for a

DSE(s) where A(sa) = θ̂a for each a

The Dutch auction is not SP

Efficiency, Pareto optimality, ...

Mittelmann, Murano, Perrussel 39 / 70

Model-checking SL[F]

Model checking mechanism properties with SL[F] when agents are strategic:
For a given property φ and solution concept ζ, we check

∃σ.[ζ(σ) ∧ (Ag,σ)φ]

More complex mechanisms

By changing the specification language, we can also verify mechanisms with imperfect
information 7 and probabilistic features 8

7Maubert, Mittelmann, Murano, and Perrussel (2021). “Strategic Reasoning in Automated Mechanism
Design”. In: KR 2021

8Mittelmann, Maubert, Murano, and Perrussel (2023). “Formal Verification of Bayesian Mechanisms”. In:
AAAI

Mittelmann, Murano, Perrussel 40 / 70

Synthesis of Mechanisms

Creating mechanisms from a logical specification in SL[F]

Satisfiability of SL (thus, SL[F]) is undecidable in general

Decidable cases

Mittelmann, Murano, Perrussel 41 / 70

Synthesis of Mechanisms

Given a finite set V ⊂ [−1, 1] such that {−1, 1} ⊆ V, the V-satisfiability problem for SL[F] is
the restriction of the satisfiability problem to V-weighted wCGS.

Theorem 7 (Mittelmann, Maubert, et al., 2022)

The satisfiability of SL[F] is decidable in the following cases:

wCGS with bounded actions

Turn-based wCGS

Algorithms for the satisfiability → return a satisfying wCGS when one exists (see Pnueli
and Rosner, 1989)

Mittelmann, Murano, Perrussel 42 / 70

Optimal mechanism synthesis

Algorithm 2 Optimal mechanism synthesis

Data: A SL[F] specification Φ and a set of possible values for atomic propositions V
Result: A wCGS G such that [[Φ]]G is maximal

Compute ṼalΦ,V Let ν1, ..., νn be a decreasing enumeration of ṼalΦ,V for i=1...n do
Solve V- satisfiability for Φ and ε = νi if there exists G such that [[Φ]]G ≥ νi then

return G
end

end

Mittelmann, Murano, Perrussel 43 / 70

Advantage

Optimal mechanism synthesis

Synthesis from auction rules (e.g. ADL-like9) and strategic requirements (e.g.
strategyproofness)

9Mittelmann, Bouveret, and Perrussel (2022). “Representing and reasoning about auctions”. In:
Autonomous Agents and Multi-Agent Systems 36.1, p. 20.

Mittelmann, Murano, Perrussel 44 / 70

Example Auction rules

AG((¬sold ∧ price + inc < 1) → (price + inc = Xprice ∧ ¬Xterminal))

AG((sold ∨ price + inc ≥ 1) → (price = Xprice ∧ Xterminal))

AG(choice = winsa ↔ bida ∧
∧

b ̸=a ¬bida)

AG
(∧

a∈Ag(choice = winsa → paya = price)
)

Mittelmann, Murano, Perrussel 45 / 70

Contents

Logic-Based Mechanism Design
▶ Verifying properties under strategic behaviour → MC SL[F]-formulas
▶ Generating mechanisms → synthesis from SL[F]-formulas

Correctness of the encoding for classic mechanism design

Logics for MAS allows us to go further

Mittelmann, Murano, Perrussel 46 / 70

Contents

Logic-Based Mechanism Design
▶ Verifying properties under strategic behaviour → MC SL[F]-formulas
▶ Generating mechanisms → synthesis from SL[F]-formulas

Correctness of the encoding for classic mechanism design

Logics for MAS allows us to go further

Mittelmann, Murano, Perrussel 46 / 70

Contents

Logic-Based Mechanism Design
▶ Verifying properties under strategic behaviour → MC SL[F]-formulas
▶ Generating mechanisms → synthesis from SL[F]-formulas

Correctness of the encoding for classic mechanism design

Logics for MAS allows us to go further

Mittelmann, Murano, Perrussel 46 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 47 / 70

Partially redesigning a system

We can design new mechanisms with nice properties when agents act rationally...

What if we already have a mechanism (or a system) but it doesn’t have those properties?

What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets.
How can we change the system to address this issue?

How can we change the system to satisfy desirable properties?
▶ norms, incentives, ...

Mittelmann, Murano, Perrussel 48 / 70

Partially redesigning a system

We can design new mechanisms with nice properties when agents act rationally...

What if we already have a mechanism (or a system) but it doesn’t have those properties?

What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets.
How can we change the system to address this issue?

How can we change the system to satisfy desirable properties?

▶ norms, incentives, ...

Mittelmann, Murano, Perrussel 48 / 70

Partially redesigning a system

We can design new mechanisms with nice properties when agents act rationally...

What if we already have a mechanism (or a system) but it doesn’t have those properties?

What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets.
How can we change the system to address this issue?

How can we change the system to satisfy desirable properties?
▶ norms, incentives, ...

Mittelmann, Murano, Perrussel 48 / 70

Partially redesigning a system

How can we convince agents to act on behalf of the environment?

Laws prohibiting the use of disposable plastic bags

Taxes based on companies’ pollution rates

Subsidizing public transportation fees

Norm design10

Incentive design11

10Alechina, De Giacomo, Logan, and Perelli (2022). “Automatic Synthesis of Dynamic Norms for
Multi-Agent Systems”. In: KR.

11Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). “Incentive Design for Rational Agents”. In:
KR (to appear).

Mittelmann, Murano, Perrussel 49 / 70

Partially redesigning a system

How can we convince agents to act on behalf of the environment?

Laws prohibiting the use of disposable plastic bags

Taxes based on companies’ pollution rates

Subsidizing public transportation fees

Norm design10

Incentive design11

10Alechina, De Giacomo, Logan, and Perelli (2022). “Automatic Synthesis of Dynamic Norms for
Multi-Agent Systems”. In: KR.

11Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). “Incentive Design for Rational Agents”. In:
KR (to appear).

Mittelmann, Murano, Perrussel 49 / 70

Incentive Design

Agents try to maximize their utilities, expressed with LTL[F]-goals

We want to impose incentive schemes

Rationality is defined w.r.t. solution concepts

Incentive Scheme

It is a function, that assigns new weights to some (or all) atomic propositions
It can be either:

Static (memoryless)

Dynamic (history-based)

We assume that incentive schemes have a fixed level of granularity

Mittelmann, Murano, Perrussel 50 / 70

Example - River

Two companies share the usage of a river

At each moment, the companies can either discharge waste water in the river or treat the
waste water (at a cost)

▶ If both firms discharge, the water quality deteriorates
▶ If only one discharges, the quality is not affected
▶ If both firms clean, the river quality improves

A regulator can impose taxes on each company
▶ Company a goal: G(utilitya − taxa)
▶ Taxes are initially zero → it motivates the companies to discharge wastewater in the river
▶ Regulator goal: G(quality ∧ fair).

Mittelmann, Murano, Perrussel 51 / 70

Example - River

Two companies share the usage of a river

At each moment, the companies can either discharge waste water in the river or treat the
waste water (at a cost)

▶ If both firms discharge, the water quality deteriorates
▶ If only one discharges, the quality is not affected
▶ If both firms clean, the river quality improves

A regulator can impose taxes on each company
▶ Company a goal: G(utilitya − taxa)
▶ Taxes are initially zero → it motivates the companies to discharge wastewater in the river
▶ Regulator goal: G(quality ∧ fair).

Mittelmann, Murano, Perrussel 51 / 70

Example - River

With static incentive schemes:
▶ The regulator can set the taxes so that at least one of the firms is worse off by discharging
▶ If only one firm is taxed, it may be seen as unfair
▶ If both firms are taxed, there may be an unnecessary loss of profits to both firms

With dynamic incentive schemes:
▶ The regulator can alternate between taxing the firms a sufficient amount for discharging,

which is more fair and efficient

Mittelmann, Murano, Perrussel 52 / 70

Computational Problems

Incentive Verification

Check if an incentive scheme guarantees that the goal φ is satisfied at least c

Incentive Synthesis

Find an incentive scheme, if it exists, that guarantees that the goal φ is satisfied at least c

Variants of the problems

ζ ∈ {DSE,NE,REm} denotes the solution concept

E (similarly, A) indicates that the goal is satisfied in some (resp. all) equilibrium (fixed ζ)

S (similarly, D) indicates that the incentive scheme is static (resp. dynamic)

Mittelmann, Murano, Perrussel 53 / 70

Static Case

For verification, we apply the static incentive scheme to the wCGS and then check the
corresponding SL[F] formulas:

∃σ.[ζ(σ) ∧ (Ag,σ)φ]

∀σ.[ζ(σ) → (Ag,σ)φ]

For synthesis, we non-deterministically guess an incentive scheme, then proceed with
verification

Mittelmann, Murano, Perrussel 54 / 70

Complexity - Static Case

Theorem 8 (Hyland et al., 2024)

For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., |Ag|}, the following problems are 2Exptime-complete:

ζ-S-E-Incentive-Verification

ζ-S-A-Incentive-Verification

ζ-S-E-Incentive-Synthesis

ζ-S-A-Incentive-Synthesis

Mittelmann, Murano, Perrussel 55 / 70

Dynamic Case

We transform the original wCGS into a modified one:
▶ We embed the incentive designer into the wCGS as an agent
▶ Her actions correspond to the application of incentives
▶ The new wCGS interleaves actions of the incentive designer and the other agents
▶ This requires to inflate the runs of the wCGS and translate formulas

Then, verification is done similarly to the static case (with adapted SL[F] formulas)

For synthesis, we also check the existence of an incentive designer strategy (which leads
to an additional alternation in the ζ-D-A case)

Mittelmann, Murano, Perrussel 56 / 70

Complexity - Dynamic Case

Theorem 9 (Hyland et al., 2024)

For ζ ∈ {DSE,NE,REm},m ∈ {1, ..., |Ag|}, the following problems are 2Exptime-complete

ζ-D-E-Incentive-Verification

ζ-D-A-Incentive-Verification

ζ-D-E-Incentive-Synthesis

Finally, ζ-D-A-Incentive-Synthesis is in 3Exptime and is 2Exptime-hard.

Mittelmann, Murano, Perrussel 57 / 70

Contents

Incentive Design allows the partial redesign of games through incentives

For the cases considered, the complexity of the problems is not harder than the
corresponding Boolean rational verification problems (Abate et al., 2021)

Mittelmann, Murano, Perrussel 58 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 59 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 60 / 70

Future discounting in MAS

Satisfying the goal sooner > after a long wait

Temporal discounting operators alongside Linear Temporal Logic (LTLdisc[D])12

SLdisc[D]: Strategy Logic + future discounting13

12Almagor, Boker, and Kupferman (2014). “Discounting in LTL”. In: TACAS.
13Mittelmann, Murano, and Perrussel (2023). “Discounting in Strategy Logic”. In: IJCAI.

Mittelmann, Murano, Perrussel 61 / 70

Strategy Logic with Discounting

Enable to express:
1 Strategic abilities of agents with discounted goals
2 Solution concepts in discounting games

Parametrized by a set of discounting functions D:
▶ Agents may be affected differently by how long it takes to achieve their goal

Mittelmann, Murano, Perrussel 62 / 70

Strategy Logic with Discounting

A discounting function is a function that tends to zero and is non-increasing (e.g., d(i) = 1
i+1)

We assume the functions in D are computable in polynomial time

SLdisc[D] syntax

φ ::= p | ¬φ | φ ∨ φ | ∃s. φ | (a, s)φ | Xφ | φUφ | φUdφ

where p ∈ Ap, s ∈ Ap, a ∈ Ag, and d ∈ D.

SLdisc[D] semantics

Quantified semantics defined over Concurrent Game Structures
Discounted-until φ1Udφ2 is weighted by how far in the future φ1 and φ2 occur

Mittelmann, Murano, Perrussel 63 / 70

Relation with LTLdisc[D], SL and SL[F]

LTLdisc[D] ⊂ SLdisc[D]

SL ⊂ SLdisc[D]

SL[F] is interpreted over a different class of models
Functions are independent of how far in the play they are being evaluated

Mittelmann, Murano, Perrussel 64 / 70

Example - Secretary Problem

Fd k-hired
∃s∀t(a, s)(Ag−a, t)(

∨
j∈C ¬presentj)Ud k-hired

Figure 3: Instance of the secretary problem; the utility decreases the more time is taken to hire one.

Mittelmann, Murano, Perrussel 65 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 66 / 70

Model Checking SLdisc[D]

Theorem 10 (Mittelmann, Murano, and Perrussel, 2023)

Model checking SLdisc[D] with memoryless agents Pspace-complete

Theorem 11 (Mittelmann, Murano, and Perrussel, 2023)

Model checking SLdisc[D] with memoryfull agents (k + 1)-Exptime
(when functions in D are exponential-discounting, where k is the number of quantifiers
alternations)

Mittelmann, Murano, Perrussel 67 / 70

Contents

SLdisc[D]: reasoning about temporal goals whose satisfaction value decays over time

More expressive than SL

Under certain restrictions, it has the same complexity as SL

Mittelmann, Murano, Perrussel 68 / 70

Content

1 Strategic Reasoning with Quantitative Goals
Logics with Quantitative Goals
Model checking
Module checking

2 Application
Mechanism Design
Incentive Engineering

3 Temporal Discounting
Logics with Temporal Discounting
Model Checking

4 Future Work

Mittelmann, Murano, Perrussel 69 / 70

Directions for Future Work

Synthesis from fragments of SL[F]

Partial synthesis
▶ Incentives + Temporal Discounting
▶ Fuzzy Norms
▶ Finding minimal changes in the model

SL[F] + SLdisc[D]?

Extensions of model-checkers
▶ MCMAS - https://sail.doc.ic.ac.uk/software/mcmas/
▶ STV - https://github.com/blackbat13/stv
▶ Vitamin - https://arxiv.org/abs/2403.02170

Mittelmann, Murano, Perrussel 70 / 70

https://sail.doc.ic.ac.uk/software/mcmas/
https://github.com/blackbat13/stv
https://arxiv.org/abs/2403.02170

Thank you for following our course!

Formal Aspects of Strategic Reasoning and Game Playing
Strategic Reasoning with Quantitative Goals

Munyque Mittelmann1, Aniello Murano1, Laurent Perrussel2

1 University of Naples Federico II

2 University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

Mittelmann, Murano, Perrussel 70 / 70

References I

Abate, Gutierrez, Hammond, Harrenstein, Kwiatkowska, Najib, Perelli, Steeples, and Wooldridge (2021).
“Rational verification: game-theoretic verification of multi-agent systems”. In: Applied Intelligence 51.9.

Alechina, De Giacomo, Logan, and Perelli (2022). “Automatic Synthesis of Dynamic Norms for Multi-Agent
Systems”. In: KR.

Almagor, Boker, and Kupferman (2014). “Discounting in LTL”. In: TACAS.

Almagor, Boker, and Kupferman (2016). “Formally Reasoning about Quality”. In: Journal of the ACM.

Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). “Reasoning about Quality and
Fuzziness of Strategic Behaviours”. In: IJCAI.

Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). “Incentive Design for Rational Agents”. In:
KR (to appear).

Jamroga, Mittelmann, Murano, and Perelli (2024). “Playing Quantitative Games Against an Authority: On
the Module Checking Problem”. In: AAMAS 2024.

Maubert, Mittelmann, Murano, and Perrussel (2021). “Strategic Reasoning in Automated Mechanism
Design”. In: KR 2021.

Mittelmann, Bouveret, and Perrussel (2022). “Representing and reasoning about auctions”. In:
Autonomous Agents and Multi-Agent Systems 36.1, p. 20.

References II

Mittelmann, Maubert, Murano, and Perrussel (2022). “Automated Synthesis of Mechanisms”. In: IJCAI
2022.
Mittelmann, Maubert, Murano, and Perrussel (2023). “Formal Verification of Bayesian Mechanisms”. In:
AAAI.
Mittelmann, Murano, and Perrussel (2023). “Discounting in Strategy Logic”. In: IJCAI.

Pnueli and Rosner (1989). “On the Synthesis of a Reactive Module.”. In: Symposium on the Principles of
Programming Languages (POPL 1989). New York: ACM, pp. 179–190.

This course is a part of the project Strategic rEasoning for sociALly good mechanisms (SEAL), which has

received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie

Sk lodowska-Curie grant agreement No 101105549.

This presentation uses several icons made by Freepik from Flaticon (www.flaticon.com).

	Strategic Reasoning with Quantitative Goals
	Logics with Quantitative Goals
	Model checking
	Module checking

	Application
	Mechanism Design
	Incentive Engineering

	Temporal Discounting
	Logics with Temporal Discounting
	Model Checking

	Future Work
	References

