
Introduction to
Constraint Satisfaction

Roman Barták
Charles University, Prague (CZ)

Problem formulation, historical overview, applications

2

• Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9´9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3´3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

Sudoku?

Solving Sudoku

How to find out which digit to fill in?
• Use information that each

digit appears exactly once
in each row and column.

What if this is not enough?
• Look at columns

or combine information
from rows and columns

Sudoku – One More Step

• If neither rows and columns
provide enough information,
we can note allowed digits in
each cell.

• The position of a digit cand
be infereed from positions of
other digits and resrictions
of Sudoku that each digit
appears one in a column
(row, sub-grid)

Sudoku in General

We can see every
cell as a variable
with possible values
from domain {1,…,9}.

There is a binary inequality constraint
between all pairs of variables in every
row, column, and sub-grid.

Such formulation of the problem is called
a constraint satisfaction problem.

Course Content

1. Introduction: problem formulation,
historical overview, applications.

2. Search approaches: local search (hill
climbing, min-conflicts), depth-first
search (backtracking, backjumping,
backmarking).

3. Local consistency techniques: arc
consistency and algorithms to
achieve it (AC-3, AC-4).

4. Higher-level consistency techniques:
path-consistency, k-consistency,
global constraints.

5. Integration of consistency with
search, value/variable ordering
heuristics. Optimization problems.
Problem modelling.

Resources

Books
– P. Van Hentenryck: Constraint Satisfaction in Logic

Programming, MIT Press, 1989
– E. Tsang: Foundations of Constraint Satisfaction, Academic

Press, 1993
– K. Marriott, P.J. Stuckey: Programming with Constraints: An

Introduction, MIT Press, 1998
– R. Dechter: Constraint Processing, Morgan Kaufmann, 2003
– Handbook of Constraint Programming, Elsevier, 2006

On-line resources
– Charles University Course Web (transparencies)

http://ktiml.mff.cuni.cz/~bartak/podminky/
– On-line Guide to Constraint Programming (tutorial)

http://ktiml.mff.cuni.cz/~bartak/constraints/

A Bit of History

• Artificial Intelligence
– Scene labelling (Waltz 1975)
– How to help the search algorithm?

• Interactive Graphics
– Sketchpad (Sutherland 1963)
– ThingLab (Borning 1981)

• Logic Programming
– unification ® constraint solving

(Gallaire 1985, Jaffar, Lassez 1987)

• Operations Research and Discrete Mathematics
– NP-hard combinatorial problems

Scene Labelling

inferring 3D meaning of lines in a 2D drawing
• convex (+), concave (-) and border (¬) edges
• we are looking for a physically feasible interpretation

+
-
-

+
+ +

-
+

-

+

+
+ +

+

+

Interactive Graphics

manipulating graphical objects described via constraints

http://ktiml.mff.cuni.cz/~bartak/diploma/downloads.html

http://www.cs.washington.edu/research/constraints/

Map/Graph Colouring

Assign colours (red, blue, green)
to states, such that neighbours
have different colours.

CSP Model
• variables: {WA, NT, Q, NSW, V, SA, T}
• domains: {r, b, g}
• constraints: WA ≠ NT, WA ≠ SA etc.

Can be described as a constraint
network (nodes=variables,
edges=constraints)

Solution
WA = r, NT = g, Q = r, NSW = g,
V = r, SA = b, T = g

A Letter Puzzle

Assign digits 0,…,9 to letters S,E,N,D,M,O,R,Y in such a way that:
q SEND + MORE = MONEY
q different letters are assigned to different digits
q S and M are different from 0

Model 1:
 E,N,D,O,R,Y in 0..9, S,M in 1..9
 1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
= 10000*M + 1000*O + 100*N + 10*E + Y

Model 2:
 using „carry“ 0-1 variables
 E,N,D,O,R,Y in 0..9, S,M in 1..9, P1,P2,P3 in 0..1
 D+E = 10*P1+Y

P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O

a
l
l
_
d
i
f
f
e
r
e
n
t
(
S
,
E
,
N
,
D
,
M
,
O
,
R
,
Y
)

N Queens Problem

allocate N queens to a chess board of size N´N in a such way that no
two queens attack each other

the core decision: each queen is located in its own column
variables: N variables r(i) with the domain {1,…,N}
constraints: no two queens attack each other
 "i¹j r(i)¹r(j) ∧ |i-j| ¹ |r(i)-r(j)|

´
´
´

´

´ ´ ´
´
´
´

´

´
´

´ ´ ´
´
´
´
´ ´

´

´ ´ ´
´
´

´ ´

Some Real Applications

Bioinformatics
• DNA sequencing (Celera

Genomics)
• deciding the 3D structure of

proteins from the sequence
of amino acids

Planning and Scheduling
n automated planning of

spacecraft activities (Deep
Space 1)

n manufacturing scheduling

NP
CP and Others

Floating point
variables

Integer
variables

Li
ne

ar
co

ns
tr

ai
nt

s
C

om
bi

na
to

ria
l

co
ns

tr
ai

nt
s

Linear
Programming

Mixed Integer
Programming

Discrete
Mathematics

Constraint
Programming

• various domains
• arbitrary constraints
• heterogeneous problems

Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP) consists of:
– a finite set of variables

• describe attributes of the solution
for example a location of a queen in the chess board

– domains – finite sets of possible values for variables
• describe options that we need to decide

for example, rows for queens
• sometimes, there is a common super domain for all the variables

and individual variables‘ domains are defined via unary constraints

– a finite set of constraints
• constraint is a relation over a subset of variables

for example locationA ¹ locationB
• constraint can be defined in extension (a set of compatible value

tuples) or using a formula (see above)

A Solution to a CSP

A feasible solution of a constraint satisfaction problem is a
complete consistent assignment of values to variables.
– complete = each variable has assigned a value
– consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for the
number of feasible solutions.

An optimal solution of a constraint satisfaction problem is a
feasible solution that minimizes/maximizes a value of some
objective function.
– objective function = a function mapping feasible solutions to real

numbers

The Core Topics

Problem Modelling
 How to describe a problem as a constraint satisfaction

problem?

Solving Techniques
 How to find values for the variables satisfying all the

constraints?

Representation of a CSP

Representation of constraints:
– intentional (algebraic/logic formulae)
– in extension (a set of compatible value tuples, 0-1 matrix)

Representation of a CSP as a (hyper)graph
– nodes = variables
– (hyper)edges = constraints

Example:
– variables x1,…,x6

with domain {0,1}
– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4 x6x5

c1

c3

c4

Binary Constraints

The world is not binary ...
but it can be transformed to a binary one!

Binary CSP
CSP + all the constraints are binary

Note: unary constraints can be easily encoded in the domain of a
variable

Equivalence of CSPs
 Two constraint satisfaction problems are equivalent if they have the

same sets of solutions.

Extended Equivalence of CSPs
 Problem solutions can be syntactically transformed between the

problems.

Can any CSP be transformed to an (extended) equivalent
binary CSP?

Dual Encoding

Swapping variables and constraints.
• k- ary constraint c is converted to a dual variable vc with the domain

consisting of compatible tuples

• for each pair of constraints c a c‘ sharing some variables there is
a binary constraint between vc a vc’ restricting the dual variables
to tuples in which the original shared variables take the same value

Example:
– variables x1,…,x6

with domain {0,1}

– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R22 & R33

R31

R33

Hidden Variable Encoding

New dual variables for (non-binary) constraints.

• k- ary constraint c is translated to a dual variable vc with the
domain consisting of compatible tuples

• for each variable x in the constraint c there is a constraint between
x a vc restricting tuples of dual variable to be compatible with x

Example:
– variables x1,…,x6

with domain {0,1}

– c1: x1+x2+x6=1
– c2: x1-x3+x4=1
– c3: x4+x5-x6>0
– c4: x2+x5-x6=0

(0,0,1), (0,1,0),
(1,0,0)

(0,0,0), (0,1,1),
(1,0,1)

(0,0,1), (1,0,0),
(1,1,1)

(0,1,0), (1,0,0),
(1,1,0), (1,1,1)

v1 v4

v2 v3

r1

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

r1

r3 r1
r2

r2 r3 r1
r2

r3

r3r2
x1 x2 x3 x4 x6x5

Notes on Binarisation

Why do we do binarisation?
– a unified form of a CSP
– many solving approaches are formulated for binary CSPs
– tradition (historical reasons)

Which encoding is better?
– hard to say ;-)
– dual encoding:

better propagation but constraints in extension
– hidden variable encoding:

keeps original variables but weaker propagation

Binary vs non-binary constraints
– more complex propagation algorithms for non-binary constraints
– exploiting semantics of constraints for more efficient and

stronger domain filtering

Searching for a solution

The goal: find a complete and consistent instantiation of variables

Two core solving approaches:
– exploring complete but possibly inconsistent assignments

until a consistent assignment is found
• generate and test, local search

– extending a partial consistent assignment
until a complete assignment is reached
• backtracking and its extensions

We can explore assignments in two ways:
– systematically (explore all possible assignments systematically)

• a complete method, but could be too slow
– non-systematically (some assignments can be skipped)

• an incomplete method, but can found solution much faster

Note:
We will use constraints in a passive way, just to verify whether the given
assignment (even partial) satisfies the constraint.

Search techniques

Work plan:
– start simple (with a trivial algorithm)
– find weaknesses of the algorithm
– repair the weaknesses to get better algorithms

In particular:
– start with generate and test method
– improve the generator

• local search methods (HC, RW, TS, GSAT, GENET, SA)
– merge the generator with the tester

• backtracking methods
• improvements of chronological backtracking

– backjumping, dynamic backtracking, backmarking

Generate and test (GT)
Probably the most general problem solving method

1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP?
1) assign values to all variables
2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a
(complete) consistent assignment is found.

procedure GT(X:variables, C:constraints)
V ¬ construct a first complete assignment of X
while V does not satisfy all the constraints C do
 V ¬ construct systematically a complete assignment next to V
end while
return V

Weaknesses and improvements of GT

The greatest weakness of GT is exploring too many
“visibly” wrong assignments.
Example:

X::{1,2}, Y::{1,2}, Z::{1,2} X = Y, X ¹ Z, Y > Z

How to improve GT?
– smart generator

• the next assignment improves over the current assignment
• the core idea of local search techniques

– merged generate and test stages (earlier detection of clash)
• constraints are tested as soon as all involved variables are instantiated
• backtracking

X
Y
Z

1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

© 2024 Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz

