Game-Theoretic Approach to Temporal Synthesis Symbolic Techniques

Antonio Di Stasio Giuseppe Perelli Shufang Zhu

2nd European Summer School on Artificial Intelligence Athens (Greece) 15-19 July 2024

- Synthesis and automata-theoretic approaches to synthesis
- Reduction to games on graphs (automata)
 - Reachability game, safety game, GR(1) game etc.
 - Game solving is linear or poly, wrt the size of the game graph

- The game graph size?
 - LTL_f synthesis, explicit DFA **2EXP** number of states

–
$$|arphi|=10$$
, $\#$ states = $2^{2^{10}}$

- Symbolic techniques, compact representation and reasoning

Outline

- Symbolic DFA representation
 - Monolithic representation
 - Partitioned representation
- Symbolic synthesis techniques
 - Symbolic LTL_f synthesis, reachability game ¹
- Binary Decision Diagram (BDD)

¹Zhu et al.: Symbolic LTL_f Synthesis.

Explicit DFA as a tuple $\mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$

- ${\cal P}$ a set of propositions
- \mathcal{S} a set of states
- s_0 initial state
- $\delta: \mathcal{S} \times 2^{\mathcal{P}} \rightarrow \mathcal{S}$ transition function
- \mathcal{F} a set of accepting states

Explicit DFA Representation

- $\mathcal{P} = \{i, o\}$
- $S = \{s_0, s_1, s_2, s_3\}$
- s_0 initial state
- $\delta: \mathcal{S} \times 2^{\mathcal{P}} \to \mathcal{S} \\ \delta(s_1, \neg i \land o) = s_2$
- $\mathcal{F} = \{s_2, s_3\}$

From Explicit DFA to Symbolic DFA

- $\mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$
- State space \mathcal{S}
- Answer queries:
 - Which state is the initial state?
 - Is s an accepting states?
 - Consider current state s and transition label α , what is the successor state?

- ...

- Explicit DFA: $\mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$
- Symbolic DFA: Maintain the information as in the explicit DFA
 - State space ${\cal S}$
 - Answer queries: initial state? accepting state? successor state?

-
$$S = \{s_0, s_1, s_2, s_3\}$$

– Binary state encoding $\mathcal{Z} = \{z_0, z_1\}$

State	Interpretation Z
<i>s</i> 0	$z_0=0, z_1=0$
<i>s</i> ₁	$z_0 = 0, z_1 = 1$
<i>s</i> ₂	$z_0 = 1, z_1 = 0$
<i>s</i> 3	$z_0 = 1, z_1 = 1$

- **EXP** less number of variables

-
$$S = \{s_0, s_1, s_2, s_3\}$$

- $S = \{s_0, s_1, s_2, s_3\}$
- Initial state so

- $S = \{s_0, s_1, s_2, s_3\}$
- Initial state $(z_0 = 0, z_1 = 0)$

- $S = \{s_0, s_1, s_2, s_3\}$
- Initial state $(z_0 = 0, z_1 = 0)$
- Accepting states $\mathcal{F} = \{s_2, s_3\}$

- $S = \{s_0, s_1, s_2, s_3\}$
- Initial state $(z_0 = 0, z_1 = 0)$
- Accepting states $\mathcal{F} = \{(z_0 = 1, z_1 = 0), (z_0 = 1, z_1 = 1)\}$

- $S = \{s_0, s_1, s_2, s_3\}$
- Initial state $(z_0 = 0, z_1 = 0)$
- Accepting states $\mathcal{F} = \{(z_0 = 1, z_1 = 0), (z_0 = 1, z_1 = 1)\}$
- \mathcal{F} is an explicit set, not succinct enough

- Queries related to the set of accepting states
 - \mathcal{F} : Is s an accepting state? Answers: Yes, No
 - Boolean formula f over \mathcal{Z} : Is interpretation $Z \in 2^{\mathcal{Z}}$ a model of f? Answers: true, false
 - Encode \mathcal{F} as a Boolean formula f over \mathcal{Z} , more succinct than an explicit set

- Every state $s \in S$ as a Boolean formula **only** satisfied by the corresponding interpretation $Z \in 2^{Z}$
 - Through conjunction, refers to a certain state

State	Interpretation Z	Boolean formula
<i>s</i> 0	$z_0=0, z_1=0$	$\neg z_0 \land \neg z_1$
<i>s</i> ₁	$z_0 = 0, z_1 = 1$	$ eg z_0 \wedge z_1$
<i>s</i> ₂	$z_0 = 1, z_1 = 0$	$z_0 \wedge \neg z_1$
<i>s</i> 3	$z_0 = 1, z_1 = 1$	$z_0 \wedge z_1$

 $-% \left(A_{1}^{2}\right) =0$ A set of states is a disjunction on the conjunctions

- This disjunction refers to a certain set of states

- Initial state
$$\iota = \underbrace{\neg z_0 \land \neg z_1}_{s_0(00)}$$

- Accepting states
$$f = \underbrace{(\neg z_0 \land z_1)}_{s_1(01)} \lor \underbrace{(z_0 \land z_1)}_{s_3(11)}$$

- State variables $\mathcal{Z} = \{z_0, z_1\}$
- Transition function $\delta(s, \alpha) = s'$
- Boolean formula η only evaluates to true or false
- How to use Boolean formula to encode transition function?
 - Monolithic representation
 - Partitioned representation

Given: Current state *s*, transition condition α

Given: Current state *s*, transition condition α

Return: Successor state *s*[']

Given: Current state *s*, transition condition α

Return: Successor state *s*[']

- What about the following?

Given: Current state *s*, transition condition α

Return: Successor state *s*[']

- What about the following?

Given: Interpretation Z, transition condition α , interpretation Z'

Given: Current state *s*, transition condition α

Return: Successor state *s*[']

- What about the following?

Given: Interpretation Z, transition condition α , interpretation Z'

Return: Is (Z, α, Z') a correct transition? *Yes, No*

Return: Is (Z, α, Z') a correct transition? *Yes, No*

Return: Is (Z, α, Z') a correct transition? *Yes, No*

– Introduce prime variables $\mathcal{Z}' = \{z' \mid z \in \mathcal{Z}\}$ to differentiate current and successor

Return: Is (Z, α, Z') a correct transition? *Yes*, *No*

- Introduce prime variables $\mathcal{Z}' = \{z' \mid z \in \mathcal{Z}\}$ to differentiate current and successor
- Transition function as Boolean formula η over $\mathcal{Z} \cup \mathcal{P} \cup \mathcal{Z}'$

Return: Is (Z, α, Z') a correct transition? *Yes, No*

- Introduce prime variables $\mathcal{Z}' = \{z' \mid z \in \mathcal{Z}\}$ to differentiate current and successor
- Transition function as Boolean formula η over $\mathcal{Z} \cup \mathcal{P} \cup \mathcal{Z}'$
 - Evaluates as *true* only for correct transitions

Each transition as a conjunction of the corresponding interpretation

$$- \delta(s_1, \neg o) = s_3$$
$$- \underbrace{\neg z_0 \land z_1}_{s_1} \land \neg o \land \underbrace{z'_0 \land z'_1}_{s_3}$$

 η : disjunction of conjunctions

 $\eta = \bigvee (Z \land \alpha \land Z')$

Symbolic $\mathcal{D}_m = (\mathcal{P}, \mathcal{Z}, \mathcal{Z}', \iota, \eta, f)$

-	$\mathcal{Z} = \{z_0, z_1\}$
_	$\mathcal{Z}' = \{z'_0, z'_1\}$

- Accepting states

$$f = \underbrace{(\neg z_0 \land z_1)}_{s_1(01)} \lor \underbrace{(z_0 \land z_1)}_{s_3(11)}$$

Each transition as a conjunction

 $- (s_1, \neg o) \rightarrow s_3$

$$-\underbrace{\neg z_0 \wedge z_1}_{s_1} \wedge \neg o \wedge \underbrace{z'_0 \wedge z'_1}_{s_3}$$
Example of Monolithic Representation

Each transition as a conjunction

$$-(s_1, i \wedge o) \rightarrow s_1$$

$$-\underbrace{\neg z_0 \land z_1}_{s_1} \land i \land o \land \underbrace{\neg z_0' \land z_1'}_{s_1}$$

Example of Monolithic Representation

 η : disjunction of conjunctions

 $\eta = \bigvee (Z \land \alpha \land Z')$

$\mathcal{D}_m = \{\mathcal{P}, \mathcal{Z}, \mathcal{Z}', \iota, \eta, f\}$

- \mathcal{P} a set of propositions
- \mathcal{Z} a set of state variables, \mathcal{Z}' prime state variables
- ι Boolean formula over $\mathcal Z$ denoting the initial state
- η Boolean formula over $\mathcal{Z}\cup\mathcal{P}\cup\mathcal{Z}'$ representing the transition function
- f Boolean formula over \mathcal{Z} representing the set of accepting states

- Monolithic representation

- Monolithic representation
 - Straightforward, primed variables

- Monolithic representation
 - Straightforward, primed variables
- Partitioned representation

- Monolithic representation
 - Straightforward, primed variables
- Partitioned representation
 - Model Checking

- Monolithic representation
 - Straightforward, primed variables
- Partitioned representation
 - Model Checking
 - LTL_f synthesis

$\mathcal{D}_{p} = \{\mathcal{P}, \mathcal{Z}, \iota, \eta, f\}$

- \mathcal{P} a set of propositions
- \mathcal{Z} a set of state variables
- ι Boolean formula over $\mathcal Z$ denoting the initial state
- η transition function in a partitioned way
- f Boolean formula over \mathcal{Z} representing the set of accepting states

Given: Current state *s*, transition condition σ

Return: Successor state *s*'

– Every state s as interpretation over \mathcal{Z}

Given: Current state *s*, transition condition σ

Return: Successor state *s*[']

- Every state s as interpretation over \mathcal{Z}
 - State s_1 corresponds to $z_0 = 0, z_1 = 1$

Given: Current state *s*, transition condition σ

Return: Successor state *s*[']

- Every state s as interpretation over \mathcal{Z}
 - State s_1 corresponds to $z_0 = 0, z_1 = 1$
- Partition the computation of successor state

Partition the computation of successor state s'

– compute the value of $z\in\mathcal{Z}$ one after another

 $\eta = \{\eta_{z_0}, \eta_{z_1}, \ldots\}$, $|\eta| = |\mathcal{Z}|$

Partition the computation of successor state s'

- compute the value of $z\in\mathcal{Z}$ one after another
- $\eta = \{\eta_{z_0}, \eta_{z_1}, \ldots\}, \ |\eta| = |\mathcal{Z}|$
 - η_{z_i} Boolean formula over $\mathcal{Z} \cup \mathcal{P}$

Partition the computation of successor state s'

- compute the value of $z\in\mathcal{Z}$ one after another
- $\eta = \{\eta_{z_0}, \eta_{z_1}, \ldots\}, \ |\eta| = |\mathcal{Z}|$
 - η_{z_i} Boolean formula over $\mathcal{Z} \cup \mathcal{P}$
 - $\eta_{z_i}(Z, \sigma)$ evaluates to *true* iff $z_i = 1$ in the corresponding successor state of outgoing edge (Z, σ)

$$\eta = \{\eta_{z_0}, \eta_{z_1}, \ldots\}, \ |\eta| = |\mathcal{Z}|$$

- η_{z_i} : disjunction of conjunctions
 - every conjunction, an outgoing edge (Z, σ) , which makes $z_i = 1$ in the corresponding successor state

$$\mathcal{Z} = \{z_0, z_1\}$$

$$- (\underbrace{\neg z_0, z_1}_{s_1(01)}, \neg p, q) \rightarrow \underbrace{z_0, \neg z_1}_{s_2(10)}$$

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true* $\eta_{z_1}(\neg z_0, z_1, \neg i, o)$ evaluates to *false*

$$-(\underbrace{\neg z_0, z_1}_{s_1(01)}, i, o) \rightarrow \underbrace{\neg z_0, z_1}_{s_1(01)}$$

- $\eta_{z_0}(\neg z_0, z_1, i, o)$ evaluates to false $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to true

$$-(\underbrace{z_0,z_1}_{s_3(11)},true)\rightarrow \underbrace{z_0,z_1}_{s_3(11)}$$

- $\eta_{z_0}(z_0, z_1, true)$ evaluates to *true* $\eta_{z_1}(z_0, z_1, true)$ evaluates to *true*

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true* $\eta_{z_1}(\neg z_0, z_1, \neg i, o)$ evaluates to *false*
- $\eta_{z_0}(\neg z_0, z_1, i, o)$ evaluates to false $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to true
- $\eta_{z_0}(z_0, z_1, true)$ evaluates to *true* $\eta_{z_1}(z_0, z_1, true)$ evaluates to *true*

. . .

- $\eta_{z_0}(\neg z_0, z_1, \neg i, o)$ evaluates to *true*
- $\eta_{z_0}(z_0, z_1, true)$ evaluates to true

$$\eta_{z_0} = (\neg z_0 \wedge z_1 \wedge \neg i \wedge o) \vee (z_0 \wedge z_1 \wedge true) \vee \dots$$

- . . .

- $\eta_{z_1}(\neg z_0, z_1, i, o)$ evaluates to *true*
- $\eta_{z_1}(z_0, z_1, true)$ evaluates to true

$$\eta_{z_1} = (\neg z_0 \wedge z_1 \wedge i \wedge o) \lor (z_0 \wedge z_1 \wedge true) \lor \dots$$

- . . .

$\mathcal{D}_{p} = \{\mathcal{P}, \mathcal{Z}, \iota, \eta, f\}$

- ${\cal P}$ a set of propositions
- \mathcal{Z} a set of state variables
- ι Boolean formula over $\mathcal Z$ denoting the initial state
- $\eta = \{\eta_z \mid z \in \mathcal{Z}\}$ a sequence of Boolean formulas over $\mathcal{Z} \cup \mathcal{P}$ encoding the transition function
- f Boolean formula over Z representing the set of accepting states

	Explicit	Monolithic	Partitioned
Props	${\mathcal P}$	\mathcal{P}	\mathcal{P}
States	$ \mathcal{S} = n$	$ \mathcal{Z} = \mathcal{Z}' = \log_n$	$ \mathcal{Z} = \log_n$
Init.	<i>s</i> 0	$\iota = \neg z_0 \land \neg z_1$	$\iota = \neg z_0 \land \neg z_1$
Acc.	${\cal F}$	$f = igvee \wedge$	$f = igvee \wedge$
Transition	$\delta: \mathcal{S} imes 2^{\mathcal{P}} o \mathcal{S}$	$\eta(\mathcal{Z}\cup\mathcal{P}\cup\mathcal{Z}')$	$\eta = \{\eta_z(\mathcal{Z} \cup \mathcal{P}) \mid z \in \mathcal{Z}\}$

- Synthesis as two-player games
 - LTL_f synthesis, reachability games
 - Synthesis under LTL specifications, parity games

- Synthesis as two-player games
 - LTL_f synthesis, reachability games
 - Synthesis under LTL specifications, parity games
- Two-player games
 - Fixpoint computation on game arena
 - Symbolic fixpoint computation

 $\mathrm{LTL}_{\mathbf{f}}$ synthesis

- Reachability game on DFA, agent o and environment i
- Agn: visit accepting states

Algorithm 1 Reachability game on DFA $D_p = (\mathcal{I}, \mathcal{O}, \mathcal{S}, s_0, \delta, \mathcal{F})$

- 1: Win := \mathcal{F}
- 2: while $Win \neq Win \cup force_{ag}(Win)$ do
- 3: Win := Win \cup force_{ag}(Win)
- 4: end while
- 5: return Win

 $\mathsf{force}_{\mathsf{ag}}(\mathsf{Win}) = \{ s \mid \exists O \forall I \delta(s, I \cup O \in \mathsf{Win}) \}$

- O a winning output of state s

Recap on LTL_f Synthesis

 $W_0 = \{s_3\}$, accepting states

Recap on LTL_f Synthesis

- $-W_0 = \{s_3\}$
- There exists o, for every i
 - $W_1 = \{\textbf{s}_3, \textbf{s}_1, \textbf{s}_2\}$

Recap on LTL_f Synthesis

Recap on LTL_f Synthesis

- $-W_0 = \{s_3\}$
- $W_1 = \{s_3, s_1, s_2\}$
- $W_2 = \{s_3, s_1, s_2, s_0\}$
- $W_3 = \{s_3, s_1, s_2, s_0\}$
- $W_3 = W_2$, fixpoint

Recap on LTL_f Synthesis

- $s_0 \in W = \{s_3, s_1, s_2, s_0\}$
- Realizable
- Winning strategy as a transducer

Winning strategy as an explicit transducer $\mathcal{T} = (2^{\mathcal{I}}, 2^{\mathcal{O}}, \text{Win}, s_0, \varrho, \omega)$

- Win $\subseteq \mathcal{S}$ is the set of winning states
- $-\omega: {
 m Win} o 2^{\mathcal O}$ is the output function such that $\omega(s)$ is a winning output of s

$$- \omega(s_0) = o$$
$$- \omega(s_1) = \neg o$$

Reachability game on symbolic DFA $\mathcal{D}_p = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- A Boolean formula w over \mathcal{Z} for winning states
- A Boolean formula t over $\mathcal{Z} \cup \mathcal{O}$ for (winning state, winning output) pairs

Reachability game on symbolic DFA $\mathcal{D}_p = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- $w_0 = f$ every accepting state is a winning state
- $-t_0 = f$ the agent can do anything (*true*) after reaching accepting states

Reachability game on symbolic DFA $\mathcal{D}_p = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

- $t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$
- $w_{i+1} = \exists O.t_{i+1}$

- $t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$
 - (Z, O) satisfies t_i
 - Z was not yet a winning state, and for every I we can move from Z to an already-identified winning state

 $w_{i+1} = \exists O.t_{i+1}$

- -Z satisfies w_i
- Z was not yet a winning state, and there exists O such that for every I we can move from Z to an already-identified winning state

Why not the following?

 $- w_{i+1} = w_i \lor (\neg w_i \land \exists O. \forall I. w_i(\eta))$

Why not the following?

 $- w_{i+1} = w_i \lor (\neg w_i \land \exists O. \forall I. w_i(\eta))$

Why not the following?

 $- w_{i+1} = w_i \lor (\neg w_i \land \exists O. \forall I. w_i(\eta))$

Reachability game on symbolic DFA $\mathcal{D}_{p} = (\mathcal{I}, \mathcal{O}, \mathcal{Z}, \iota, \eta, f)$

 $- w_{i+1} \equiv w_i$, fixpoint w_{∞}

Explicit finite-state transducer $\mathcal{T} = (2^{\mathcal{I}}, 2^{\mathcal{O}}, \text{Win}, s_0, \varrho, \omega)$

- Win $\subseteq \mathcal{S}$ is the set of winning states
- $-\omega: {
 m Win} o 2^{\mathcal O}$ is the output function such that $\omega(s)$ is a winning output of s

Function $\omega: Win \to 2^{\mathcal{O}}$

- Input: winning state s
- Output: winning output *O* of *s*

Function $\omega: Win \to 2^{\mathcal{O}}$

- Input: winning state s
- Output: winning output *O* of *s*

We have Boolean formula t over $\mathcal{Z} \cup \mathcal{O}$

 $-(Z \cup O) \models t$ iff Z is a winning state and O is a winning output of Z

- A function $\tau: 2^{\mathcal{Z}} \to 2^{\mathcal{O}}$
 - Input: winning state Z
 - Output: winning output O of Z

Boolean synthesis procedure

Given: two disjoint proposition sets \mathcal{Z} , \mathcal{O} of input and output variables, respectively, and a Boolean formula t over $\mathcal{Z} \cup \mathcal{O}$

Return: a function $\tau: 2^{\mathcal{Z}} \rightarrow 2^{\mathcal{O}}$

- for every $Z \in 2^{\mathbb{Z}}$, if there exists $O \in 2^{\mathcal{O}}$ such that $Z \cup O \models t$, then $Z \cup \tau(Z) \models t$

t over $\mathcal{Z} \cup \mathcal{O}$ as the input formula to a Boolean synthesis procedure

– function $\tau: 2^{\mathcal{Z}} \to 2^{\mathcal{O}}$

- Symbolic least-fixpoint computation
- Abstract winning strategy via Boolean synthesis
- Extend to great-fixpoint, nested-fixpoint computation in different synthesis settings

- Symbolic LTL_f synthesis
- Binary Decision Diagrams (BDDs)

- They can be made canonical
- They can be very compact for many applications
- Various computations can be converted to suitable operations on BDD

Binary Decision Diagram: Example

- Directed graph representing Boolean functions
- non-terminal node (circle), terminal node (square)

Binary Decision Diagram: Example

- non-terminal node (circle), marked with variables i, o, z
- terminal node (square), marked with values 0, 1

Binary Decision Diagram: Example

- solid line: high(v), variable assigned as *true*
- dashed line: low(v), variable assigned as *false*

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- **Given:** A model $\neg i, o, z$ **Evaluation:** false(0)
- Given: A model *i*, *o*, *z*Evaluation: *true*(1)

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- Interpretation $\neg i, o, z$

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- Interpretation $\neg i, o, z$

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- Interpretation $\neg i, o, z$

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- Interpretation $\neg i, o, z$

- $f = (i \land o \land z) \lor (\neg i \land \neg o)$
- Interpretation $\neg i, o, z$

- BDD is able to represent a Boolean formula
- BDD: Compact representation
 - Elimination rule
 - Isomorphism rule

Elimination Rule

Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Elimination Rule

Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Elimination Rule

Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Isomorphism rule:

If $v \neq w$ are roots of isomorphic subtrees, remove v, and redirect all incoming edges to v to node w.

Combine all 0/1-leaves, redirect all incoming edges.

Isomorphism rule:

If $v \neq w$ are roots of isomorphic subtrees, remove v, and redirect all incoming edges to v to node w.

Combine all 0/1-leaves, redirect all incoming edges.

Binary Decision Diagram: Reduced

Binary Decision Diagram: Variable Ordering

WhiteMech

BDD size: #nodes. BDD size highly depends on the variable ordering. $f = (x_1 \land x_2 \land y_1 \land y_2) \lor (\neg x_1 \land x_2 \land \neg y_1 \land y_2) \lor (x_1 \land \neg x_2 \land y_1 \land \neg y_2) \lor (\neg x_1 \land \neg x_2 \land \neg y_1 \land \neg y_2).$

Binary Decision Diagram: Canonicity

- Canonicity: variable ordering
- BDDs are canonical with a fixed variable ordering
- Canonicity checking takes constant time
- Example:
 - Given: Boolean formulas f and g
 - **Answer:** Whether $f \equiv g$?
 - How: Construct B_f and B_g , $B_f \equiv B_g$, constant time

- Buddy, CUDD, etc.
- Rich API functions for manipulating BDDs, elimination rules and isomorphism rules are applied automatically
- Logic operations on BDDs, conjunction, disjunction, quantifier elimination etc.

- Buddy, CUDD, etc.
- Rich API functions for manipulating BDDs, elimination rules and isomorphism rules are applied automatically
- Logic operations on BDDs, conjunction, disjunction, quantifier elimination etc.

- Symbolic DFA represented in BDDs
- Reachability games in BDDs

 $-\mathcal{I}, \mathcal{O}$ environment and agent variables

 $-\mathcal{I}, \mathcal{O}$ BDD variables of the environment and the agent

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} a set of state variables

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- ι Boolean formula over $\mathcal Z$ denoting the initial state

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- $-\iota$ BDD B_{ι} over \mathcal{Z} denoting the initial state

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- $-\iota$ BDD B_{ι} over \mathcal{Z} denoting the initial state
- $\eta = \{\eta_z \mid z \in \mathcal{Z}\}$ a sequence of Boolean formulas over $\mathcal{Z} \cup \mathcal{P}$ encoding the transition function

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- $-\iota$ BDD B_{ι} over \mathcal{Z} denoting the initial state
- η a sequence of BDDs over $\mathcal{Z} \cup \mathcal{P}$ encoding the transition function

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- $-\iota$ BDD B_{ι} over \mathcal{Z} denoting the initial state
- η a sequence of BDDs over $\mathcal{Z} \cup \mathcal{P}$ encoding the transition function
- f Boolean formula over \mathcal{Z} representing the set of accepting states

- \mathcal{I}, \mathcal{O} BDD variables of the environment and the agent
- \mathcal{Z} BDD variables
- $-\iota$ BDD B_{ι} over \mathcal{Z} denoting the initial state
- η a sequence of BDDs over $\mathcal{Z} \cup \mathcal{P}$ encoding the transition function
- f BDD B_f over \mathcal{Z} representing the set of accepting states

Example of Partitioned Transition Function in BDDs

BDD of η_{z_0}

BDD of η_{z_1}

Reachability game on symbolic DFA $\mathcal{D}_p = (\mathcal{X}, \mathcal{Y}, \mathcal{Z}, B_\iota, \eta, B_f)$ in BDDs

$$- B_{w_0} = B_f$$

 $- B_{t_0} = B_f$

Reachability Games in BDDs

 $t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$

$$-\eta = \{\eta_z \mid z \in \mathcal{Z}\}$$

BDD of η_{z_0}

 $t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$

Reachability Games in BDDs

- $w_i(\eta)$ transitions leading to states in w_i

BDD Compose

$$t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$$

- Universal Quantification

$t_{i+1} = t_i \vee (\neg w_i \wedge \forall I.w_i(\eta))$

- Conjunction, Negation, and Disjunction

$$w_{i+1} = \exists O.t_{i+1}$$

- Existential Quantification

Fixpoint check $w_{i+1} \equiv w_i$

- Equivalence check, constant time

Strategy abstraction $\tau: 2^{\mathcal{Z}} \to 2^{\mathcal{O}}$

SolveEqn

- Symbolic synthesis techniques
 - LTL_f synthesis with partitioned representation in BDDs
- Future directions to explore:
 - Symbolic synthesis with monolithic representation?
 - Using SAT instead of BDD?

- 1- Introduction to Planning and Synthesis (Giuseppe Perelli)
- 2- Planning with temporally extended goals (Giuseppe Perelli)
- 3- LTL_f synthesis under LTL specifications (Antonio Di Stasio)
- 4- Notable cases of LTL_f synthesis under LTL specifications (Shufang Zhu)
- 5- Symbolic Synthesis (Shufang Zhu)