Formal Aspects of Strategic Reasoning and Game Playing Strategic Reasoning with Quantitative Goals

Munyque Mittelmann¹, Aniello Murano¹, Laurent Perrussel²

¹ University of Naples Federico II

² University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

1 Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

1 Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

1 Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4) Future Work

Strategic Reasoning with Quantitative Goals

- Boolean verification
 - Either the system satisfies a logic specification or it does not
 - cleanRiver is either true or false in a given state
- Quantitative verification
 - Assessing the *quality* of Multi-Agent Systems (MAS)
 - Levels of *quality* represented with weights
 - cleanRiver may be *partially* true in a state

Quantitative Logics for MAS

Logics with quantitative satisfaction

- Goals are expressed as a fuzzy temporal constraint:
 - Boolean satisfaction \rightsquigarrow quantitative satisfaction;
 - Specification language \rightsquigarrow LTL $[\mathcal{F}]^1$, ATL $^*[\mathcal{F}]/$ ATL $[\mathcal{F}]^2$, SL $[\mathcal{F}]^3$
 - System model ~> Weighted Game Structure.

¹Almagor, Boker, and Kupferman (2016). "Formally Reasoning about Quality". In: *Journal of the ACM* ²Jamroga, Mittelmann, Murano, and Perelli (2024). "Playing Quantitative Games Against an Authority: On the Module Checking Problem". In: *AAMAS 2024*

³Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). "Reasoning about Quality and Fuzziness of Strategic Behaviours". In: *IJCAI*

Concurrent Game Structures (CGS)

A CGS is a tuple $\mathcal{G} = (Ap, Ag, Ac, V, d, o, \ell)$, where:

٩	Ap	propositions (relevant facts)
٩	Ag	agents
٩	Ac	agents' actions
٩	V	states
٩	d :	${\sf Ag} imes {\sf V} o 2^{{\sf Ac}}$ available actions
٩	<i>o</i> :	$V imes Ac^{Ag} o V$ transition function
٩	ℓ :	$V ightarrow 2^{Ap}$ labelling function

Weighted CGS (wCGS)

A wCGS is a tuple $\mathcal{G} = (Ap, Ag, Ac, V, d, o, \ell)$, where:

٩	Ap	propositions (relevant facts)
٩	Ag	agents
٩	Ac	agents' actions
٩	V	states
٩	d :	${\sf Ag} imes V o 2^{{\sf Ac}}$ available actions
٩	<i>o</i> :	$V imes Ac^{Ag} o V$ transition function
٩	ℓ :	V imes Ap o [0,1] weight function

Weight function instead of labeling function to model degrees of truth. (fuzzy satisfaction)

Quantitative logics for MAS

The logics are parametrized over a set of functions \mathcal{F}^{4} :

```
f:[0,1]^n 
ightarrow [0,1] \in \mathcal{F}
```

Example:

• $x \lor y := \max(x, y)$ (disjunction) • $x \land y := \min(x, y)$ (conjunction) • $\neg x := 1 - x$ (negation)

We assume that some standard functions belong to \mathcal{F} : \leq (Boolean), = (Boolean), bounded sum, etc.

 ${}^{4}\text{We}$ assume the functions in $\mathcal F$ to be computable in polynomial time

Quantitative ATL^* and ATL

 $\mathsf{ATL}^*[\mathcal{F}] \mathsf{ Syntax}$

 $ATL[\mathcal{F}]$ Syntax

$$\varphi ::= p \mid f[\varphi, ..., \varphi] \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{R}\varphi \mid \langle\!\langle A \rangle\!\rangle \varphi$$

where p is a proposition, A is a coalition, and $f \in \mathcal{F}$

(no temporal nesting allowed)

$$\varphi ::= p \mid f[\varphi, ..., \varphi] \mid \langle\!\langle A \rangle\!\rangle \mathbf{X}\varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathbf{U}\varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathbf{R}\varphi$$

$\mathsf{ATL}^*[\mathcal{F}]$ and $\mathsf{ATL}[\mathcal{F}]$ Semantics

- " $f[\varphi,...,\varphi]$ " compute the function over the satisfaction values of its inputs
- " $\langle\!\langle A \rangle\!\rangle \varphi$ " coalition A maximizes the satisfaction value of φ
- Abbreviations: $\llbracket A \rrbracket \varphi := \neg \langle \! \langle A \rangle \! \rangle \neg \varphi$ $\mathbf{F} \varphi := \top \mathbf{U} \varphi$ $\mathbf{G} \varphi := \bot \mathbf{R} \varphi$

Relation with Boolean ATL^*

Can we capture ATL^* with $ATL^*[\mathcal{F}]$?

Relation with Boolean ATL*

Can we capture ATL^* with $ATL^*[\mathcal{F}]$?

Yes, when atomic propositions can only take values 0 and 1, and \mathcal{F} contains only negation and disjunction.

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- $\bullet\ {\rm rescued}\ {\rm denotes}\ {\rm whether}\ {\rm the}\ {\rm artifact}\ {\rm is}\ {\rm at}\ {\rm the}\ {\rm rescue}\ {\rm point}$
- dis computes the distance between two (normalized) positions
- pos_x denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\rm safe} := \langle\!\langle a, b \rangle\!\rangle \min[dis[{\rm pos}_a, {\rm pos}_v], dis[{\rm pos}_b, {\rm pos}_v]] \ \mathbf{U} \text{ rescued}$ What does the formula $\varphi_{\rm safe}$ captures?

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- $\bullet\ {\rm rescued}\ {\rm denotes}\ {\rm whether}\ {\rm the}\ {\rm artifact}\ {\rm is}\ {\rm at}\ {\rm the}\ {\rm rescue}\ {\rm point}$
- dis computes the distance between two (normalized) positions
- pos_x denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle\!\langle a, b \rangle\!\rangle \min[\textit{dis}[\text{pos}_a, \text{pos}_v], \textit{dis}[\text{pos}_b, \text{pos}_v]] \; \mathbf{U} \; \text{rescued}$

What does the formula φ_{safe} captures?

Carriers a and b best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued.

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- $\bullet\ {\rm rescued}\ {\rm denotes}\ {\rm whether}\ {\rm the}\ {\rm artifact}\ {\rm is}\ {\rm at}\ {\rm the}\ {\rm rescue}\ {\rm point}$
- dis computes the distance between two (normalized) positions
- pos_x denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle\!\langle a, b \rangle\!\rangle \min[\textit{dis}[\text{pos}_a, \text{pos}_v], \textit{dis}[\text{pos}_b, \text{pos}_v]] \; \mathbf{U} \; \text{rescued}$

What does the formula φ_{safe} captures?

Carriers *a* and *b* best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued. *What if the artifact is never rescued*?

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- $\bullet\ {\rm rescued}\ {\rm denotes}\ {\rm whether}\ {\rm the}\ {\rm artifact}\ {\rm is}\ {\rm at}\ {\rm the}\ {\rm rescue}\ {\rm point}$
- dis computes the distance between two (normalized) positions
- pos_x denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle\!\langle a, b \rangle\!\rangle \min[\textit{dis}[\text{pos}_a, \text{pos}_v], \textit{dis}[\text{pos}_b, \text{pos}_v]] \; \mathbf{U} \; \text{rescued}$

What does the formula φ_{safe} captures?

Carriers a and b best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued.

What if the artifact is never rescued?

The satisfaction value of φ_{safe} would be 0.

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v), the drone b has a response strategy?

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification (each strategic quantifier resets previously assigned strategies).

Example: Drone battle (cont.)

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v), the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification (each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Quantitative SL

$\mathsf{SL}[\mathcal{F}] \ \mathsf{Syntax}$

$$\varphi ::= p \mid \exists s.\varphi \mid (a,s)\varphi \mid f[\varphi,...,\varphi] \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi$$

where p is a proposition, s is a variable, a is an agent, and $f \in \mathcal{F}$

$SL[\mathcal{F}]$ Semantics

- Defined over assignments of strategies to variables and agents
- " $\exists s. \varphi$ " the maximal satisfaction value of φ for the possible assignments of strategy to s
- " $(a,s)\varphi$ " the satisfaction value of φ when agent a is assigned to the str. assigned to s
- Abbreviations: $\forall s.\varphi := \neg \exists s. \neg \varphi$ $\mathbf{F}\varphi := \top \mathbf{U}\varphi$ $\mathbf{G}\varphi := \neg \mathbf{F} \neg \varphi$ $\varphi \mathbf{R}\psi := \neg (\neg \varphi \mathbf{U} \neg \psi)$
- We call LTL[F] the fragment without strategic operators and bindings

There is a strategy for drone a such that for all strategies of the villain v, b has a response strategy to keep the villain as far as possible, until the artifact is rescued:

 $\exists s. \forall t. \exists s'. (a, s)(v, t)(b, s') \min[dis[pos_a, pos_v], dis[pos_b, pos_v]] \mathbf{U}$ rescued

Example: Nash equilibrium

Assume each agent *a* has an LTL[\mathcal{F}] goal φ_a . Let $\mathbf{s} = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{-a} denotes the set of agents without *a*. \mathbf{s}_{-a} denotes the strategies of Ag_{-a} in the profile \mathbf{s} .

Nash equilibrium (NE)

The strategy profile s is a *Nash equilibrium* if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

Example: Nash equilibrium

Assume each agent *a* has an LTL[\mathcal{F}] goal φ_a . Let $\mathbf{s} = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{-a} denotes the set of agents without *a*. \mathbf{s}_{-a} denotes the strategies of Ag_{-a} in the profile \mathbf{s} .

Nash equilibrium (NE)

The strategy profile s is a *Nash equilibrium* if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

How can we express whether s is a NE in SL[\mathcal{F}]?

Example: Nash equilibrium

Assume each agent *a* has an LTL[\mathcal{F}] goal φ_a . Let $\mathbf{s} = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{-a} denotes the set of agents without *a*. \mathbf{s}_{-a} denotes the strategies of Ag_{-a} in the profile \mathbf{s} .

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

How can we express whether s is a NE in SL[\mathcal{F}]?

$$\mathsf{NE}(\boldsymbol{s}) \stackrel{\mathsf{def}}{=} \bigwedge_{a \in \mathsf{Ag}} \forall t. \left[(\mathsf{Ag}_{-a}, \boldsymbol{s}_{-a})(a, t) \varphi_a \leq (\mathsf{Ag}, \boldsymbol{s}) \varphi_a \right]$$

Example: Nash equilibrium (cont)

We can also measure how much agent a can benefit from a selfish deviation using formula:

$$\exists t. \textit{diff} \left[(\mathsf{Ag}_{-a}, \boldsymbol{s}_{-a})(a, t) \varphi_{a}, (\mathsf{Ag}, \boldsymbol{s}) \varphi_{a} \right]$$

where $diff(x, y) = max\{0, x - y\}$.

1 Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking
- 2 Application
 - Mechanism Design
 - Incentive Engineering
- 3 Temporal Discounting
 - Logics with Temporal Discounting
 - Model Checking

4 Future Work

Model checking

Model checking problem

Given an SL[\mathcal{F}] (similarly ATL^{*}[\mathcal{F}] or ATL[\mathcal{F}]) formula φ , a wCGS \mathcal{G} , a state v, and a predicate $P \subseteq (0, 1]$, decide whether the satisfaction value of φ in v is a subset or equal to P, denoted

$$\llbracket \varphi \rrbracket^{\mathcal{G}}(v) \subseteq P$$

The predicate can be the set of values above a threshold $\epsilon \in (0, 1]$: Decide whether $\llbracket \varphi \rrbracket^{\mathcal{G}}(v) \geq \epsilon$.

Complexity of Model Checking

Using automata-theoretic approaches:

```
Theorem 1 (Bouyer et al., 2019)Model-checking SL[F](where k is the number of alternations of strategic operators )
```

in (k+1) EXPTIME

Theorem 2 (Jamroga et al., 2024) Model-checking ATL*[F]

2EXPTIME-complete

Complexity of Model Checking

Algorithmic solution:

Theorem 3 (Jamroga et al., 2024)	
Model-checking ATL[F]	Ptime-complete
Theorem 4 (Maubert et al., 2021)	
Model checking $SL[\mathcal{F}]$ with memoryless agents	PSPACE- <i>complete</i>

1 Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

Weighted Module

Weighted Module is a special wCGS $\mathcal{G} = (Ap, Ag, Ac, V, d, o, \ell)$:

Environment states (gray) under the control of an "environmental" authority, who shapes the game by selecting possible successors at each iteration.

Module Checking

For a given weighted module \mathcal{G} :

• $\mathcal{T} \in exec(\mathcal{G})$ is a possible wCGS resulting from the choices of e in \mathcal{G} .

Given an ATL*[\mathcal{F}] formula φ , a module \mathcal{G} , a position v: • $\llbracket \varphi \rrbracket_r^{\mathcal{G}}(v) = \{\llbracket \varphi \rrbracket^{\mathcal{T}}(v) \mid \mathcal{T} \in \text{exec}(\mathcal{G})\}$ all possible values in v according to \mathcal{T}

Definition 5 (Module Checking)

Deciding whether $\llbracket \varphi \rrbracket_r^{\mathcal{G}}(v) \subseteq P$, for a given predicate $P \subseteq [0, 1]$.

Complexity of Module Checking

Automata-theoretic approach

Theorem 6 (Jamroga et al., 2024)

- *Module-checking* ATL^{*}[*F*]
- Module-checking ATL[F]

3EXPTIME-complete EXPTIME-complete

Relation with Boolean Module Checking and Model Checking

- ATL*[F] module checking is not subsumed by ATL* module checking over weighted modules
- $ATL^*[\mathcal{F}]$ module checking is not subsumed by $ATL^*[\mathcal{F}]$ model checking.

- Quantitative extensions of SL, ATL*, and ATL
- Model and module checking problems have the same computational complexity as the corresponding logics with Boolean semantics
- MAS with quantitative goals: application to mechanism design

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4) Future Work
Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

Mechanism Design

Mechanism Design

Mechanism Design

Motivation

- Preference aggregation problems
 - Auctions, elections, fair division protocols, etc
- Logic-based approach: verification⁵ and synthesis of mechanisms⁶
 - \blacktriangleright We use the weights [-1,1] for convenience

⁵Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: *KR 2021*. ⁶Mittelmann, Maubert, Murano, and Perrussel (2022). "Automated Synthesis of Mechanisms". In: *IJCAI* 2022.

Mechanisms

- Alternatives Alt
 - ▶ { $(buyer_{Bob}, pays_k), (buyer_{Ann}, pays_k) : 0 \le k \le 10$ } (selling an item)
 - ► {(Ann, Bob), (Ann, Carol), (Bob, Carol)} (choosing two representatives)
 - $\{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{2}, \frac{1}{2}, 0), (1, 0, 0), ...\}$ (splitting a resource)

Mechanisms

- Alternatives Alt
 - ▶ { $(buyer_{Bob}, pays_k), (buyer_{Ann}, pays_k) : 0 \le k \le 10$ } (selling an item)
 - ▶ {(Ann, Bob), (Ann, Carol), (Bob, Carol)} (choosing two representatives)
 - $\{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{2}, \frac{1}{2}, 0), (1, 0, 0), ...\}$ (splitting a resource)
- Many mechanisms describe monetary transfers, thus an alternative is in the form
 (x, (p_a)_{a∈Ag}) where x ∈ X is a choice from a finite set of choices, and p_a is the payment
 for agent a.

E.g.,
$$x = buyer_{Bob}$$
, $p_{Bob} = 10$, $p_{Ann} = 0$

- Agent's type (preference) $\theta_a \in \Theta_a$
- Valuation function $v_{ag}: X \times \Theta_a \to \mathbb{R}$
- Utility function $u_{ag}: \operatorname{Alt} \times \Theta_a \to \mathbb{R}$
 - ▶ E.g., Possible types in a single-item auction $\Theta_{Bob} = \{0, ..., 10\}$
 - $\theta_{Bob} = 2$ means Bob value to the item is 2 euros

- Agent's type (preference) $\theta_a \in \Theta_a$
- Valuation function $v_{ag}: X \times \Theta_a \to \mathbb{R}$
- Utility function $u_{ag}: \operatorname{Alt} \times \Theta_a \to \mathbb{R}$
 - ▶ E.g., Possible types in a single-item auction $\Theta_{Bob} = \{0, ..., 10\}$
 - ▶ $\theta_{Bob} = 2$ means Bob value to the item is 2 euros
 - The valuation of Bob is

$$v_{Bob}(buyer_{Bob}, \theta_{Bob}) = \theta_{Bob}$$

 $v_{Bob}(buyer_{Ann}, \theta_{Bob}) = 0$

The (quasi-linear) utility is

$$u_{Bob}((buyer_{Bob}, (p_{Bob}, p_{Ann})), \theta_{Bob}) = v_{Bob}(buyer_{Bob}, \theta_{Bob}) - p_{Bob}$$
$$u_{Bob}((buyer_{Bob}, (5, 0)), 2) = 2 - 5 = -3$$

- Types $\boldsymbol{\Theta} = \prod_{a \in \mathsf{Ag}} \Theta_a$
- Strategies $S = \prod_{a \in Ag} s_a$
- Mechanism $\mathcal{M}: S \to \mathsf{Alt}$
 - > English auction: the agents increase the price until there are no other buyers interested
 - Dutch auction: the price decreases until one agent accepts to buy

Example: wCGS representing the Dutch auction

Figure 2: Part of the mechanism for the Dutch auction with two agents and decrement dec = $\frac{1}{3}$.

Evaluation of a mechanism with rational agents: solution concepts

Evaluation of a mechanism with rational agents: solution concepts

Example of properties:

- Budget-balance
- Strategyproof
- Individual rationality
- Efficiency
- ...

- Nash equilibrium (NE): considers (unilateral) deviations of individual agents
- Dominant strategy equilibrium (DSE): the strategy associated with each agent weakly maximizes her utility, for all possible strategies of other agents
- *m*-resilient equilibrium (RE_{*m*}): considers deviations by coalitions of agents rather than individuals, it tolerates deviations of up to *m* agents

Individual Rationality (IR):

$$\mathsf{R} \stackrel{\mathsf{def}}{=} \bigwedge_{a \in \mathsf{Ag}} \mathsf{0} \le \mathsf{util}_a$$

The Dutch auction is IR

Strong Budget Balance (SBB):

$$\mathsf{SBB} \stackrel{\mathsf{def}}{=} \mathsf{0} = \sum_{a \in \mathsf{Ag}} \mathsf{pay}_a$$

Weak Budget Balance (WBB):

$$\mathsf{WBB} \stackrel{\mathsf{def}}{=} 0 \leq \sum_{a \in \mathsf{Ag}} \mathsf{pay}_a$$

The Dutch auction is WBB and not SBB

Strategyproofness (SP) Let $\hat{\theta}_a$ be the truth-revealing strategy for a

 $\mathsf{DSE}(s)$ where $\mathcal{A}(s_a) = \hat{\theta}_a$ for each a

The Dutch auction is not SP

Strategyproofness (SP) Let $\hat{\theta}_a$ be the truth-revealing strategy for a

 $\mathsf{DSE}(s)$ where $\mathcal{A}(s_a) = \hat{\theta}_a$ for each a

The Dutch auction is not SP

Efficiency, Pareto optimality, ...

$\mathsf{Model}\mathsf{-checking}\;\mathsf{SL}[\mathcal{F}]$

Model checking mechanism properties with $SL[\mathcal{F}]$ when agents are strategic: For a given property φ and solution concept ζ , we check

 $\exists \boldsymbol{\sigma}. [\zeta(\boldsymbol{\sigma}) \land (\mathsf{Ag}, \boldsymbol{\sigma}) arphi]$

More complex mechanisms

By changing the specification language, we can also verify mechanisms with imperfect information 7 and probabilistic features $^8\,$

⁷Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: *KR 2021* ⁸Mittelmann, Maubert, Murano, and Perrussel (2023). "Formal Verification of Bayesian Mechanisms". In: *AAAI*

- \bullet Creating mechanisms from a logical specification in $\mathsf{SL}[\mathcal{F}]$
- Satisfiability of SL (thus, $SL[\mathcal{F}]$) is undecidable in general
- Decidable cases

Synthesis of Mechanisms

Given a finite set $\mathcal{V} \subset [-1, 1]$ such that $\{-1, 1\} \subseteq \mathcal{V}$, the \mathcal{V} -satisfiability problem for SL[\mathcal{F}] is the restriction of the satisfiability problem to \mathcal{V} -weighted wCGS.

Theorem 7 (Mittelmann, Maubert, et al., 2022)

The satisfiability of $SL[\mathcal{F}]$ is decidable in the following cases:

- wCGS with bounded actions
- Turn-based wCGS
- Algorithms for the satisfiability \rightarrow return a satisfying wCGS when one exists (see Pnueli and Rosner, 1989)

Optimal mechanism synthesis

Algorithm 2 Optimal mechanism synthesis

Data: A SL[\mathcal{F}] specification Φ and a set of possible values for atomic propositions \mathcal{V} **Result:** A wCGS \mathcal{G} such that $\llbracket \Phi \rrbracket^{\mathcal{G}}$ is maximal Compute $\widetilde{Val}_{\Phi,\mathcal{V}}$ Let $\nu_1, ..., \nu_n$ be a decreasing enumeration of $\widetilde{Val}_{\Phi,\mathcal{V}}$ for i=1...n do Solve \mathcal{V} - satisfiability for Φ and $\varepsilon = \nu_i$ if there exists \mathcal{G} such that $\llbracket \Phi \rrbracket^{\mathcal{G}} \ge \nu_i$ then \mid return \mathcal{G} end

Advantage

- Optimal mechanism synthesis
- Synthesis from auction rules (e.g. ADL-like⁹) and strategic requirements (e.g. strategyproofness)

⁹Mittelmann, Bouveret, and Perrussel (2022). "Representing and reasoning about auctions". In: *Autonomous Agents and Multi-Agent Systems* 36.1, p. 20.

Example Auction rules

- $AG((\neg sold \land price + inc < 1) \rightarrow (price + inc = Xprice \land \neg Xterminal))$
- $AG((sold \lor price + inc \ge 1) \rightarrow (price = Xprice \land Xterminal))$
- $AG(choice = wins_a \leftrightarrow bid_a \land \bigwedge_{b \neq a} \neg bid_a)$

•
$$AG(\bigwedge_{a \in Ag} (choice = wins_a \rightarrow pay_a = price))$$

Contents

- Logic-Based Mechanism Design
 - \blacktriangleright Verifying properties under strategic behaviour \rightarrow MC SL[$\mathcal{F}]\text{-formulas}$
 - Generating mechanisms \rightarrow synthesis from SL[\mathcal{F}]-formulas

Contents

- Logic-Based Mechanism Design
 - \blacktriangleright Verifying properties under strategic behaviour \rightarrow MC SL[$\mathcal{F}]\text{-formulas}$
 - \blacktriangleright Generating mechanisms \rightarrow synthesis from SL[\$\mathcal{F}\$]-formulas
- Correctness of the encoding for classic mechanism design

Contents

- Logic-Based Mechanism Design
 - \blacktriangleright Verifying properties under strategic behaviour \rightarrow MC SL[$\mathcal{F}]\text{-formulas}$
 - \blacktriangleright Generating mechanisms \rightarrow synthesis from SL[\$\mathcal{F}\$]-formulas
- Correctness of the encoding for classic mechanism design
- Logics for MAS allows us to go further

Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4) Future Work

• We can design new mechanisms with *nice* properties when agents act rationally...

- We can design new mechanisms with nice properties when agents act rationally...
- What if we already have a mechanism (or a system) but it doesn't have those properties?
- What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets. How can we change the *system* to address this issue?

• How can we change the system to satisfy desirable properties?

- We can design new mechanisms with nice properties when agents act rationally...
- What if we already have a mechanism (or a system) but it doesn't have those properties?
- What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets. How can we change the *system* to address this issue?

- How can we change the system to satisfy desirable properties?
 - norms, incentives, ...

How can we convince agents to act on behalf of the environment?

- Laws prohibiting the use of disposable plastic bags
- Taxes based on companies' pollution rates
- Subsidizing public transportation fees
- Norm design¹⁰
- Incentive design¹¹

¹⁰Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: *KR*.

¹¹Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: *KR (to appear)*.

How can we convince agents to act on behalf of the environment?

- Laws prohibiting the use of disposable plastic bags
- Taxes based on companies' pollution rates
- Subsidizing public transportation fees
- Norm design¹⁰
- Incentive design¹¹

¹⁰Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: *KR*.

¹¹Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: *KR (to appear)*.

Incentive Design

- \bullet Agents try to maximize their utilities, expressed with $\mathsf{LTL}[\mathcal{F}]\text{-goals}$
- We want to impose incentive schemes
- Rationality is defined w.r.t. solution concepts

Incentive Scheme

It is a function, that assigns new weights to some (or all) atomic propositions It can be either:

- Static (memoryless)
- Dynamic (history-based)

We assume that incentive schemes have a fixed level of granularity

Example - River

- Two companies share the usage of a river
- At each moment, the companies can either *discharge waste water* in the river or *treat the waste water* (at a cost)
 - If both firms discharge, the water quality deteriorates
 - If only one discharges, the quality is not affected
 - If both firms clean, the river quality improves

Example - River

- Two companies share the usage of a river
- At each moment, the companies can either *discharge waste water* in the river or *treat the waste water* (at a cost)
 - If both firms discharge, the water quality deteriorates
 - If only one discharges, the quality is not affected
 - If both firms clean, the river quality improves
- A regulator can impose taxes on each company
 - ► Company a goal: G(utility_a tax_a)
 - Taxes are initially zero \rightarrow it motivates the companies to discharge wastewater in the river
 - ▶ Regulator goal: **G**(quality ∧ fair).
Example - River

- With static incentive schemes:
 - > The regulator can set the taxes so that at least one of the firms is worse off by discharging
 - If only one firm is taxed, it may be seen as unfair
 - If both firms are taxed, there may be an unnecessary loss of profits to both firms
- With dynamic incentive schemes:
 - The regulator can alternate between taxing the firms a sufficient amount for discharging, which is more fair and efficient

Computational Problems

Incentive Verification

Check if an incentive scheme guarantees that the goal φ is satisfied at least c

Incentive Synthesis

Find an incentive scheme, if it exists, that guarantees that the goal φ is satisfied at least c

Variants of the problems

- $\zeta \in \{\mathsf{DSE}, \mathsf{NE}, \mathsf{RE}_m\}$ denotes the solution concept
- E (similarly, A) indicates that the goal is satisfied in *some* (resp. *all*) equilibrium (fixed ζ)
- S (similarly, D) indicates that the incentive scheme is *static* (resp. *dynamic*)

Static Case

• For verification, we apply the static incentive scheme to the wCGS and then check the corresponding SL[\mathcal{F}] formulas:

 $\exists \boldsymbol{\sigma}. [\zeta(\boldsymbol{\sigma}) \wedge (\mathsf{Ag}, \boldsymbol{\sigma}) arphi]$

$$orall {m \sigma}. [\zeta({m \sigma}) o ({\sf Ag}, {m \sigma}) arphi]$$

• For synthesis, we non-deterministically guess an incentive scheme, then proceed with verification

١

Complexity - Static Case

Theorem 8 (Hyland et al., 2024)

For $\zeta \in \{\text{DSE}, \text{NE}, \text{RE}_m\}, m \in \{1, ..., |Ag|\}$, the following problems are 2EXPTIME-complete:

- ζ -S-E-Incentive-Verification
- ζ -S-A-Incentive-Verification
- ζ -S-E-Incentive-Synthesis
- ζ -S-A-Incentive-Synthesis

Dynamic Case

- \bullet We transform the original ${\rm wCGS}$ into a modified one:
 - \blacktriangleright We embed the incentive designer into the ${\rm wCGS}$ as an agent
 - Her actions correspond to the application of incentives
 - ▶ The new wCGS interleaves actions of the incentive designer and the other agents
 - \blacktriangleright This requires to *inflate* the runs of the wCGS and translate formulas
- Then, verification is done similarly to the static case (with adapted SL[\mathcal{F}] formulas)
- For synthesis, we also check the existence of an incentive designer strategy (which leads to an additional alternation in the ζ -D-A case)

Complexity - Dynamic Case

Theorem 9 (Hyland et al., 2024)

For $\zeta \in \{\text{DSE}, \text{NE}, \text{RE}_m\}, m \in \{1, ..., |Ag|\}$, the following problems are 2EXPTIME-complete

- ζ -D-E-INCENTIVE-VERIFICATION
- ζ -D-A-Incentive-Verification
- ζ -D-E-Incentive-Synthesis

Finally, ζ -D-A-INCENTIVE-SYNTHESIS is in **3**EXPTIME and is **2**EXPTIME-hard.

Contents

- Incentive Design allows the partial redesign of games through incentives
- For the cases considered, the complexity of the problems is not harder than the corresponding Boolean rational verification problems (Abate et al., 2021)

Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

Temporal Discounting Logics with Temporal Discounting Model Checking

4 Future Work

Future discounting in MAS

- $\bullet\,$ Satisfying the goal sooner > after a long wait
- Temporal discounting operators alongside Linear Temporal Logic $(LTL^{disc}[\mathcal{D}])^{12}$
- $SL^{disc}[\mathcal{D}]$: Strategy Logic + future discounting¹³

¹²Almagor, Boker, and Kupferman (2014). "Discounting in LTL". In: *TACAS*.
 ¹³Mittelmann, Murano, and Perrussel (2023). "Discounting in Strategy Logic". In: *IJCAI*.
 Mittelmann, Murano, Perrussel

Strategy Logic with Discounting

- Enable to express:
 - Strategic abilities of agents with discounted goals
 - Solution concepts in discounting games
- \bullet Parametrized by a set of discounting functions $\mathcal{D}:$
 - Agents may be affected differently by how long it takes to achieve their goal

Strategy Logic with Discounting

A discounting function is a function that tends to zero and is non-increasing (e.g., $d(i) = \frac{1}{i+1}$) We assume the functions in D are computable in polynomial time

 $\mathsf{SL}^{\mathsf{disc}}[\mathcal{D}] \text{ syntax}$

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists s. \varphi \mid (a, s)\varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \varphi \mathbf{U}_{d}\varphi$$

where $p \in Ap$, $s \in Ap$, $a \in Ag$, and $d \in D$.

$SL^{disc}[\mathcal{D}]$ semantics

Quantified semantics defined over Concurrent Game Structures Discounted-until $\varphi_1 \mathbf{U}_d \varphi_2$ is weighted by how far in the future φ_1 and φ_2 occur Relation with LTL^{disc}[D], SL and SL[F]

- $\bullet \ \mathsf{LTL}^{\mathsf{disc}}[\mathcal{D}] \subset \mathsf{SL}^{\mathsf{disc}}[\mathcal{D}]$
- $\bullet \ \mathsf{SL} \subset \mathsf{SL}^{\mathsf{disc}}[\mathcal{D}]$
- SL[*F*] is interpreted over a different class of models Functions are independent of *how far* in the play they are being evaluated

Example - Secretary Problem

- \mathbf{F}_d k-hired
- $\exists s \forall t(a, s)(Ag_{-a}, t)(\bigvee_{j \in C} \neg present_j) \mathbf{U}_d k$ -hired

Figure 3: Instance of the secretary problem; the utility decreases the more time is taken to hire one.

Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

Model Checking $SL^{disc}[\mathcal{D}]$

Theorem 10 (Mittelmann, Murano, and Perrussel, 2023)

Model checking $SL^{disc}[D]$ with memoryless agents

PSPACE-complete

Theorem 11 (Mittelmann, Murano, and Perrussel, 2023)

Model checking $SL^{disc}[D]$ with memoryfull agents (k + 1)-EXPTIME (when functions in D are exponential-discounting, where k is the number of quantifiers alternations)

Contents

- $\bullet~\mathsf{SL}^{\mathsf{disc}}[\mathcal{D}]$: reasoning about temporal goals whose satisfaction value decays over time
- More expressive than SL
- Under certain restrictions, it has the same complexity as SL

Content

Strategic Reasoning with Quantitative Goals

- Logics with Quantitative Goals
- Model checking
- Module checking

2 Application

- Mechanism Design
- Incentive Engineering

3 Temporal Discounting

- Logics with Temporal Discounting
- Model Checking

4 Future Work

Directions for Future Work

- Synthesis from fragments of $SL[\mathcal{F}]$
- Partial synthesis
 - Incentives + Temporal Discounting
 - Fuzzy Norms
 - Finding minimal changes in the model
- $SL[\mathcal{F}] + SL^{disc}[\mathcal{D}]$?
- Extensions of model-checkers
 - MCMAS https://sail.doc.ic.ac.uk/software/mcmas/
 - STV https://github.com/blackbat13/stv
 - Vitamin https://arxiv.org/abs/2403.02170

Thank you for following our course!

Formal Aspects of Strategic Reasoning and Game Playing Strategic Reasoning with Quantitative Goals

Munyque Mittelmann¹, Aniello Murano¹, Laurent Perrussel²

¹ University of Naples Federico II

² University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

References I

- Abate, Gutierrez, Hammond, Harrenstein, Kwiatkowska, Najib, Perelli, Steeples, and Wooldridge (2021). "Rational verification: game-theoretic verification of multi-agent systems". In: *Applied Intelligence* 51.9.
- Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: *KR*.
- Almagor, Boker, and Kupferman (2014). "Discounting in LTL". In: TACAS.
- Almagor, Boker, and Kupferman (2016). "Formally Reasoning about Quality". In: Journal of the ACM.
- Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). "Reasoning about Quality and Fuzziness of Strategic Behaviours". In: *IJCAI*.
- Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: *KR (to appear)*.
- Jamroga, Mittelmann, Murano, and Perelli (2024). "Playing Quantitative Games Against an Authority: On the Module Checking Problem". In: AAMAS 2024.
- Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: *KR 2021*.
 - Mittelmann, Bouveret, and Perrussel (2022). "Representing and reasoning about auctions". In: *Autonomous Agents and Multi-Agent Systems* 36.1, p. 20.

References II

- Mittelmann, Maubert, Murano, and Perrussel (2022). "Automated Synthesis of Mechanisms". In: IJCAI 2022.
- Mittelmann, Maubert, Murano, and Perrussel (2023). "Formal Verification of Bayesian Mechanisms". In: AAAI.
- Mittelmann, Murano, and Perrussel (2023). "Discounting in Strategy Logic". In: IJCAI.
- Pnueli and Rosner (1989). "On the Synthesis of a Reactive Module.". In: Symposium on the Principles of Programming Languages (POPL 1989). New York: ACM, pp. 179–190.

This course is a part of the project *Strategic rEasoning for sociALly good mechanisms* (SEAL), which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101105549.

This presentation uses several icons made by *Freepik* from Flaticon (www.flaticon.com).