

Introduction to Constraint Satisfaction

Roman Barták

Charles University, Prague (CZ)

Higher-level consistency techniques

Arc consistency:

- **The arc** (V_i, V_j) is arc consistent iff for each value *x* from the domain D_i there exists a value *y* in the domain D_i such that the assignment $V_i = x$ a $V_j = y$ satisfies all the binary constraints on V_{ν} V_{j} .

Note: The concept of arc consistency is directional, i.e., arc consistency of (V_i, V_j) does not guarantee consistency of $(V_j V_i)$.

 $-$ CSP is arc consistent iff every arc $(V_{\nu}V_{j})$ is arc consistent (in both directions).

Example:

Sometimes **AC directly provides a solution**.

any domain is empty \rightarrow no solution exists all domains are singleton \rightarrow this is a solution In general, AC **decreases the size of the search space.**

How to strengthen the consistency level? More constraints are assumed **together**!

Definition:

- $-$ The path $(V_0, V_1, ..., V_m)$ is path consistent iff for every pair of values $x \in D_0$ a y $\in D_m$ satisfying all the binary constraints on V_0 , V_m there exists an assignment of variables $V_1,...,V_{m-1}$ such that all the binary constraints between the neighbouring variables V_i , V_{i+1} are satisfied.
- CSP is **path consistent** iff every path is consistent.

Beware:

– only the **constraints between the neighboring variables** must be satisfied

0

1

n+1

n

It is not very practical to make all paths consistent. Fortunately, it is enough to make path of length 2 consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC. **Proof:**

1) PC \Rightarrow paths of length 2 are PC

2) All paths of length 2 are PC $\Rightarrow \forall N$ paths of length N are PC \Rightarrow PC

induction using the path length

a) N=2 trivially true

b) $N+1$ (assuming that the theorem holds for N)

i) take any N+2 nodes $V_0, V_1, ..., V_{n+1}$

ii) take any two consistent values $x_0 \in D_0$ a $x_{n+1} \in D_{n+1}$

iii) using a) find the value $x_n \in D_n$ st. $P_{0,n}$ and $P_{n,n+1}$ holds

iv) using induction find the other values $V_0, V_1, ..., V_n$

Does PC cover AC (if CSP PC, then is it also AC)?

- $-$ arc (i, j) is consistent (AC), if the path (i,j,i) is consistent (PC)
- PC implies AC

Is PC stronger than AC (is there any CSP whish is AC but not PC)?

Example: X in $\{1,2\}$, Y in $\{1,2\}$, Z in $\{1,2\}$, X \neq Z, X \neq Y, Y \neq Z

• It is AC, but not PC $(X=1, Z=2$ is not consistent over X, Y, Z)

AC removes inconsistent values from the domains.

What is done by PC algorithms?

- **PC removes pairs of inconsistent values**
- PC makes all relations explicit $(A< B, B< C \Rightarrow A+1< C)$
- $-$ unary constraint $=$ domain of the variable

PC algorithms will remove pairs of values

 $\%$ we need to represent the constraints explicitly

Binary constraints = {0,1}-matrix

- 0 pair of values is inconsistent
- 1 pair of values is consistent

Example (5-queens problem)

constraint between queens **i** and **j**: $r(i) \neq r(j)$ & $|i-j| \neq |r(i)-r(j)|$

```
1
                                                                                                        2
                                                                                                        3
                                                                                                       4
                                                                                                        5
Matrix representation for A B C D E
constraint A(1) - B(2)
                                                                                                                            \overline{\mathbf{X}}X
                                                                                                                            \frac{\mathbf{X}}{\mathbf{X}}0 0 1 1 1 2 \overline{\bigcup_{\text{20}} \bigcup_{\text{30}} \bigcup_{\text{41}} \bigcup_{\text{52}} \bigcup_{\text{63}} \bigcup_{\text{74}} \bigcup_{\text{84}} \bigcup_{\text{94}} \bigcup_{0 0 0 1 1
                1 0 0 0 1
               1 1 0 0 0
                1 1 1 0 0
```
Matrix representation for constraint A(1) - C(3)

Operations over constraints

Induced constraint is intersected with the original constraint

Notes:

 $R_{ij} = R_{ji}$, R_{ii} is a diagonal matrix representing the domain of variable REVISE((i,j)) from the AC algorithms is $R_{ii} \leftarrow R_{ii}$ & ($R_{ij} * R_{jj} * R_{ji}$)

Composing constraints

How to make the path (i,k,j) consistent?

 $R_{ii} \leftarrow R_{ii} \& (R_{ik} * R_{kk} * R_{ki})$

How to make a CSP path consistent?

Repeated revisions of paths (of length 2) while any domain changes.

How to improve PC-1?

Is there any inefficiency in PC-1?

- $-$ just a few "bits"
	- \bullet it is not necessary to keep all copies of Y^k one copy and a bit indicating the change is enough
	- some operations produce no modification $(Y^k_{kk} = Y^{k-1}_{kk})$
	- half of the operations can be removed $(Y_{ji} = Y_{ij})$
- **the grand problem**
	- after domain change all the paths are re-revised but it is enough to revise just the influenced paths

Because $Y_{ji} = Y^{T}_{ij}$ it is enough to revise only the paths (i,k,j) where i $\leq j$. Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j

all the paths containing (i,j) or (j,i) must be re-revised but the paths (i,j,j), (i,i,j) are not revised again (no change) $S_a = \{ (i,j,m) \mid i \le m \le n \& m \ne j \}$

$$
\cup \ \{ (m,i,j) \mid 1 \leq m \leq j \& m \neq i \}
$$

$$
\cup \{(j,i,m) \mid j < m \leq n\}
$$

$$
\cup \ \{ (m,j,i) \mid 1 \leq m < i \}
$$

$$
|S_{a}|=2n-2
$$

Situation b: i=j

all the paths containing i in the middle of the path are re-revised but the paths (i,i,i) and (k,i,k) are not revised again $S_b = \{(p,i,m) | 1 \le m \le n \& 1 \le p \le m\}$ - $\{(i,i,i),(k,i,k)\}$ $| S_h | = n*(n-1)/2 - 2$

Paths in one direction only (attention, this is not DPC!)

After every revision, the **affected paths are re-revised**

Algorithm PC-2

procedure RELATED PATHS((i,k,j)) **if** i<j **then return** S_a **else return** S_b **end** RELATED_PATHS

- **PC-3 (Mohr, Henderson 1986)**
	- based on computing supports for a value (like AC-4)
		- If pair (*a*,*b*) at arc (*i*,*j*) is not supported by another variable, then *a* is removed from D_i and *b* is removed from D_j.
	- **this algorithm is not sound!**
- **PC-4 (Han, Lee 1988)**
	- correction of the PC-3 algorithm
	- based on computing supports of pairs (*b*,*c*) at arc (*i*,*j*)
- **PC-5 (Singh 1995)**
	- uses the ideas behind AC-6
	- only one support is kept and a new support is looked for when the current support is lost

Drawbacks of PC

• **memory consumption**

– because PC eliminates pairs of values, we need to keep all the compatible pairs extensionally, e.g. using {0,1}-matrix

• **bad ratio strength/efficiency**

– PC removes more (or same) inconsistencies than AC, but the strength/efficiency ratio is much worse than for AC

• **modifies the constraint network**

- PC adds redundant arcs (constraints) and thus it changes connectivity of the constraint network
- this complicates using heuristics derived from the structure of the constraint network (like density, graph width etc.)

• **PC is still not a complete technique**

 $-$ A, B, C, D in $\{1,2,3\}$ $A\neq B$, $A\neq C$, $A\neq D$, $B\neq C$, $B\neq D$, $C\neq D$ is PC but has no solution

Is there a common formalism for AC and PC?

- AC: a value is extended to another variable
- PC: a pair of values is extended to another variable
- … we can continue

Definition:

CSP is k-consistent if and only if any consistent assignment of (k-1) different variables can be extended to a consistent assignment of one additional variable.

3-consistent graph

but not 2-consistent graph!

Definition:

A CSP is strongly k-consistent iff it is j-consistent for every $j \leq k$.

Features:

- **strong k-consistency** Þ **k-consistency**
- **strong k-consistency** \Rightarrow **j-consistency** \forall j \leq **k**
- **k-consistency** Þ **strong k-consistency** *does not hold in general*

Naming scheme

- NC = strong 1-consistency = 1-consistency
- AC = (strong) 2-consistency
- PC = (strong) 3-consistency
	- sometimes we call NC+AC+PC together **strong path consistency**

What k-consistency is enough?

- Assume that the number of vertices is *n*. What level of consistency do we need to find out the solution?
- **Strong** *n***-consistency for graphs with** *n* **vertices!**
	- n-consistency is not enough see the previous example
	- strong k-consistency where k<n is not enough as well

graph with n vertices domains 1..(n-1)

It is strongly k-consistent for k<n but it has no solution!

And what about this graph?

AC is enough! Because this a tree..

Definition:

CSP is solved using backtrack-free search if for some order of variables we can find a value for each variable compatible with the values of already assigned variables.

How to find out a sufficient consistency level for a given graph?

Some observations:

- variable must be compatible with all the "previous" variables i.e., across the "backward" edges
- $-$ for k "backward" edges we need $(k+1)$ -consistency
- let m be the maximum number of backward edges for all the vertices, then strong (m+1)-consistency is enough
- the number of backward edges is different for different orders of variables
- of course, the order minimising m is looked for
- **Ordered graph** is a graph with some total ordering of nodes.
- **Node width** in the ordered graph is the number of backward edges from this node.
- **Width of the ordered graph** is the maximal width of its nodes.
- **Graph width** is the minimal width among all possible node orders.

procedure MinWidthOrdering((V,E)) $Q \leftarrow \{\}$ **while** V not empty **do** $N \leftarrow$ select and delete node with the smallest #edges from (V,E) enqueue N to Q return Q **end** MinWidthOrdering

Theorem:

If the constraint graph is strongly k-consistent for some k>w, where w is the graph width, then there exists an order of variables giving a backtrack-free search solution.

Proof:

- there exists an ordering of nodes with the graph width w,
- in particular, the number of backward edges for each node is at most w,
- we will assign the variables in the order given by the above ordered graph
- now, when assigning a value to the variable:
	- we need to find a value consistent with the existing assignment, i.e., consistent with previous variables connected via arcs with the variable,
	- let m by the number of such variables, then $m \leq w$
	- \cdot the graph is (m+1)-consistent, so the value must exist

Can we achieve GAC **faster than a general GAC algorithm**?

 $-$ for example revision of $A < B$ can be done much faster via bounds consistency.

Can we write a **filtering algorithm for a constraint** whose **arity varies**?

– for example all_different constraint

We can exploit **semantics of the constraint** for efficient filtering algorithms that can work with any number of variables.

F global constraints \mathbf{P}

Recall Sudoku

Logic-based puzzle, whose goal is to enter digits 1-9 in cells of 9×9 table in such a way, that no digit appears twice or more in every row, column, and 3×3 sub-grid.

How to model such a problem?

- variables **describe the cells**
- **inequality constraint** connect each pair of variables in each row, column, and sub-grid

Such constraints do not propagate well!

we be of puzzle helps prevent the
property distance of Alzheimer's and offers **and offers FINE CONSTRAINT NETWORK IS AC, but Addition has no requirement to** \bullet We can still remove some value values.

producement is greater that a state of the control of the brain dideku puzzles. Unlike of the brain dideku puzzles. of ^{LD}^e to ds, Sudoku puzzles

al layout obsolete

thought I one approach has advantages
natistant I another, but differences in
cented by its each type of Sudoku are

atic¹⁸⁵⁶ A another, but differences in
ented M as each type of Sudoku are
magiques sible ages
ad level int, we believe that Sudoku
with 90 latter – when – they – are letter when they are

matician.

Sudoku has no requirement

This constraint models a complete set of binary inequalities. $\texttt{all_different}(\{X_1,..., X_k\}) = \{ (d_1,..., d_k) \mid \forall i \; d_i \in D_i \; \& \; \forall i \neq j \; d_i \neq d_j \}$ Domain filtering is based on **matching in bipartite graphs** $(nodes = variables + values, edges = description of domains)$

Initialization:

- 1) find a maximum matching
- 2) remove all edges that do not belong

to any maximum matching

Incremental propagation $(X_1 \neq a)$ *:*

- 1) remove "deleted" edges
- 2) find a new maximum matching
- 3) remove all edges that do not belong

to any maximum matching

- A generalization of all-different
	- the number of occurrences of a value in a set of variables is restricted by minimal and maximal numbers of occurrences
- Efficient filtering is based on **network flows.**

A maximal flow corresponds to a feasible assignment of variables! We will find edges with zero flow in each maximal flow and then we will remove the corresponding edges.

- Existence of **symmetrical solutions** decreases efficiency of constraint satisfaction (symmetrical search spaces are explored).
- A classical example with many symmetries **sports tournament scheduling.**
- there are n teams
- each team plays will all other teams, i.e., (n-1) rounds
- each team plays as a home team or a guest team

How to model such a problem?

- $-$ Round I is modelled by a sequence of **match codes** K_i.
	- $K_{i,j}$ is a code of j-th match at at round i
- We can swap matches at each round **match symmetry**.
	- match symmetry is removed by constraint $K_{i,j} < K_{i,j+1}$
- We can swap complete rounds **round symmetry**.
	- round symmetry is removed by constraint $K_i <_{lex} K_{i+1}$.

this constraint models **lexicographic ordering of two vectors**

$$
\textbf{lex}(\{X_1,\ldots,X_n\},\{Y_1,\ldots,Y_n\})\equiv (X_1\leq Y_1)\wedge (X_1=Y_1\Rightarrow X_2\leq Y_2)\wedge\ldots\\ \ldots\wedge (X_1=Y_1\wedge\ldots\wedge X_{n-1}=Y_{n-1}\Rightarrow X_n< Y_n)
$$

Global filtering procedure uses two pointers:

 α : the variables before α are all instantiated and pairwise equal

 β : vectors starting at β are lexicographically ordered but "oppositely" floor($\{X_{\beta},..., X_{n}\}$) >_{lex} ceiling($\{Y_{\beta},..., Y_{n}\}$)

 $X = \langle \{2\}, \{1,3,4\}, \{1,2,3,4,5\}, \{1,2\}, \{3,4,5\} \rangle$ first set the pointers $Y = \langle \{0,1,2\}, \{1\}, \{0,1,2,3,4\}, \{0,1\}, \{0,1,2\} \rangle$ α \uparrow $\qquad \qquad$ \uparrow \uparrow \uparrow $X = \langle \{2\}, \{1,3,4\}, \{1,2,3,4,5\}, \{1,2\}, \{3,4,5\} \rangle$ change Y_1 , so at least $X_1 = Y_1$ $Y = \langle \{2\}, \{1\}, \{0,1,2,3,4\}, \{0,1\}, \{0,1,2\} \rangle$ and shift pointer α α \uparrow $\qquad \qquad$ \uparrow \uparrow \uparrow \uparrow $X = \langle \{2\}, \{1\}, \{1,2,3,4,5\}, \{1,2\}, \{3,4,5\} \rangle$ change X_2 so at least $X_2 = Y_2$ $Y = \langle \{2\}, \{1\}, \{0,1,2,3,4\}, \{0,1\}, \{0,1,2\} \rangle$ and again shift pointer α $\alpha \uparrow$ $\uparrow \beta$ $X = \langle \{2\}, \{1\}, \{1,2,3\}, \{1,2\}, \{3,4,5\} \rangle$ because $\alpha = \beta -1$ $Y = \langle \{2\}, \{1\}, \{2,3,4\}, \{0,1\}, \{0,1,2\} \rangle$ force constraint $X_{\alpha} < Y_{\alpha}$ $\alpha \uparrow$ \uparrow \uparrow \uparrow

Rostering

- **scheduling of shifts**, for example in hospitals
- There are typically specific shift sequencing constraints (given by trade unions, law etc.)

Example:

- shifts: a, b, c, o (o means a free shift)
- constraints:
	- the same shift can repeat each day
	- at least one o shift is between a, b, between b, c, and between c, a
	- a-o*-c, b-o*-a, c-o*-b are not allowed (o* is a sequence of o shifts)
- Any shift can be used the first day, only shifts b, o can be used the second day, shifts a, c, o for the third day, shifts a, b, o for the forth day, and shift a the fifth day. **a o o**

How to model such a problem?

- variables describe shifts in days
- And what about constraints?
	- using a finite state automaton (FSA)

regular

models a sequence of symbols **accepted by a FSA** $\texttt{regular}(A, \{X_1, ..., X_k\}) = \{(d_1, ..., d_k) \mid \forall i \ d_i \in D_i \ \land d_1 ... d_k \in L(A)\}$ filtering is based on representing all possible computations of a FSA using a **layered directed graph** (layer=states, arc=transitions)

Initialisation

- 1. add arcs going from the initial state based on the symbols in the variables' domains
- 2. during the backward run, remove the arcs that are not on paths to the final states
- 3. remove the symbols without any arc

Incremental filtering $(X_4 \neq 0)$ *:*

1. remove arcs for the deleted symbol

a

a o

o

a

^o ^o

o

c

a

o

 $\frac{b}{3}$ **b ^b ^b**

c c

c

- 2. propagate the update in both directions
- 3. remove the symbols **o** without any arc

Let us go back to the **regular** constraint, which behaves like **sliding a special transition constraint over a sequence of variables**.

slide

Such a principle can be generalized!

$$
\texttt{slide}_j(C, \{X_1, \ldots, X_n\}) \equiv \forall i \ C(X_{ij+1}, \ldots, \ X_{ij+k})
$$

- C is a k-ary constraint
- constant j determines the slide length

Some examples:

- ${\bf regular}(A, \{X_1,..., X_n\}) = {\bf slide}_2(C, \{Q_0, X_1, Q_1, ..., X_n, Q_n\})$ $C(\overline{P},X,Q)$ represents a transition $\delta(\overline{P},X) = Q$, $Q_0 = \{q_0\}$, $Q_n = F$
- **lex**({X₁,..., X_n}, {Y₁,..., Y_n}) = **slide**₃(C, {B₀,X₁,Y₁,B₁, ..., X_n, Y_n, B_n}) $C(B, X, Y, C) = B=C=1$ or $(B=C=0$ and $X=Y$ or $(B=0, C=1$ and $X)$ $B_0 = 0$, $B_n = 1$ (strict lex), B_n in $\{0,1\}$ (non lex)
- **stretch** $({X_1,..., X_n}, s, l, t) = slide_2(C, {X_1, S_1, ..., X_n, S_n})$ $C(X_i, S_i, X_{i+1}, S_{i+1}) = X_i = X_{i+1}, S_{i+1} = 1 + S_i, S_{i+1} \leq l(X_i),$ or $X_i \neq X_{i+1}$, $S_i \geq s(X_i)$, $S_{i+1} = 1$, $(X_i, X_{i+1}) \in t$ $S_1 = 1$

© 2024 Roman Barták Charles University, Faculty of Mathematics and Physics bartak@ktiml.mff.cuni.cz