

Introduction to Constraint Satisfaction

Roman Barták

Charles University, Prague (CZ)

Search techniques to solve CSPs

Constraint Satisfaction Problem (CSP) consists of:

- a finite set of **variables**
- **domains** finite sets of possible values for variables
- a finite set of **constraints**
	- constraint **arity** = the number of constrained variables
- **A feasible solution** of a constraint satisfaction problem is a complete consistent assignment of values to variables.
	- **complete** = each variable has assigned a value
	- **consistent** = all constraints are satisfied

Generate and test explores complete but inconsistent assignments until a complete consistent assignment is found.

Weakness of GT – the generator does not exploit fully the result of testing

The next assignment can be constructed in such a way that constraint violation is smaller.

- only "small" (**local**) **changes** of the assignment are allowed
- the next assignment should be "better" than the current one
	- better = more constraints are satisfied
- assignments are not necessarily generated systematically
	- we lost completeness, but
	- we (hopefully) get better efficiency
- **state** a complete assignment of values to variables
- **evaluation** a value of the objective function (# violated constraints)
- **neighbourhood** a set of states locally different from the current state (the states differ from the current state in the value of one variable)
- **local optimum** a state that is not optimal and there is no state with better evaluation in its neighbourhood
- **strict local optimum** a state that is not optimal and there are only states with worse evaluation in its neighbourhood
- **non-strict local optimum** local optimum that is not strict
- **plateau** a set of neighbouring states with the same evaluation
- **global optimum** the state with the best evaluation

Hill climbing is perhaps the most known technique of local search.

- start at randomly generated state
- look for the best state in the neighbourhood of the current state
	- **neighbourhood** = differs in the value of any variable
	- neighbourhood size = $\Sigma_{i=1..n}(D_i-1)$ (= $n*(d-1)$)
- "escape" from the local optimum via restart

```
Algorithm Hill Climbing
```

```
procedure hill-climbing(Max_Steps)
    restart: s \leftarrow random assignment of variables;
    for j:=1 to Max Steps do % restricted number of steps
         if eval(s)=0 then return s
         if s is a strict local minimum then
             go to restart
         else
             s \leftarrow neighbourhood with the smallest evaluation value
         end if
    end for
    go to restart
end hill-climbing
```
Observation:

- $-$ the hill climbing neighbourhood is pretty large (n*(d-1))
- only change of a conflicting variable may improve the evaluation

Min-conflicts method

- select randomly a variable in conflict and try to improve it
	- **neighbourhood** = different values for the selected variable *i*
	- neighbourhood size = (D_i-1) (= $(d-1)$)

Algorithm Min-Conflicts

Min-Conflicts

How to leave a local optimum without restarting (i.e. via a local step)?

– By adding some "noise" to the algorithm!

Random walk

- **a state from the neighbourhood is selected randomly**
	- (e.g., the value is chosen randomly)
- such technique can hardly find a solution
- so it needs some guide
	- Random walk can be combined with the heuristic guiding the search process via probability distribution:
		- p probability of using a random step
		- $-(1-p)$ probability of using the heuristic quide

Min-Conflicts Random Walk

MC guides the search (i.e. satisfaction of all the constraints) and RW allows us to leave the local optima.

Algorithm Min-Conflicts-Random-Walk

Steepest Descent Random Walk

Random walk can be combined with the hill climbing heuristic too.

Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

LS methods explore complete but possible inconsistent assignments until a consistent assigned is found

– opposite to GT, they generate a new assignment based on the current assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:

- **neighbourhood** of the current assignment (state) and a method to **select the next assignment** from the neighbourhood (**intensification**)
	- HC heuristic select the best assignment different at one variable from the current assignment
		- sometimes, the first better assignment from the neighbourhood is taken
	- MC heuristic select the best assignment different at one selected conflict variable from the current assignment
- a method for **escaping from a local optimum** (**diversification**)
	- restart start in a completely new assignment
	- RW select the next assignment randomly
	- Tabu forbid some assignments

Back to **generate-and-test**:

- **generates** a solution candidate (a complete assignment) and **tests** all the constraints together at the end
- solution candidates are generated systematically, for example:

```
procedure generate first(Variables)
     for each V in Variables do
           label V by the first value in D_vend for
end generate first
procedure generate next(Assignment)
     find first X in Assignment such that all following variables are labelled by the last value 
     from their respective domains (name the set of these variables Vs)
     if X is labelled by the last value then return fail
     label X by next value in D_xfor each Y in Vs do
           assign first value in D<sub>y</sub> to Y
     end for
end generate_next
```
We can verify satisfaction of a constraint as soon as we know the values of all constrained variables!

– the test stage is done during the generation stage

start

 $1,2$

 $2,4$

 2,3

 $3,4$

 $2,2$

 $3,3$

 4.1

2.1

 $3,2$

Probably the most widely used systematic search algorithm that **verifies the constraints as soon as possible**.

- upon failure (any constraint is violated) the algorithm goes back to the last instantiated variable and tries a different value for it
- depth-first search

The core principle of applying backtracking to solve a CSP:

- 1. assign values to variables one by one
- 2. after each assignment verify satisfaction of constraints with known values of all constrained variables

Open questions (to be answered later):

- What is the order of variables being instantiated?
- What is the order of values tried?

Backtracking explores partial consistent assignments until it finds a complete (consistent) assignment.

Chronological Backtracking (a recursive version)

Note:

If it is possible to perform the test stage for a partially generated solution candidate then BT is always better than GT, as BT does not explore all complete solution candidates.

Chronological Backtracking (an iterative version)

Weaknesses of Backtracking

• **thrashing**

– throws away the reason of the conflict

Example: A,B,C,D,E :: 1..10, A>E

• BT tries all the assignments for B,C,D before finding that $A\neq 1$

Solution: **backjumping** (jump to the source of the failure)

• **redundant work**

– unnecessary constraint checks are repeated

Example: A, B, C, D, E :: 1.. 10, B + 8 < D, C = 5 $*$ E

• when labelling C,E the values 1,..,9 are repeatedly checked for D

Solution: **backmarking**, **backchecking** (remember (no-)good assignments)

- **late detection of the conflict**
	- constraint violation is discovered only when the values are known *Example:* A, B, C, D, E :: 1.. 10, A = 3 * E
		- the fact that A>2 is discovered when labelling E

Solution: **forward checking** (forward check of constraints)

Look Back

Look Ahead

Backjumping is a method to **remove thrashing.**

How to do it?

- 1) identify the source of the conflict (impossibility to assign a value)
- 2) jump to the past variable in conflict

The same forward run as in backtracking, only the back-jump can be longer to skip irrelevant assignments!

How to find a jump position? What is the source of the conflict?

- select the constraints containing just the currently instantiated variable and the past variables
- select the closest variable participating in the selected constraints

Graph-directed backjumping

Assume the **graph colouring** problem, where the nodes are coloured in the order $x1, x2, ..., x7$.

- Where to jump if colouring x4 fails? \triangleright to $x1$
- Where to jump if colouring x5 fails? \triangleright to **x4**
	- And what if x4 cannot be coloured? \triangleright to $\times 1$

It looks like after failure with some node, we can **jump to its closest predecessor** (in the colouring order), but …

- Where to jump if colouring x7 fails? \triangleright to $x5$
	- What if colouring x5 fails now?

 \triangleright to **x4**

• And what if x4 cannot be coloured?

 \triangleright to $\times 3$

When jumping back, it is enough to free some **dead-end** (dead-end = a node/variable, that cannot be instantiated).

 \mathcal{X}_6

 \mathcal{X}_{5}

 x_4

 \mathcal{X}_3

 x_2

 \mathcal{X}_1

- from the leaf x jump to the closest predecessor of \tilde{x} in the constraint network $(x7 \rightarrow x5, x4, x3, x1)$
- from the inner node x jump to the closest predecessor of all dead-end nodes visited during the jumps

 $(x7 \rightarrow x5, x4, x3, x1 \rightarrow x4, x3, x1 \rightarrow x3, x1)$

- let **anc(x)** be the **ancestors of x** in the constraint network ordered using the labelling order (can be decided based on the network structure) • anc(x7) = $\{x5, x4, x3, x1\}$
- let us backjump to node x from the nodes $y_1,...,y_k$ and let there be no more value for variable x
- then **jump to the closest variable from the set** α **anc(x)** \cup **anc(y1)** \cup \ldots \cup **anc(yk)** – {x,y1,...,yk}

Graph-Directed Backjumping (a recursive version)

```
procedure GraphBJ(X:variables, V:assignment, C:constraints)
    if X = \{\} then return V
    x \leftarrow select a not-yet assigned variable from X
    conflict \leftarrow anc(x)
    for each value h from the domain of x do
       if constraints C are consistent with V \cup \{x/h\} then
          R \leftarrow GraphBJ(X – {x}, V \cup {x/h}, C)
          if R = \text{fail}(\text{JumpSet}) then \% backjump
             if x \notin \text{JumpSet} then return R \% to a variable before x
            conflict \leftarrow conflict \cup JumpSet – {x} % to x
          else return R \% solution found
    end for
    return fail(conflict)
end GraphBJ
Call as GraphBJ(X, \{\}, C)
```
Graph-Directed Backjumping (an iterative version)

```
procedure GraphBJ(X:variables, C:constraints)
      i \leftarrow 1, D_i \leftarrow D_i, I_i \leftarrow \text{anc}(x_i)while 1 \leq i \leq n do
          instantiate_and_check(i, C)
          if x_i = null then
            iprev \leftarrow i, i \leftarrow latest index in I_{i}, I_{i} \leftarrow I_{i} \cup I_{iprev} - \{x_{i}\}else
            i \leftarrow i + 1, D_i \leftarrow D_i, I_i \leftarrow \text{anc}(x_i)end if
      end while
      if i = 0 then return fail
      return \{x_1,..., x_n\}end GraphBJ procedure instantiate_and_check(i, C:constraints) end GraphBJ
                                         while D'<sub>i</sub> is not empty do
                                             select and delete some element b from D_ix_i \leftarrow bif constraints C consistent with \{x_1,...,x_i\} then return
                                         end while
                                        x_i \leftarrow nullend instantiate and check
```
Another view of Backjumping

N-queens problem

Queens in rows are allocated to columns.

6th queen cannot be allocated!

1. Write a number of conflicting queens to each position.

queen for each position.

3. Select the closest conflicting queen among positions.

Note:

Graph-directed backjumping has no effect here (due to a complete graph)!

Identification of the conflicting variable

How to find out the conflicting variable?

Situation:

Order of assignment

Order of assignment

- assume that the variable no. 7 is being assigned (values are 0, 1)
- $-$ the symbol \bullet marks the variables participating in the violated constraints (two constraints for each value)

Neither 0 nor 1 can be assigned to the seventh variable!

1. Find the closest variable in each violated constraint (o).

2. Select the farthest variable among the above chosen variables for each $value(x)$.

3. Choose the closest variable among the conflicting variables selected for each value and jump to it.

In addition to consistency check we can also find out the conflicting level!

```
procedure consistent(Labelled, Constraints, Level)
   J \leftarrow Level \% the level to jump to
   NoConflict \leftarrow true \% is there any conflict?
   for each C in Constraints do
       if all variables from C are Labelled then
         if C is not satisfied by Labelled then
              NoConflict \leftarrow falseJ \leftarrow min \{J, max\{L \mid X \in vars(C) \& X/V/L in Labeled \& L < L 1 \}end if
      end if
   end for
   if NoConflict then return true
                  else return fail(J)
end consistent
                                                      • V is a value of X
                                                      • L is the depth level of X 
                                                        during labelling
```
Gaschnig Backjumping (a recursive version)

```
procedure GBJ(Unlabelled, Labelled, Constraints, PreviousLevel)
   if Unlabelled = \{\} then return Labelled
   pick first X from Unlabelled
   I evel \leftarrow Previousl evel + 1
   Jump \leftarrow 0for each value V from D_x do
    C \leftarrow consistent({X/V/Level} \cup Labelled, Constraints, Level)
    if C = \text{fail}(J) then
        Jump \leftarrow max {Jump, J}
    else
        Jump \leftarrow PreviousLevel
        R \leftarrow GBJ(Unlabeled-\{X\}, \{X/V/Level\} \cup Labelled, Constraints, Level)if R \neq fail(Level) then return R \% success or jump further
    end if
   end for
   return fail(Jump) \% jump to the conflicting variable
end GBJ
Call as GBJ(Variables,{},Constraints,0)
```
Gaschnig Backjumping (an iterative version)

```
procedure GBJ(X:variables, C:constraints)
      i \leftarrow 1, D_i \leftarrow D_i, jump<sub>i</sub> \leftarrow 0while 1 \le i \le n do
         x_i \leftarrow select_value(i, C)
         if x_i = null then
              i \leftarrow jump_ielse
              i \leftarrow i + 1D_i \leftarrow D_ijump_i \leftarrow 0end if
      end while
      if i = 0 then return fail
      return \{x_1,..., x_n\}end GBJ
                                            procedure select value(i, C:constraints)
                                                  while D'i is not empty do
                                                      select and delete some element b from D_iconsistent \leftarrow true
                                                      k \leftarrow 1while k<i and consistent do
                                                          if k>jump<sub>i</sub> then jump<sub>i</sub> \leftarrow k
                                                           if x_i = b consistent with \{x_1, ..., x_k\} in C then
                                                                    k \leftarrow k + 1else consistent \leftarrow false
                                                      end while
                                                      if consistent then return b
                                                  end while
                                                  return null
                                            end select_value
```
• **Graph-directed Backjumping**

- driven by the structure of constraint network only (does not assume (dis)satisfaction of constraints)
- can do several jumps in a sequence

• **Gaschnig Backjumping**

- assumes which constraints are violated
- just one back-jump (if the assignment fails again, only one level up is backtracked like in chronological backtracking)

• **Conflict-driven Backjumping (CBJ)**

- we can join advantages of both methods (better target to jump to and more back-jumps in a sequence)
- when jumping back we need to keep a **conflict set** of variables that is used for the next jump if no value is found for the current variable
	- we carry the source of conflict when backjumping

What is a redundant work?

– repeated computation whose result has already been obtained

Remove redundant constraint checks by **memorising negative and positive results of tests**:

- **Mark(X,V)** is the farthest (instantiated) variable in conflict with the assignment X=V
- **BackTo(X)** is the farthest variable to which we backtracked since the last attempt to instantiate X
- Now, some constraint checks can be omitted:

Backmarking in an example

N-queens problem

1. Queens in rows are allocated to columns.

2. Latest choice level is written next to chessboard (BackTo). At beginning 1s.

3. Farthest conflict queen at each position (Mark). At beginning 1s.

- **4. 6th queen cannot be allocated!**
- **5. Backtrack to 5, change BackTo.**

6. When allocating 6th queen, all the positions are still wrong (MarkTo<BackTo).

Note:

backmarking can be combined with backjumping (for free)

Consistency check for Backmarking

Only the constraints where any value is changed are re-checked, and the farthest conflicting level is computed.


```
procedure BM(Unlabelled, Labelled, Constraints, Level)
  if Unlabelled = \{\} then return Labelled
  pick first X from Unlabelled % fix order of variables
 for each value V from D_x do
    if Mark(X,V) \geq BackTo(X) then % re-check the value
        if consistent(X/V, Labelled, Constraints, Level) then
          R \leftarrow BM(Unlabeled - \{X\}, Labelled \cup \{X/V/Level\}, Constraints, Level+1)
          if R \neq fail then return R \% solution found
        end if
     end if
   end for
  BackTo(X) \leftarrow Level-1 % jump will be to the previous variable
 for each Y in Unlabelled do We tell everyone about the jump
    BackTo(Y) \leftarrow min \{Level-1, BackTo(Y)\} end for
  return fail the contract in the state of the previous variable variable
end BM
```


© 2024 Roman Barták Charles University, Faculty of Mathematics and Physics bartak@ktiml.mff.cuni.cz