Formal Aspects of Strategic Reasoning and Game Playing Strategic Reasoning with Quantitative Goals

Munyque Mittelmann¹, Aniello Murano¹, Laurent Perrussel²

¹ University of Naples Federico II

² University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- [Logics with Quantitative Goals](#page-3-0)
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **•** [Mechanism Design](#page-36-0)
- [Incentive Engineering](#page-63-0)

[Temporal Discounting](#page-79-0)

- [Logics with Temporal Discounting](#page-80-0)
- [Model Checking](#page-86-0)

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- [Logics with Quantitative Goals](#page-3-0)
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- [Incentive Engineering](#page-63-0)

[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0)

• [Model Checking](#page-86-0)

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- [Logics with Quantitative Goals](#page-3-0)
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- [Incentive Engineering](#page-63-0)

[Temporal Discounting](#page-79-0)

- **[Logics with Temporal Discounting](#page-80-0)**
- [Model Checking](#page-86-0)

Strategic Reasoning with Quantitative Goals

- **Boolean verification**
	- \blacktriangleright Either the system satisfies a logic specification or it does not
	- \triangleright cleanRiver is either true or false in a given state
- Quantitative verification
	- ▶ Assessing the *quality* of Multi-Agent Systems (MAS)
	- \blacktriangleright Levels of quality represented with weights
	- \triangleright cleanRiver may be *partially* true in a state

Quantitative Logics for MAS

Logics with quantitative satisfaction

- Goals are expressed as a fuzzy temporal constraint:
	- Boolean satisfaction \rightsquigarrow quantitative satisfaction;
	- ▶ Specification language \leadsto LTL[$\cal{F}]^1$, ATL $^*[{\cal{F}}]/$ ATL[$\cal{F}]^2$, SL[$\cal{F}]^3$
		- System model \rightsquigarrow Weighted Game Structure.

¹Almagor. Boker, and Kupferman (2016). "Formally Reasoning about Quality". In: Journal of the ACM 2 Jamroga, Mittelmann, Murano, and Perelli (2024). "Playing Quantitative Games Against an Authority: On the Module Checking Problem". In: AAMAS 2024 ³Bouver. Kupferman, Markey, Maubert, Murano, and Perelli (2019). "Reasoning about Quality and Fuzziness of Strategic Behaviours". In: IJCAI

Concurrent Game Structures (CGS)

A CGS is a tuple $G = (Ap, Ag, Ac, V, d, o, l)$, where:

Weighted CGS (wCGS)

A wCGS is a tuple $G = (Ap, Ag, Ac, V, d, o, l)$, where:

Weight function instead of labeling function to model degrees of truth. (fuzzy satisfaction)

Quantitative logics for MAS

The logics are parametrized over a set of functions \mathcal{F} 4 :

```
f : [0,1]^n \rightarrow [0,1] \in \mathcal{F}
```
Example:

• $x \vee y := max(x, y)$ (disjunction) $\bullet x \wedge y := min(x, y)$ (conjunction) $\bullet \neg x := 1 - x$ (negation)

We assume that some standard functions belong to $\mathcal{F}: \leq$ (Boolean), $=$ (Boolean), bounded sum, etc.

⁴We assume the functions in $\mathcal F$ to be computable in polynomial time

Quantitative ATL^{*} and ATL

ATL^{*}[*F*] Syntax

$$
\varphi ::= \rho \mid f[\varphi,...,\varphi] \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{R} \varphi \mid \langle \! \langle A \rangle \! \rangle \varphi
$$

where p is a proposition, A is a coalition, and $f \in \mathcal{F}$

 $ATL[\mathcal{F}]$ Syntax (no temporal nesting allowed)

$$
\varphi ::= \rho \mid f[\varphi,...,\varphi] \mid \langle\!\langle A \rangle\!\rangle \mathbf{X} \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathbf{U} \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathbf{R} \varphi
$$

$\mathsf{ATL}^*[\mathcal{F}]$ and $\mathsf{ATL}[\mathcal{F}]$ Semantics

- \bullet "f[φ , ..., φ]" compute the function over the satisfaction values of its inputs
- \bullet " $\langle\langle A \rangle\rangle$ φ " coalition A maximizes the satisfaction value of φ
- **•** Abbreviations: $\llbracket A \rrbracket \varphi := \neg \langle \langle A \rangle \rangle \neg \varphi$ $\qquad \qquad \mathsf{F} \varphi := \top \mathsf{U} \varphi$ $\qquad \qquad \mathsf{G} \varphi := \bot \mathsf{R} \varphi$

Relation with Boolean ATL[∗]

Can we capture ATL^* with $ATL^*[\mathcal{F}]$?

Relation with Boolean ATL[∗]

Can we capture ATL^* with $ATL^*[\mathcal{F}]$?

Yes, when atomic propositions can only take values 0 and 1, and $\mathcal F$ contains only negation and disjunction.

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- **•** rescued denotes whether the artifact is at the rescue point
- \bullet dis computes the distance between two (normalized) positions
- \bullet pos_r denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle \langle a, b \rangle \rangle \text{ min}[dis[\text{pos}_a, \text{pos}_v], \text{dis}[\text{pos}_b, \text{pos}_v]] \blacktriangleright \text{U} \text{ rescued}$ What does the formula φ_{safe} captures?

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- **•** rescued denotes whether the artifact is at the rescue point
- \bullet dis computes the distance between two (normalized) positions
- \bullet pos_r denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle \langle a, b \rangle \rangle \text{ min}[dis[\text{pos}_a, \text{pos}_v], \text{dis}[\text{pos}_b, \text{pos}_v]] \blacktriangleright \text{U} \text{ rescued}$

What does the formula φ_{safe} captures?

Carriers a and b best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued.

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- **•** rescued denotes whether the artifact is at the rescue point
- \bullet dis computes the distance between two (normalized) positions
- \bullet pos_r denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle \langle a, b \rangle \rangle \text{ min}[dis[\text{pos}_a, \text{pos}_v], \text{dis}[\text{pos}_b, \text{pos}_v]] \blacktriangleright \text{U} \text{ rescued}$

What does the formula φ_{safe} captures?

Carriers a and b best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued. What if the artifact is never rescued?

Two carrier drones a and b cooperate trying to bring an artifact to a rescue point and keep it away from the "villain" drone v:

- **•** rescued denotes whether the artifact is at the rescue point
- \bullet dis computes the distance between two (normalized) positions
- \bullet pos_r denote the position of drone x
- Level of safety: minimum distance between any carrier and the villain

 $\varphi_{\text{safe}} := \langle \langle a, b \rangle \rangle \text{ min}[dis[\text{pos}_a, \text{pos}_v], \text{dis}[\text{pos}_b, \text{pos}_v]] \blacktriangleright \text{U} \text{ rescued}$

What does the formula φ_{safe} captures?

Carriers a and b best-performing joint strategy to keep the villain as far as possible from the carriers, until the artifact is rescued. What if the artifact is never rescued?

The satisfaction value of φ_{safe} would be 0.

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v) , the drone b has a response strategy?

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v) , the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification (each strategic quantifier resets previously assigned strategies).

Can we express that there is a strategy for the drone a such that for all strategies of the villain (v) , the drone b has a response strategy?

No, we cannot capture alternation of strategy quantification (each strategic quantifier resets previously assigned strategies).

We need a more expressive logic...

Quantitative SL

$SL[\mathcal{F}] Syntax$

$$
\varphi ::= p | \exists s. \varphi | (a, s) \varphi | f[\varphi, ..., \varphi] | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi
$$

where p is a proposition, s is a variable, a is an agent, and $f \in \mathcal{F}$

$SL[\mathcal{F}]$ Semantics

- Defined over assignments of strategies to variables and agents
- \bullet " $\exists s.\varphi$ " the maximal satisfaction value of φ for the possible assignments of strategy to s
- " $(a, s)\varphi$ " the satisfaction value of φ when agent a is assigned to the str. assigned to s
- **•** Abbreviations: $\forall s.\varphi := \neg \exists s. \neg \varphi$ **F** $\varphi := \top U \varphi$ **G** $\varphi := \top \top \varphi$ $\varphi \mathsf{R} \psi := \neg (\neg \varphi \mathsf{U} \neg \psi)$
- We call $LTL[\mathcal{F}]$ the fragment without strategic operators and bindings

There is a strategy for drone a such that for all strategies of the villain v , b has a response strategy to keep the villain as far as possible, until the artifact is rescued:

 \exists s.∀t. \exists s'. $(a,s)(v,t)(b,s')$ min[dis $[\text{pos}_a,\text{pos}_v],$ dis $[\text{pos}_b,\text{pos}_v]]$ ${\bf U}$ rescued

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φ _a. Let $s = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{$-$ a} denotes the set of agents without *a*. $\bm{s}_{-\bm{a}}$ denotes the strategies of Ag $_{-a}$ in the profile \bm{s} .

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φ _a. Let $s = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{$-$ a} denotes the set of agents without *a*. $\bm{s}_{-\bm{a}}$ denotes the strategies of Ag $_{-a}$ in the profile \bm{s} .

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

How can we express whether **s** is a NE in $SL[\mathcal{F}]$?

Example: Nash equilibrium

Assume each agent a has an LTL[F] goal φ _a. Let $s = (s_a)_{a \in Ag}$ denote a strategy profile. Ag_{$-$ a} denotes the set of agents without *a*. $\bm{s}_{-\bm{a}}$ denotes the strategies of Ag $_{-a}$ in the profile \bm{s} .

Nash equilibrium (NE)

The strategy profile s is a Nash equilibrium if for each agent a, no alternative strategy t for a leads to a better utility than her strategy s_a (while all other agent' strategies play s_{-a}).

How can we express whether **s** is a NE in $SL[F]$?

$$
\mathsf{NE}(\boldsymbol{s}) \stackrel{\text{def}}{=} \bigwedge_{a \in \mathsf{Ag}} \forall t. \big[(\mathsf{Ag}_{-a}, \boldsymbol{s}_{-a})(a, t) \varphi_a \leq (\mathsf{Ag}, \boldsymbol{s}) \varphi_a \big]
$$

Example: Nash equilibrium (cont)

We can also measure *how much* agent a can benefit from a selfish deviation using formula:

$$
\exists t \mathit{.diff} \left[(Ag_{-a}, \bm{s}_{-a})(a, t) \varphi_a, (Ag, \bm{s}) \varphi_a \right]
$$

where $diff(x, y) = max{0, x - y}$.

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- **[Incentive Engineering](#page-63-0)**

[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0)

• [Model Checking](#page-86-0)

Model checking

Model checking problem

Given an SL[$\cal F]$ (similarly ATL*[$\cal F]$ or ATL[$\cal F]$) formula φ , a wCGS $\cal G$, a state v , and a predicate $P \subseteq (0, 1]$, decide whether the satisfaction value of φ in v is a subset or equal to P, denoted

$$
\llbracket \varphi \rrbracket^{\mathcal{G}}(v) \subseteq P
$$

The predicate can be the set of values above a threshold $\epsilon \in (0,1]$: Decide whether $[\![\varphi]\!]^{\mathcal{G}}(v) \geq \epsilon$.

Complexity of Model Checking

Using automata-theoretic approaches:

```
Theorem 1 (Bouyer et al., 2019)
Model\text{-}checking SL[F] in (k+1) Exptime
(where k is the number of alternations of strategic operators )
```


Complexity of Model Checking

Algorithmic solution:

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- **[Incentive Engineering](#page-63-0)**

[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0) • [Model Checking](#page-86-0)

Weighted Module

Weighted Module is a special wCGS $G = (Ap, Ag, Ac, V, d, o, l)$:

Environment states (gray) under the control of an "environmental" authority, who shapes the game by selecting possible successors at each iteration.

Module Checking

For a given weighted module \mathcal{G} :

 \bullet $\mathcal{T} \in \text{exec}(\mathcal{G})$ is a possible wCGS resulting from the choices of e in \mathcal{G} .

```
Given an ATL*[\mathcal{F}] formula \varphi, a module \mathcal{G}, a position v:
         \llbracket \varphi \rrbracket^{\mathcal{G}}_r(v) = \{\llbracket \varphi \rrbracket^{\mathcal{T}}all possible values in v according to \mathcal T
```
Definition 5 (Module Checking)

Deciding whether $\llbracket \varphi \rrbracket^{\mathcal{G}}_r(v) \subseteq P$, for a given predicate $P \subseteq [0,1].$

Complexity of Module Checking

Automata-theoretic approach

Theorem 6 (Jamroga et al., [2024\)](#page-93-1)

- Module-checking ATL*[F]
- Module-checking $ATL[\mathcal{F}]$ expresses the experime-complete

3EXPTIME-complete

Relation with Boolean Module Checking and Model Checking

- ATL*[F] module checking is not subsumed by ATL* module checking over weighted modules
- $\mathsf{ATL}^*[\mathcal{F}]$ module checking is not subsumed by $\mathsf{ATL}^*[\mathcal{F}]$ model checking.

- Quantitative extensions of SL, ATL^{*}, and ATL
- Model and module checking problems have the same computational complexity as the corresponding logics with Boolean semantics
- MAS with quantitative goals: application to mechanism design

[Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)
- **[Application](#page-35-0)**
	- **•** [Mechanism Design](#page-36-0)
	- [Incentive Engineering](#page-63-0)
- **[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0)** • [Model Checking](#page-86-0)
Content

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **•** [Mechanism Design](#page-36-0)
- [Incentive Engineering](#page-63-0)

[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0)

• [Model Checking](#page-86-0)

[Future Work](#page-89-0)

Mechanism Design

Mechanism Design

Mechanism Design

Motivation

• Preference aggregation problems

- ▶ Auctions, elections, fair division protocols, etc
- Logic-based approach: verification⁵ and synthesis of mechanisms⁶
	- ▶ We use the weights $[-1, 1]$ for convenience

⁵ Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: KR 2021. ⁶Mittelmann, Maubert, Murano, and Perrussel (2022). "Automated Synthesis of Mechanisms". In: IJCAI 2022.

Mechanisms

- **•** Alternatives Alt
	- ▶ $\{ (buyer_{Bob}, pays_k), (buyer_{Ann}, pays_k) : 0 \le k \le 10 \}$ (selling an item)
	- \blacktriangleright {(Ann, Bob), (Ann, Carol), (Bob, Carol)} (choosing two representatives)
	- $\blacktriangleright \{(\frac{1}{3},\frac{1}{3},\frac{1}{3}),(\frac{1}{2},\frac{1}{2},0),(1,0,0),...\}$ (splitting a resource)

Mechanisms

- **•** Alternatives Alt
	- ▶ $\{ (buyer_{Bob}, pays_k), (buyer_{Ann}, pays_k) : 0 \le k \le 10 \}$ (selling an item)
	- \blacktriangleright {(Ann, Bob), (Ann, Carol), (Bob, Carol)} (choosing two representatives)

 $\blacktriangleright \{(\frac{1}{3},\frac{1}{3},\frac{1}{3}),(\frac{1}{2},\frac{1}{2},0),(1,0,0),...\}$ (splitting a resource)

Many mechanisms describe monetary transfers, thus an alternative is in the form $({\sf x},({\sf p}_a)_{a\in {\sf A} {\sf g}})$ where ${\sf x}\in{\sf X}$ is a choice from a finite set of choices, and ${\sf p}_a$ is the payment for agent a.

E.g.,
$$
x = \text{buyer}_{Bob}
$$
, $p_{Bob} = 10$, $p_{Ann} = 0$

- Agent's type (preference) $\theta_a \in \Theta_a$
- Valuation function $v_{\alpha\beta}: X \times \Theta_{\alpha} \rightarrow \mathbb{R}$
- Utility function $u_{\alpha\beta}$: Alt $\times \Theta_{\alpha} \to \mathbb{R}$
	- ► E.g., Possible types in a single-item auction $\Theta_{Bob} = \{0, ..., 10\}$
	- $\theta_{Bob} = 2$ means Bob value to the item is 2 euros

- Agent's type (preference) $\theta_a \in \Theta_a$
- Valuation function $v_{\alpha\beta}: X \times \Theta_{\alpha} \rightarrow \mathbb{R}$
- Utility function $u_{\alpha\beta}$: Alt $\times \Theta_{\alpha} \to \mathbb{R}$
	- E.g., Possible types in a single-item auction $\Theta_{Bob} = \{0, ..., 10\}$
	- $\rightarrow \theta_{Bob} = 2$ means Bob value to the item is 2 euros
	- \blacktriangleright The valuation of Bob is

$$
v_{Bob}(buyer_{Bob}, \theta_{Bob}) = \theta_{Bob}
$$

$$
v_{Bob}(buyer_{Ann}, \theta_{Bob}) = 0
$$

 \blacktriangleright The (quasi-linear) utility is

$$
u_{Bob}((buyer_{Bob}, (p_{Bob}, p_{Ann})), \theta_{Bob}) = v_{Bob}(buyer_{Bob}, \theta_{Bob}) - p_{Bob}
$$

$$
u_{Bob}((buyer_{Bob}, (5, 0)), 2) = 2 - 5 = -3
$$

- Туреѕ $\bm{\Theta} = \prod_{\mathsf{a} \in \mathsf{Ag}} \Theta_{\mathsf{a}}$
- Strategies $S=\prod_{a\in \mathsf{Ag}}\mathsf{s}_a$
- \bullet Mechanism $M : S \rightarrow$ Alt
	- \triangleright English auction: the agents increase the price until there are no other buyers interested
	- \triangleright Dutch auction: the price decreases until one agent accepts to buy

Example: wCGS representing the Dutch auction

Figure 2: Part of the mechanism for the Dutch auction with two agents and decrement dec $=\frac{1}{3}$.

Evaluation of a mechanism with rational agents: solution concepts

Evaluation of a mechanism with rational agents: solution concepts

Example of properties:

- **•** Budget-balance
- **•** Strategyproof
- Individual rationality
- **•** Efficiency
- \bullet ...
- Nash equilibrium (NE): considers (unilateral) deviations of individual agents
- Dominant strategy equilibrium (DSE): the strategy associated with each agent weakly maximizes her utility, for all possible strategies of other agents
- \bullet m-resilient equilibrium (RE_m): considers deviations by coalitions of agents rather than individuals, it tolerates deviations of up to m agents

Individual Rationality (IR):

$$
\mathsf{IR} \stackrel{\mathsf{def}}{=} \bigwedge_{a \in \mathsf{Ag}} 0 \leq \mathsf{util}_a
$$

The Dutch auction is IR

Strong Budget Balance (SBB):

$$
\mathsf{SBB} \stackrel{\mathsf{def}}{=} 0 = \sum_{a \in \mathsf{Ag}} \mathsf{pay}_a
$$

Weak Budget Balance (WBB):

$$
\mathsf{WBB} \stackrel{\mathsf{def}}{=} 0 \leq \sum_{a \in \mathsf{Ag}} \mathsf{pay}_a
$$

The Dutch auction is WBB and not SBB

Strategyproofness (SP) Let $\hat{\theta}_\text{\emph{a}}$ be the truth-revealing strategy for $\text{\emph{a}}$

 $\mathsf{DSE}(\bm{s})$ where $\mathcal{A}(\bm{s_a}) = \hat{\theta}_{\bm{a}}$ for each \bm{a}

The Dutch auction is not SP

Strategyproofness (SP) Let $\hat{\theta}_\text{\emph{a}}$ be the truth-revealing strategy for $\text{\emph{a}}$

 $\mathsf{DSE}(\bm{s})$ where $\mathcal{A}(\bm{s_a}) = \hat{\theta}_{\bm{a}}$ for each \bm{a}

The Dutch auction is not SP

Efficiency, Pareto optimality, ...

Model-checking SL[F]

Model checking mechanism properties with $SL[F]$ when agents are strategic: For a given property φ and solution concept ζ , we check

 $\exists \sigma . [\zeta(\sigma) \wedge (Ag, \sigma) \varphi]$

More complex mechanisms

By changing the specification language, we can also verify mechanisms with imperfect information 7 and probabilistic features 8

⁷ Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: KR 2021 8Mittelmann, Maubert, Murano, and Perrussel (2023). "Formal Verification of Bayesian Mechanisms". In: AAAI

- Creating mechanisms from a logical specification in $SL[F]$
- Satisfiability of SL (thus, $SL[\mathcal{F}]$) is undecidable in general
- **•** Decidable cases

Synthesis of Mechanisms

Given a finite set $V \subset [-1,1]$ such that $\{-1,1\} \subseteq V$, the V-satisfiability problem for SL[F] is the restriction of the satisfiability problem to V -weighted wCGS.

Theorem 7 (Mittelmann, Maubert, et al., [2022\)](#page-94-0)

The satisfiability of $SL[F]$ is decidable in the following cases:

- wCGS with bounded actions
- \bullet Turn-based wCGS
- Algorithms for the satisfiability \rightarrow return a satisfying wCGS when one exists (see Pnueli and Rosner, [1989\)](#page-94-1)

Optimal mechanism synthesis

Algorithm 2 Optimal mechanism synthesis

Data: A SL[\mathcal{F}] specification Φ and a set of possible values for atomic propositions \mathcal{V} **Result:** A $\mathrm{wCGS} \not\subseteq$ such that $[\![\Phi]\!]^{\mathcal{G}}$ is maximal Compute $\widetilde{\text{Val}}_{\Phi, \mathcal{V}}$ Let $\nu_1, ..., \nu_n$ be a decreasing enumeration of $\widetilde{\text{Val}}_{\Phi, \mathcal{V}}$ for $i=1...n$ do Solve $\mathcal V$ - satisfiability for Φ and $\varepsilon=\nu_i$ if *there exists* $\mathcal G$ *such that* $\llbracket\Phi\rrbracket^\mathcal G\geq\nu_i$ then return $\cal G$ end end

- Optimal mechanism synthesis
- Synthesis from auction rules (e.g. ADL-like 9) and strategic requirements (e.g. strategyproofness)

⁹Mittelmann, Bouveret, and Perrussel (2022). "Representing and reasoning about auctions". In: Autonomous Agents and Multi-Agent Systems 36.1, p. 20. Mittelmann, Murano, Perrussel 44 / 70

Example Auction rules

- **AG**($(\neg$ sold ∧ price + inc < 1) \rightarrow (price + inc = Xprice $\land \neg$ Xterminal))
- AG((sold \vee price + inc ≥ 1) \rightarrow (price = Xprice \wedge Xterminal))
- $\mathsf{AG}({\mathsf{choice}}=\mathsf{wins}_a\leftrightarrow \mathsf{bid}_a \wedge \bigwedge_{b\neq a}\neg \mathsf{bid}_a)$

$$
\bullet \ \textbf{AG} \big(\textstyle \bigwedge_{a \in \mathsf{Ag}} (\text{choice} = \text{wins}_a \rightarrow \text{pay}_a = \text{price}) \big)
$$

Contents

- Logic-Based Mechanism Design
	- ▶ Verifying properties under strategic behaviour \rightarrow MC SL[\mathcal{F}]-formulas
	- ▶ Generating mechanisms \rightarrow synthesis from SL[*F*]-formulas

Contents

- Logic-Based Mechanism Design
	- ▶ Verifying properties under strategic behaviour \rightarrow MC SL[\mathcal{F}]-formulas
	- ▶ Generating mechanisms \rightarrow synthesis from SL[*F*]-formulas
- Correctness of the encoding for classic mechanism design

Contents

- Logic-Based Mechanism Design
	- ▶ Verifying properties under strategic behaviour \rightarrow MC SL[*F*]-formulas
	- ▶ Generating mechanisms \rightarrow synthesis from SL[*F*]-formulas
- Correctness of the encoding for classic mechanism design
- Logics for MAS allows us to go further

Content

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

2 [Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- [Incentive Engineering](#page-63-0)
- **[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0)** • [Model Checking](#page-86-0)

[Future Work](#page-89-0)

. We can design new mechanisms with nice properties when agents act rationally...

- \bullet We can design new mechanisms with *nice* properties when agents act rationally...
- What if we already have a mechanism (or a *system*) but it doesn't have those properties?
- What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets. How can we change the system to address this issue?

• How can we change the system to satisfy desirable properties?

- \bullet We can design new mechanisms with *nice* properties when agents act rationally...
- What if we already have a mechanism (or a *system*) but it doesn't have those properties?
- What if we cannot redesign it from scratch?

Existing environmental legislation fails to reach sustainability targets. How can we change the system to address this issue?

- How can we change the system to satisfy desirable properties?
	- \blacktriangleright norms, incentives, ...

How can we convince agents to act on behalf of the environment?

- Laws prohibiting the use of disposable plastic bags
- Taxes based on companies' pollution rates
- Subsidizing public transportation fees
- \bullet Norm design¹⁰
- \bullet Incentive design¹¹

¹⁰ Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: KR. ¹¹Hyland. Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: KR (to appear).

How can we convince agents to act on behalf of the environment?

- Laws prohibiting the use of disposable plastic bags
- Taxes based on companies' pollution rates
- Subsidizing public transportation fees
- \bullet Norm design¹⁰
- \bullet Incentive design¹¹

¹⁰ Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: KR. ¹¹Hyland. Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: KR (to appear).

Incentive Design

- Agents try to maximize their utilities, expressed with $LTL[\mathcal{F}]$ -goals
- We want to impose *incentive schemes*
- Rationality is defined w.r.t. solution concepts

Incentive Scheme

It is a function, that assigns new weights to some (or all) atomic propositions It can be either:

- Static (memoryless)
- Dynamic (history-based)

We assume that incentive schemes have a fixed level of granularity

Example - River

- Two companies share the usage of a river
- At each moment, the companies can either *discharge waste water* in the river or treat the waste water (at a cost)
	- \blacktriangleright If both firms discharge, the water quality deteriorates
	- \blacktriangleright If only one discharges, the quality is not affected
	- \blacktriangleright If both firms clean, the river quality improves

Example - River

- Two companies share the usage of a river
- At each moment, the companies can either *discharge waste water* in the river or treat the waste water (at a cost)
	- \blacktriangleright If both firms discharge, the water quality deteriorates
	- ▶ If only one discharges, the quality is not affected
	- \blacktriangleright If both firms clean, the river quality improves
- A regulator can impose taxes on each company
	- ▶ Company a goal: $G(\text{utility}_3 \text{tax}_3)$
	- ▶ Taxes are initially zero \rightarrow it motivates the companies to discharge wastewater in the river
	- ▶ Regulator goal: G (quality \land fair).
Example - River

- **.** With static incentive schemes:
	- \triangleright The regulator can set the taxes so that at least one of the firms is worse off by discharging
	- \triangleright If only one firm is taxed, it may be seen as unfair
	- \triangleright If both firms are taxed, there may be an unnecessary loss of profits to both firms
- With dynamic incentive schemes:
	- \triangleright The regulator can alternate between taxing the firms a sufficient amount for discharging, which is more fair and efficient

Computational Problems

Incentive Verification

Check if an incentive scheme guarantees that the goal φ is satisfied at least c

Incentive Synthesis

Find an incentive scheme, if it exists, that guarantees that the goal φ is satisfied at least c

Variants of the problems

- $\bullet \zeta \in \{DSE, NE, RE_m\}$ denotes the solution concept
- \bullet E (similarly, A) indicates that the goal is satisfied in some (resp. all) equilibrium (fixed ζ)
- \bullet S (similarly, D) indicates that the incentive scheme is static (resp. dynamic)

Static Case

For verification, we apply the static incentive scheme to the wCGS and then check the corresponding $SL[F]$ formulas:

$$
\exists \boldsymbol{\sigma}. [\zeta(\boldsymbol{\sigma}) \wedge (\mathsf{Ag}, \boldsymbol{\sigma}) \varphi]
$$

$$
\forall \boldsymbol{\sigma}. [\zeta(\boldsymbol{\sigma}) \to (\mathsf{Ag}, \boldsymbol{\sigma}) \varphi]
$$

For synthesis, we non-deterministically guess an incentive scheme, then proceed with verification

Complexity - Static Case

Theorem 8 (Hyland et al., [2024\)](#page-93-0)

For $\zeta \in \{DSE, NE, RE_m\}, m \in \{1, ..., |Ag|\},$ the following problems are 2EXPTIME-complete:

- ζ-S-E-Incentive-Verification
- ζ-S-A-Incentive-Verification
- ζ-S-E-Incentive-Synthesis
- ζ-S-A-Incentive-Synthesis

Dynamic Case

- We transform the original wCGS into a modified one:
	- \triangleright We embed the incentive designer into the wCGS as an agent
	- \triangleright Her actions correspond to the application of incentives
	- \blacktriangleright The new wCGS interleaves actions of the incentive designer and the other agents
	- \blacktriangleright This requires to *inflate* the runs of the wCGS and translate formulas
- \bullet Then, verification is done similarly to the static case (with adapted SL[F] formulas)
- For synthesis, we also check the existence of an incentive designer strategy (which leads to an additional alternation in the ζ-D-A case)

Complexity - Dynamic Case

Theorem 9 (Hyland et al., [2024\)](#page-93-0)

For $\zeta \in \{DSE, NE, RE_m\}, m \in \{1, ..., |Ag|\},$ the following problems are $2EXPTIME-complete$

- ζ-D-E-Incentive-Verification
- ζ-D-A-Incentive-Verification
- ζ-D-E-Incentive-Synthesis

Finally, ζ-D-A-Incentive-Synthesis is in 3Exptime and is 2Exptime-hard.

Contents

- Incentive Design allows the partial redesign of games through incentives
- For the cases considered, the complexity of the problems is not harder than the corresponding Boolean rational verification problems (Abate et al., [2021\)](#page-93-1)

Content

[Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- [Mechanism Design](#page-36-0)
- [Incentive Engineering](#page-63-0)

3 [Temporal Discounting](#page-79-0)

- [Logics with Temporal Discounting](#page-80-0)
- [Model Checking](#page-86-0)

[Future Work](#page-89-0)

Content

[Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- **[Incentive Engineering](#page-63-0)**

3 [Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0) • [Model Checking](#page-86-0)

[Future Work](#page-89-0)

Future discounting in MAS

- Satisfying the goal sooner $>$ after a long wait
- Temporal discounting operators alongside Linear Temporal Logic (LTL^{disc}[D])¹²
- $SL^{disc}[D]$: Strategy Logic + future discounting¹³

¹² Almagor, Boker, and Kupferman (2014). "Discounting in LTL". In: TACAS. ¹³ Mittelmann, Murano, and Perrussel (2023). "Discounting in Strategy Logic". In: IJCAI. Mittelmann, Murano, Perrussel 61 / 70

Strategy Logic with Discounting

- Enable to express:
	- **1** Strategic abilities of agents with discounted goals
	- ² Solution concepts in discounting games
- Parametrized by a set of discounting functions \mathcal{D} :
	- \triangleright Agents may be affected differently by how long it takes to achieve their goal

Strategy Logic with Discounting

A discounting function is a function that tends to zero and is non-increasing (e.g., $d(i) = \frac{1}{i+1}$) We assume the functions in D are computable in polynomial time

 $SL^{disc}[D]$ syntax

$$
\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid \exists s. \varphi \mid (a,s) \varphi \mid \mathbf{X} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{U}_d \varphi
$$

where $p \in Ap$, $s \in Ap$, $a \in Ag$, and $d \in \mathcal{D}$.

$SL^{disc}[D]$ semantics

Quantified semantics defined over Concurrent Game Structures Discounted-until $\varphi_1 \mathbf{U}_d \varphi_2$ is weighted by how far in the future φ_1 and φ_2 occur Relation with LTL^{disc}[D], SL and SL[F]

- LTL^{disc} $[\mathcal{D}] \subset SL^{disc}[\mathcal{D}]$
- \bullet SL \subset SL^{disc} $[$ *D*]
- $SL[F]$ is interpreted over a different class of models Functions are independent of how far in the play they are being evaluated

Example - Secretary Problem

- \bullet F_d k-hired
- $\exists s \forall \bm{t}(s,s) (\mathsf{Ag}_{-{\bm{s}}},\bm{t}) (\bigvee_{j\in \mathsf{C}} \neg \mathsf{present}_j) \mathsf{U}_d$ *k*-hired

Figure 3: Instance of the secretary problem; the utility decreases the more time is taken to hire one.

Content

[Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- **[Incentive Engineering](#page-63-0)**

3 [Temporal Discounting](#page-79-0) **• [Logics with Temporal Discounting](#page-80-0)**

-
- [Model Checking](#page-86-0)

[Future Work](#page-89-0)

Model Checking $SL^{disc}[\mathcal{D}]$

Theorem 10 (Mittelmann, Murano, and Perrussel, [2023\)](#page-94-0)

Model checking $SL^{disc}[\mathcal{D}]$ with memoryless agents PSPACE-complete

Theorem 11 (Mittelmann, Murano, and Perrussel, [2023\)](#page-94-0)

Model checking $SL^{disc}[\mathcal{D}]$ with memoryfull agents $(k + 1)$ -EXPTIME (when functions in D are exponential-discounting, where k is the number of quantifiers alternations)

Contents

- SL^{disc}[D]: reasoning about temporal goals whose satisfaction value decays over time
- More expressive than SL
- Under certain restrictions, it has the same complexity as SL

Content

1 [Strategic Reasoning with Quantitative Goals](#page-2-0)

- **[Logics with Quantitative Goals](#page-3-0)**
- [Model checking](#page-25-0)
- [Module checking](#page-29-0)

[Application](#page-35-0)

- **[Mechanism Design](#page-36-0)**
- **[Incentive Engineering](#page-63-0)**

[Temporal Discounting](#page-79-0) • [Logics with Temporal Discounting](#page-80-0) • [Model Checking](#page-86-0)

[Future Work](#page-89-0)

Directions for Future Work

- \bullet Synthesis from fragments of SL[F]
- Partial synthesis
	- \blacktriangleright Incentives $+$ Temporal Discounting
	- ▶ Fuzzy Norms
	- \triangleright Finding minimal changes in the model
- \bullet SL[F] + SL^{disc}[D]?
- **•** Extensions of model-checkers
	- ▶ MCMAS <https://sail.doc.ic.ac.uk/software/mcmas/>
	- ▶ STV <https://github.com/blackbat13/stv>
	- ▶ Vitamin <https://arxiv.org/abs/2403.02170>

Thank you for following our course!

Formal Aspects of Strategic Reasoning and Game Playing Strategic Reasoning with Quantitative Goals

Munyque Mittelmann¹, Aniello Murano¹, Laurent Perrussel²

¹ University of Naples Federico II

² University Toulouse Capitole - IRIT

munyque.mittelmann@unina.it

References I

F

- F Abate, Gutierrez, Hammond, Harrenstein, Kwiatkowska, Najib, Perelli, Steeples, and Wooldridge (2021). "Rational verification: game-theoretic verification of multi-agent systems". In: Applied Intelligence 51.9.
- F Alechina, De Giacomo, Logan, and Perelli (2022). "Automatic Synthesis of Dynamic Norms for Multi-Agent Systems". In: KR.
- F Almagor, Boker, and Kupferman (2014). "Discounting in LTL". In: TACAS.
- F Almagor, Boker, and Kupferman (2016). "Formally Reasoning about Quality". In: Journal of the ACM.
- F Bouyer, Kupferman, Markey, Maubert, Murano, and Perelli (2019). "Reasoning about Quality and Fuzziness of Strategic Behaviours". In: IJCAI.
- F Hyland, Mittelmann, Murano, Perelli, and Wooldridge (2024). "Incentive Design for Rational Agents". In: KR (to appear).
- F Jamroga, Mittelmann, Murano, and Perelli (2024). "Playing Quantitative Games Against an Authority: On the Module Checking Problem". In: AAMAS 2024.
- F Maubert, Mittelmann, Murano, and Perrussel (2021). "Strategic Reasoning in Automated Mechanism Design". In: KR 2021.
	- Mittelmann, Bouveret, and Perrussel (2022). "Representing and reasoning about auctions". In: Autonomous Agents and Multi-Agent Systems 36.1, p. 20.

References II

- Mittelmann, Maubert, Murano, and Perrussel (2022). "Automated Synthesis of Mechanisms". In: IJCAI 2022.
- Mittelmann, Maubert, Murano, and Perrussel (2023). "Formal Verification of Bayesian Mechanisms". In: AAAI. F
	- Mittelmann, Murano, and Perrussel (2023). "Discounting in Strategy Logic". In: IJCAI.
- Ħ Pnueli and Rosner (1989). "On the Synthesis of a Reactive Module." In: Symposium on the Principles of Programming Languages (POPL 1989). New York: ACM, pp. 179–190.

This course is a part of the project Strategic rEasoning for sociALly good mechanisms (SEAL), which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101105549.

This presentation uses several icons made by Freepik from Flaticon (www.flaticon.com).