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Linear Temporal Logic (LTL)

A standard language for talking about infinite state sequences.

Amir Pnueli - The Temporal Logic of Programs. - FOCS’77

⊤ truth constant

p primitive propositions

¬ϕ classical negation

ϕ ∨ ψ classical disjunction

ϕ ∧ ψ classical conjunction

⃝ϕ in the next state. . .

3ϕ will eventually be the case

2ϕ is always the case

ϕUψ ϕ until ψ

ϕRψ ϕ release ψ

Minimal syntax
φ := p | ¬φ | φ ∧ φ | ⃝φ | φUφ
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Semantics of LTL
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LTL formulas are evaluated on infinite traces, that is, obtained from an infinite path.

The language defined by an LTL formula φ is L(φ) = {w ∈ Σω : w |= φ}.
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Example LTL formulae

Eventually I will graduate 3degree

The plane will never crash 2¬crash
I will eat pizza infinitely often 23eatPizza

. . . and they all lived happily ever after 32happy

We are not friends until you apologise (¬friends)UyouApologise
Every time it is requested, a document will be printed 2(print req → 3print)

The two processes are never active at the same time 2¬(proc1 ∧ proc2)
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Expansion laws

Describe temporal modalities recursively

- φUψ ≡ ψ ∨ (φ ∧⃝φUψ) φUψ is a “solution” of Ψ = ψ ∨ (φ ∧⃝Ψ)

- 3ψ ≡ ψ ∨⃝3ψ 3ψ is a solution of Ψ = ψ ∨⃝Ψ

- also 2ψ ≡ ¬3¬ψ ≡ ψ ∧⃝2ψ 2ψ is a solution of Ψ = ψ ∧⃝Ψ
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Release operator and PNF

Define the Release operator R in a way that the following holds:

φRψ ≡ ¬(¬φU¬ψ)
it also holds that
φUψ ≡ ¬(¬φR¬ψ) (Release is dual of Until)

PNF

Positive Normal Form for LTL: for a ∈ AP

φ ::= true | false | a | ¬a | φ ∧ φ | φ ∨ φ | ⃝φ | φUφ | φRφ

Theorem

Each LTL formula φ admits an equivalent in PNF sometimes denoted pnf(φ)
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LTLf : LTL over finite traces

LTLf

φ ::= A | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ⃝φ | φ1Uφ2 |  φ | 3φ | 2φ | Last

A: atomic propositions

¬φ, φ1 ∧ φ2: boolean connectives

⃝φ: “next step exists and at next step (of the trace) φ holds”

φ1Uφ2:“eventually φ2 holds, and φ1 holds until φ2 does”

 φ .
= ¬⃝¬φ: “if next step exists then at next step φ holds” (weak next)

3φ
.
= ⊤Uφ: “φ will eventually hold”

2φ
.
= ¬3¬φ: “from current till last instant φ will always hold”

Last
.
= ¬⃝⊤: denotes last instant of trace.
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LTLf semantics difference with LTL

– 3degree

– 2¬crash
– 23eatPizza

– 32happy

– (¬friends)UyouApologise
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Finite and infinite trace languages

- An alphabet is a (finite) set of symbols (letters). E.g. Σ = {a, b}
- A finite trace over Σ is a finite sequence of letters. E.g. w = ababbab

- An infinite trace over Σ is an infinite sequence of letters. E.g. w = ababbab . . .

- The sets of all finite and infinite traces are denoted Σ∗ and Σω, respectively.

- A finite language is a subset L ⊆ Σ∗. E.g. L = “traces ending with an a”

- An infinite language is a subset L ⊆ Σω. E.g. L = “traces containing a finite
number of a”

Language problems

Recognition: Determine whether a trace w belongs to a language L.

Game-Theoretic Generation: Two players generate w . Player one wants w ∈ L.

Automata are computational devices used to solve language problems.
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Deterministic Finite-state Automata

A Deterministic Finite-State
Automaton (DFA) is a tuple
D =⟨Q,Σ, s, δ,F ⟩ with:

- Q finite set of states

- Σ finite alphabet

- q0 ∈ Q initial state

- δ : Q ×Σ → Q transition function

- F ⊆ Q set of final states

q0 q1

b

a

b
a

Recognizes the traces with an even number of a.

A trace w ∈ Σ∗ is read on D by starting from q0 and following the transition function,
generating a run ρ ∈ Q∗.
We say w ∈ L(D) ⊆ Σ∗ if the corresponding run ρ ends in a final state.

Sample execution: q0
a−→ q1

b−→ q1
a−→ q0

b−→ q0
b−→ q0

a−→ q1
b−→ q1
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Nondeterministic Finite-state Automata

A Nondeterministic Finite-State
Automaton (NFA) is a tuple
N =⟨Q,Σ, I , δ,F ⟩ with:

- Q finite set of states

- Σ finite alphabet

- I ⊆ Q set of initial states

- F ⊆ Q set of final states

- δ : Q × Σ → 2Q nondeterministic
transition function

q0 q1

a, b

b

b

Recognizes the traces that end with b.

More than one run is possible on the same trace w ∈ Σ∗.
The automaton N accepts w ∈ L(N ) if at least one run is accepting.
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From nondeterministic to deterministic automata

The subset construction

Let N = ⟨Q,Σ, I , δ,F ⟩ be a nondetermin-
istic automaton. Consider the deterministic
automaton DN =⟨2Q ,Σ,Q0, δ

′,F⟩ with:
- Q0 = I

- F = {Q ′ ⊆ Q : Q ′ ∩ F ̸= ∅}
- δ′(Q ′, σ) =

⋃
q∈Q′ δ(q, σ)

{q0} {q0, q1}

a

b

a

b

Intuition: DN runs all the possible executions of N in parallel.
If one of them accepts the trace in N , then it does so in DN . L(DN ) = L(N )

Observation: |QDN | = 2|QN |.
Unfortunately, this exponential blow-up cannot be avoided.
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Closure properties
Complementation

A NFA N is complemented by:

1. NFA determinization N ⇒ DN

2. DFA complementation DN ⇒ DN

Observation: the determinizing operation comes with an exponential blow-up in the
size of the state-space of the automaton.
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Closure properties
Union

Union construction

Take two NFAs N1 =⟨Q1,Σ, I1, δ1,F1⟩ and N2 =⟨Q2,Σ, I2, δ2,F2⟩ defined over Σ.
The union automaton N1 ∪N2 =⟨Q,Σ, I , δ,F ⟩ is defined as:

Q = Q1 ∪ Q2
a

I = I1 ∪ I2

F = F1 ∪ F2

δ(q, σ) =

{
δ1(q, σ), q ∈ Q1

δ2(q, σ), q ∈ Q2

aWe assume that Q1 and Q2 are disjoint.

Intuition: N1 ∪N2 chooses nondeterministically to execute either N1 or N2.
L(N1 ∪N2) = L(N1) ∪ L(N2).
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Closure properties
Intersection

Synchronous product construction

Take two NFAs N1 =⟨Q1,Σ, I1, δ1,F1⟩ and N2 =⟨Q2,Σ, I2, δ2,F2⟩ defined over Σ.
The product automaton N1 ×N2 =⟨Q,Σ, I , δ,F ⟩ is defined as:

Q = Q1 × Q2

I = I1 × I2

F = F1 × F2

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

Intuition: N1 ×N2 executes N1 and N2 in parallel.
L(N1 ×N2) = L(N1) ∩ L(N2).
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Some exercises

- D1 recognizes the traces with an even number of b’s

- D2 recognizes the traces with at least an occurrence of a

- The product automaton D1 ×D2.
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Expressiveness

Regular expressions

α := ε | a | α · α | α+ α | α∗

Every regular expression α denotes a language L(α).
- The traces ending with a b (a+ b)∗ · b
- The traces with an a on every odd index (a+ b) · (a · (a+ b))∗

- The traces with an odd number of a b∗ · (a · b∗) · ((a · b∗) · (a · b∗))∗

Theorem

1. For every regular expression α, there exists a NFA Nα such that L(α) = L(Nα).

2. For every NFA N , there exists a regular expression αN such that L(αN ) = L(N ).
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The nonemptiness problem for NFA

0 1 2 3

4 5 6 7

a, b

a

b

b

a
b a, b

a
a

b

a

b

a

b

Question

Given a NFA N , decide whether

L(N )
?
̸= ∅

Does a trace w accepted by N exist?

Observation: a trace w is accepted by N iff there exists a run whose path starts in 0
and ends in a final state F .

Solution: Nonemptiness of NFAs reduces to reachability over graphs.
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Reachability with fix-point theory

0 1 2 3

4 5 6 7

Reach(F ) = µZ.(F ∨ ⟨next⟩Z)

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 19 / 46



Reachability with fix-point theory

0 1 2 3

4 5 6 7

Reach(F ) = µZ.(F ∨ ⟨next⟩Z)

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 19 / 46



From finite to infinite traces
Büchi automata

Deterministic (DBA) and nondeterministic (NBA) Büchi automata are of the same
type of DFA and NFA.

q0 q1

b

a

b
a

q0 q1

a, b

b

b

However, they read infinite traces w ∈ Σω.

As there is no last state in the corresponding runs ρ, the acceptance condition is to
visit a final state in F infinitely many times.

What are the languages recognized by the DBA and NBA depicted above?
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Subset construction no longer works

{q0} {q0, q1}

a

b

a

b

What is the infinite trace language accepted by this subset construction automaton?

The symbol b occurs infinitely many times (but also a might!) (Σ∗ · b)ω.
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NBA cannot be determinized

Theorem

The language L = {w ∈ Σω : w contains finitely many a′s} can be recognized by a
NBA but not by any DBA.

Corollary

NBAs are strictly more expressive than DBAs.
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Closure properties
Complementation

Theorem

For a given NBA N , there exists a NBA N such that L(N ) = Σω \ L(N ).

However, the current techniques for the construction of N are not trivial.

An entire research area in Formal Methods has been tackling this problem for many
decades.

Luckily, we are not going to need this in our course.
Just note that, as for NFAs, there is an unavoidable exponential blow-up.
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Closure properties
Union: same as for NFAs

Union construction

Take two NBAs N1 =⟨Q1,Σ, I1, δ1,F1⟩ and N2 =⟨Q2,Σ, I2, δ2,F2⟩ defined over Σ.
The union automaton N1 ∪N2 =⟨Q,Σ, I , δ,F ⟩ is defined as:

Q = Q1 ∪ Q2

I = I1 ∪ I2

F = F1 ∪ F2

δ(q, σ) =

{
δ1(q, σ), q ∈ Q1

δ2(q, σ), q ∈ Q2

The union automaton guesses at the beginning whether to follow either N1 or N2.
Being on finite or infinite traces does not make any difference.
L(N1 ∪N2) = L(N1) ∪ L(N2)
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Closure properties
Intersection: synchronous product does not work

q0 q1

a, b

a, b

q0 q1

a, b

a, b

L(D1 ×D2) = ∅!

We need a more clever way to deal with language intersection.
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Closure properties
Intersection

Another product construction

Take two NBAs N1 =⟨Q1,Σ, I1, δ1,F1⟩ and N2 =⟨Q2,Σ, I2, δ2,F2⟩ defined over Σ.
The product automaton N1 ⊗N2 =⟨Q,Σ, I , δ,F ⟩ is defined as:

Q = Q1 × Q2 × {1, 2}
I = I1 × I2 × {1}
F = F1 × Q2 × {1}

δ((q1, q2, 1), σ) =

{
(δ1(q1, σ), δ2(q2, σ), 1), if q1 /∈ F1

(δ1(q1, σ), δ2(q2, σ), 2), if q1 ∈ F1

δ((q1, q2, 2), σ) =

{
(δ1(q1, σ), δ2(q2, σ), 2), if q2 /∈ F2

(δ1(q1, σ), δ2(q2, σ), 1), if q2 ∈ F2

N1 ⊗N2 switches the index every time a corresponding final state is found.
L(N1 ⊗N2) = L(N1) ∩ L(N2).
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Expressiveness of NBAs

A language is called ω-regular if it the union of expressions of the form α · βω with α
and β being regular languages.

Theorem

1. For every ω-regular language L, there exists a NBA NL such that L(N ) = L.

2. For every NBA N , the language L(N ) is ω-regular.
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The nonemptiness problem for NBA

0 1 2 3

4 5 6 7

a, b

a

b

b

a
b a, b

a
a

b

a

b

a

b

Question

Given a NBA N , decide whether

L(N )
?
̸= ∅

Does a trace w accepted by N exist?

Observation: a trace w is accepted by N iff there exists a run whose path starts in 0
and visits a final state in F infinitely many times.

Solution: Nonemptiness of NBAs reduces to recurrent reachability over graphs.
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Recurrent reachability with fix-point theory

0 1 2 3

4 5 6 7

Buchi(F ) = νY.(Reach(F ∧ ⟨next⟩Y))

= νY.(µZ.((F ∧ ⟨next⟩Y︸ ︷︷ ︸
Nested fix-point

) ∨ ⟨next⟩Z))
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Generalized Nondeterministic Büchi Automata

A Generalized Nondeterministic Büchi Automaton (GNBA) is a tuple N =⟨Q,Σ, I , δ,F⟩
where everything is as for a standard NBA except that

F = (F1,F2, . . . ,Fn)

A run ρ in N is accepting iff it visits every Fi infinitely often.

Theorem

It holds that L(N ) = L(N1 ⊗ . . .⊗Nn), where Ni =⟨Q,Σ, q0, δ,Fi ⟩.
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From LTL to Generalized Nondeterministic Büchi Automata

Theorem

For an LTL formula φ, we can construct a generalized nondeterministic Büchi automaton
Nφ =⟨Q,Σ, I , δ,F⟩ such that L(Nφ) = L(φ).

We will now look into the details on the construction of Nφ.
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Construction Intuition
Boolean cases

Automaton for φ = ⊤
⊤

∗

Automaton for φ = ⊥
⊥

∗

Automaton for φ = p
p

⊤ ⊥

p ¬p

∗ ∗

Automaton for φ = ¬ψ: Nψ

Automaton for φ = ψ1 ∧ ψ2: Nψ1 ⊗Nψ2

Automaton for φ = ψ1 ∨ ψ2: Nψ1 ∪Nψ2
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Construction Intuition
Until and Release operators

Automaton for φ = ⃝ψ
⃝ψ Nψ

∗

Automaton for φ = ψ1Uψ2

ψ1Uψ2 Nψ2

”ψ1”

”ψ2”

Automaton for φ = ψ1Rψ2

ψ1Rψ2 Nψ∧ψ2

”ψ1”

”ψ1 ∧ ψ2”
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Fischer-Ladner closure

Definition (Fischer-Ladner Closure)

For a given LTL formula φ, the FS-closure of φ, denoted cl(φ) is the set of subformulas
of φ and their negation (where ¬¬ψ = ψ). It is (recursively) defined as follows:

– φ ∈ cl(φ)

– If ψ ∈ cl(φ) then ¬ψ ∈ cl(φ)

– If ψ1 ∧ ψ2 ∈ cl(φ) then ψ1, ψ2 ∈ cl(φ)

– If ⃝ψ ∈ cl(φ) then, ψ ∈ cl(φ)

– If ψ1Uψ2 ∈ cl(φ) then ψ1, ψ2 ∈ cl(φ)

For example, φ = p ∧ ((⃝p)Uq)

cl(φ) = {p∧((⃝p)Uq),¬(p∧((⃝p)Uq)), p,¬p, (⃝p)Uq,¬((⃝p)Uq),⃝p,¬⃝p, q,¬q}
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The state-space of the automaton

Atoms

A set α ⊂ cl(φ) is called atom if it is maximally consistent, that is:

– For all ψ ∈ cl(φ) either ψ ∈ α or ¬ψ ∈ α (maximality)

– ψ1 ∧ ψ2 ∈ α iff ψ1, ψ2 ∈ α (consistency)

By Atoms(φ) = {α ⊂ cl(φ) : α is an atom }

The space set of Nφ is defined as Q = Atoms(φ).

Intuition: a state α in the automaton carries out the information on which subformulas
of φ need to be satisfied when the computation starts from α itself.

Observation: the size of Nφ is exponential in the length of φ. Once again, this
exponential blow-up is unavoidable.
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Initial states, transition function, and final states of the automaton

Initial states

I = {α ∈ Q : φ ∈ α} (every atom α containing φ is an initial state)

Transition function

Take two atoms α and α′ together with σ ∈ Σ = 2Prop.
We say that α′ ∈ δ(α, σ) if

– σ = α ∩ Prop (Advance only if you read something consistent)

– ⃝ψ ∈ α iff ψ ∈ α′ (Check ψ at the next stage)

– ψ1Uψ2 ∈ α iff either ψ2 ∈ α or both ψ1 ∈ α and ψ1Uψ2 ∈ α′ (Keep checking U if
needed)

Final states

F = (Fψ1∪ψ2)ψ1∪ψ2∈cl(φ) with
Fψ1Uψ2 = {α ∈ Q : ψ2 ∈ α or ¬(ψ1Uψ2) ∈ α}, for each ψ1Uψ2 ∈ cl(φ)
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Automata Tools

Several constructions of Nφ are available in the literature, including online tools:

– https://spot.lrde.epita.fr/app/

– http://www.lsv.fr/ gastin/ltl2ba/index.php

– https://owl.model.in.tum.de/try/

These constructions are always hard to handle manually, as they provide exponentially
sized automata.
However, the general construction is not always necessary in practice.
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Parity Automata

A Deterministic Parity Automaton (DPA) is a tuple D =⟨Q,Σ, s, δ, α⟩ with:
- Q finite set of states

- Σ finite alphabet

- q0 ∈ Q initial state

- δ : Q × Σ → Q transition function

- α : Q → N coloring function

– inf(ρ) = {α(q) ∈ N : q occurs infinitely often in ρ}.
– ρ is accepting if the max value in inf(ρ) is even.

Observe: Büchi acceptance condition is a special case of parity with α−1(2) = F and
α−1(1) = Q \ F .
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Automata-Theoretic Approach

Theorem

For every Nondeterministic Büchi automaton N , there exists a Deterministic Parity
Automaton D of size exponential w.r.t. N , such that

L(N ) = L(D).

Theorem

For every LTL formula φ, there exists a Deterministic Parity Automaton Dφ of size
double exponential w.r.t. |φ|, such that

L(φ) = L(Dφ).
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Automata-Theoretic Approach for the finite trace case

Theorem

For every LTLf /ldlf formula φ, there exists a Deterministic Finite-State Automaton
(DFA) Dφ of size double exponential w.r.t. |φ|, such that

L(φ) = L(Dφ).
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Synthesis in AI terms

Synthesis

� Agent acts in a (nondeterministic) Environment

� Agent controls actions

� Environment controls fluents

� Task is given to agent

� Task talks both about fluents and actions

� Agent has to realize the task in spite of how the Environment reacts.

Perelli (Sapienza University of Rome) Game-Theoretic Approach ESSAI-24 41 / 46



Agent in Environment

Agent process/behavior

Agent process/behavior (also called, “plan”, “strategy”, “policy”, “protocol”):

σa : (fluents)
∗ → actions

where

(fluents)∗ denotes the history of what observed so far by the agent
(a finite sequence of fluents configurations)

actions denotes the next action that the agent does
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Environment with an Agent

Environment process/behavior

Environment process/behavior:

σe : (actions)∗ → fluents
where

(actions)∗ denotes the history of what observed so far by the environment
(a finite sequence of agent actions)

fluents denotes the next effects that the environment brings about.
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Traces

Traces

Observe that both the agent process and the environment process:

σa : (fluents)∗ → actions

σe : (actions)∗ → fluents

cannot be executed in isolation.
But they can be executed together, generating a trace (sometime also call a
“play”):

trace(σa, σe) = F0 ∪ A0;F1 ∪ A1; · · ·
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Synthesis

– Agent controlling truth-value of set of variables Y
– Environment controlling truth-value of set of variables X
– An LTL (or LTLf ) formula φ over variables X ∪ Y specifying correctness

Find a strategy σa for the agent such that, for each strategy σe of the environment:

trace(σa, σe) |= φ
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Game-Theoretic approach to Temporal Synthesis

Turn the specification into a corresponding Deterministic Automaton φ⇝ Dφ

Turn the Deterministic Automaton into a 2-player game Dφ ⇝ GDφ

Solve the 2-player game and extract a strategy σ0 for player 0;

Strategy σ0 corresponds to the one σa for the agent in the original synthesis
problem!

q q′
X ∪ Y q q,X

q

q1

q2

Y

Y1

Y2
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