
Introduction to 
Constraint Satisfaction

Roman Barták
Charles University, Prague (CZ)

Solving and modelling CSPs



How to solve constraint satisfaction problems?

So far we have two methods to solve CSPs:
– search

• complete (finds a solution or proves its non-existence)
• too slow (exponential)

– explores “visibly” wrong variable instantiations
– consistency techniques

• usually incomplete (inconsistent values stay in domains)
• pretty fast (polynomial)

Share advantages of both approaches - combine them!
– label the variables step by step (backtracking)
– maintain consistency after assigning a value

Do not forget about traditional solving techniques!
– linear equality solvers, simplex …
– such techniques can be integrated to global constraints!



A core constraint satisfaction method:
– label (instantiate) the variables one by one

• the variables are ordered and instantiated in that order
– verify (maintain) consistency after each assignment

Skeleton of the search algorithm
procedure Labelling(G)

return LBL(G,1)
end Labelling

procedure LBL(G,cv)
if cv>|nodes(G)| then return nodes(G)
for each value V from Dcv do

if consistent(G,cv) then
R ¬ LBL(G,cv+1)
if R ¹ fail then return R

end if
end for
return fail

end LBL

A „hook“ for consistency 
procedure

Golomb&Baumert (1965), Bitner&Reingold (1975) BacktrackingGolomb&Baumert (1965), Bitner&Reingold (1975)



Look-back techniques
“Maintain” consistency among the already instantiated variables.

– „look back“ = look to already labelled variables
What’s result of consistency maintenance among labelled variables?

– a conflict (and/or its source - a violated constraint)
Backtracking is a basic look-back method.

Backward consistency checks
procedure AC-BT(G,cv)

Q ¬ {(Vi,Vcv) in arcs(G), i<cv}       % arcs to labelled variables.
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
consistent ¬ not REVISE(Vk,Vm)

end while
return consistent

end AC-BT

Backjumping & comp. uses information about the violated constraints.

When a value is deleted,
the domain is empty



Forward checking
It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future (=not yet 
instantiated) variables.
Forward checking ensures consistency between the currently instantiated 
variable and the variables connected to it via constraints.

Forward consistency checks

procedure AC-FC(G,cv)
Q ¬ {(Vi,Vcv) in arcs(G), i>cv}     % arcs to future variables
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

consistent ¬ not empty Dk
end if

end while
return consistent

end AC-FC

Empty domain implies
inconsistency

McGregor (1975),Van Hentenryck (1989)



Partial look-ahead
We can extend the consistency checks to more future variables!
The value assigned to the current variable can be propagated to all future 
variables.

Partial look-ahead consistency checks

Notes:
In fact DAC is maintained (in the order reverse to the labelling order).

Partial Look Ahead or DAC - Look Ahead
It is not necessary to check consistency of arcs between the future variables 

and the past variables (different from the current variable)!

procedure DAC-LA(G,cv)
for i=cv+1 to n do

for each arc (Vi,Vj) in arcs(G) such that i>j & j³cv do
if REVISE(Vi,Vj) then
        if empty Di then return fail

end for
end for
return true

end DAC-LA

Haralick&Elliot (1980)



Full look-ahead
Knowing more about far future is an advantage!
Instead of DAC we can use a full AC (e.g. AC-3).

Full look ahead consistency checks

procedure AC3-LA(G,cv)
Q ¬ {(Vi,Vcv) in arcs(G),i>cv}               % start with arcs going to cv
consistent ¬ true
while consistent & Q non empty do

select and delete any arc (Vk,Vm) from Q
if REVISE(Vk,Vm) then

Q ¬ Q È {(Vi,Vk) | (Vi,Vk) in arcs(G),i¹k,i¹m,i>cv}
consistent ¬ not empty Dk

end if
end while
return consistent

end AC3-LA

Notes:
– The arcs going to the current variable are checked exactly once.
– The arcs to past variables are not checked at all.
– It is possible to use other than AC-3 algorithms (e.g. AC-4)

Gaschnig (1974), Sabin&Freuder (1994)



Comparison of solving methods (4 queens)

Backtracking is not very good
• 19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts



Constraint propagation at glance

• Propagating through more constraints removes more inconsistencies
(BT < FC < PLA < LA), of course it increases complexity of the labelling step.

• Forward Checking does no increase complexity of backtracking, the constraint 
is just checked earlier in FC (BT tests it later).

• When using AC-4 in LA, the initialisation is done just once.
• Consistency can be ensured before starting search

– Algorithm MAC (Maintaining Arc Consistency)
• AC is checked before search and after each assignment

• It is possible to use stronger consistency techniques (e.g. use them once before 
starting search).

1 2 3 4 5 6 7 8

Past (already labelled) variables Future (free) variablescv

backtracking forward checking look ahead



Variable ordering

Variable ordering in labelling influences significantly efficiency of 
constraint solvers (e.g. in a tree-structured CSP).

Which variable ordering should be chosen in general?
FAIL FIRST principle

„select the variable whose instantiation will lead to a failure“
it is better to tackle failures earlier, they can be become even harder
– prefer the variables with smaller domain (dynamic order)

• a smaller number of choices ~ lower probability of success 
• the dynamic order is appropriate only when new information appears 

during solving (e.g., in look ahead algorithms) 

„solve the hard cases first, they may become even harder later“
– prefer the most constrained variables

• it is more complicated to label such variables (it is possible to assume 
complexity of satisfaction of the constraints)

• this heuristic is used when there is an equal size of the domains
– prefer the variables with more constraints to past variables

• a static heuristic that is useful for look-back techniques



Value ordering

Order of values in labelling influences significantly efficiency (if we 
choose the right value each time, no backtrack is necessary).

What value ordering for the variable should be chosen in general?
SUCCEED FIRST principle

„prefer the values belonging to the solution“
– if no value is part of the solution then we have to check all values
– if there is a value from the solution then it is better to find it soon
Note: SUCCEED FIRST does not go against FAIL FIRST !
– prefer values with more supports

• this information can be found in AC-4
– prefer a value leading to less domain reduction

• this information can be computed using singleton consistency
– prefer a value simplifying the problem

• solve approximation of the problem  (e.g. a tree)
Generic heuristics are usually too complex for computation.
It is better to use problem-driven heuristics that propose the value!



So far we assumed search by labelling, i.e. assignment of 
values to variables.

– assign a value, propagate and backtrack in case of 
failure (try other value)
• this is called enumeration

– propagation is used only after instantiating a variable

Example:
• X,Y,Z in 0,…,N-1 (N is constant)
• X=Y, X=Z, Z=(Y+1) mod N

– problem is AC, but has no solution
– enumeration will try all the values
– for n=107 runtime 45 s. (at 1.7 GHz P4)

Can we use faster labelling?

0   1   2

0   1   2 0   1
   2

X

YZ

Enumeration



Enumeration resolves disjunctions in the form X=0 Ú X=1 … X=N-1
– if there is no correct value, the algorithm tries all the values

We can use propagation when we find some value to be wrong!
– that value is deleted from the domain which starts propagation 

that filters out other values
– we solve disjunctions in the form X=H Ú X¹H
– this is called step labelling (usually a default strategy)
– the previous example solved in 22 s. by trying and refuting value 0 

for X
Why so long?

– In each AC cycle we remove just one value.
Another typical branching is bisection/domain splitting

– we solve disjunctions in the form X£H Ú X>H, where H is a value 
in the middle of the domain

Other branching strategies



When solving real-life problems we frequently have some 
experience with “manual” solving of the problem.

Heuristics – a guide where to go
– they recommend a value for assignment (value ordering)
– frequently lead to a solution

But what to do when the heuristic is wrong?
– DFS takes care about the end of branches (leafs of tree)
– it repairs latest failures of the heuristic rather than earlier failures
– so it assumes that heuristic was right at the beginning of search

Observation1:
 The number of wrong heuristic decisions is low.

Observation2:
 Heuristics are usually less reliable at the beginning of search than 

at its end (more information and fewer choices are available there).

Search and heuristics



How to make search more efficient?
– Backtracking is “blind” with respect to heuristics.

Discrepancy = violation of heuristic (different value is used)

Core principles of discrepancy search:
– we change the order of branches based on discrepancies
– explore first the branches with less discrepancies

– explore first the branches with earlier discrepancies

heuristic says „go left“

heuristic says „go left“

is before

is before

Recovery from mistakes



Limited Discrepancy Search

Limited number of discrepancies (cutoff)
– branches with less discrepancies are explored first

After failure increase the number of allowed discrepancies by one 
(restart).

– first, follow the heuristic
– then explore paths with at most one discrepancy

Example: LDS(1), heuristic suggests going to left

A note for non-binary domains:
– non-heuristic values are assumed as one discrepancy (here)
– each other non-heuristic value means increase of the number of 

discrepancies (e.g. third value = two discrepancies)

6 24 135

Harvey & Ginsberg (IJCAI 1995)



procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)
if Unlabelled = {} then return Labelled
select X in Unlabelled
ValuesX ¬  DX - {values inconsistent with Labelled using Constraints}
if ValuesX = {} then return fail
else select HV in ValuesX using heuristic

if D>0 then
 for each value V from ValuesX-{HV} do

R ¬  LDS-PROBE(Unlabelled-{X}, Labelled È {X/V}, Constraints, D-1)
if R¹ fail then return R

 end for
end if
return LDS-PROBE(Unlabelled-{X}, LabelledÈ{X/HV}, Constraints, D)

end if
end LDS-PROBE
procedure LDS(Variables,Constraints)

for D=0 to |Variables| do % D determines the allowed number of discrepancies
R ¬  LDS-PROBE(Variables,{},Constraints,D)
if R¹ fail then return R

end for
return fail

end LDS

(Harvey & Ginsberg, IJCAI 1995) Algorithm LDS



So far we looked for any solution satisfying the constraints.

Frequently, we need to find an optimal solution, where solution 
quality is defined by some objective function.

Definition:
• Constraint Satisfaction Optimisation Problem (CSOP) 

consists of a CSP P and an objective function f mapping 
solutions of P to real numbers.

• A solution to a CSOP is a solution to P minimizing / 
maximizing the value of f.

• When solving CSOPs we need methods that can provide 
more than one solution.

Constrained optimization



The method branch-and-bound is a frequently used 
optimisation technique based on pruning branches where there 
is no optimal solution.
It uses a heuristic function h that estimates the value of 
objective function f.

– admissible heuristic for minimization satisfies h(x) £ f(x)
 [for maximization f(x) £ h(x)]
– heuristic closer to f is better

We stop exploring the search branch when:
– there is no solution in the sub-tree
– there is no optimal solution in the sub-tree

• Bound £ h(x), where Bound is the maximal value of f for an 
acceptable solution

How to obtain the Bound?
– for example the value of the solution found so far

Branch and bound



Objective function is encoded in a constraint
we “optimize” the value v, where v = f(x)

• the first solution is found using no bound on v
• the next solutions must be better than the last solution 

found (v < Bound)
• repeat until no feasible solution is found

Algorithm Branch & Bound
procedure BB-Min(Variables, V, Constraints)

Bound ¬ sup
NewSolution ¬ fail
repeat

Solution ¬ NewSolution
NewSolution ¬ Solve(Variables,Constraints È {V<Bound})
Bound ¬ value of V in NewSolution (if any)

until NewSolution = fail
return Solution

end BB-Min

Branch and bound for constrained optimization



• Heuristic h is hidden in the propagation of constraint v = f(x).
• Efficiency of search depends on:

– good heuristic (good propagation through the objective constraint)
– good solution found early

using an initial bound may help
• We can find the optimal solution fast

– but the proof of optimality takes time (explore the rest of search 
tree)

• Frequently, we do not need optimal solution, good solution is enough
– BB can stop after finding a good enough solution

• BB can be speeded up by using both upper and lower bounds

repeat
TempBound ¬ (UBound+LBound) /  2
NewSolution ¬ Solve(Variables,Constraints È {V£TempBound})
if NewSolution=fail then

LBound ¬ TempBound+1
else

UBound ¬ TempBound
until LBound = UBound 

Branch and bound: notes



How Is CSP used in practice?

Exploiting the principles of constraint satisfaction, but 
programming them ad-hoc for a given problem.

– flexibility (complete customisation to a given problem)
– speed (for a given problem)
– expensive in terms of initial development and maintenance

Exploiting an existing constraint solver.
– usually integrated to a host language as a library
– contains core constraint satisfaction algorithms
– the user can focus on problem modelling
– It is hard to modify low-level implementation (domains,…)
– sometimes possible to implement own constraints
– frequently possible to implement own search strategies



Declarative model

Constraint modeling

A typical structure of constraint models:

declare_variables( Variables),

post_constraints( Variables),

labeling( Variables ).

Definition of variables 
and their  domains

Definition of 
constraints

Control part
• exploration of space of assignments
• assigning values to variables
• looking for one, all, or optimal solution



N-queens

Propose a constraint model for solving the N-queens problem (place N 
queens to a chessboard of size NxN such that there is no conflict).
Variables: X1,…,Xn, Y1,…,Yn
Domain: 1,…,N
Constraints:
 all_different({X1,…,Xn}),
 all_different({Y1,…,Yn}),
 "i<j: |Xi – Xj| \= |Yi – Yj|

Solutions (for 4 queens) in the form (Xi,Yi)
 [(1,2),(2,4),(3,1),(4,3)]
 [(1,3),(2,1),(3,4),(4,2)]
 [(1,2),(2,4),(4,3),(3,1)]
 [(1,3),(2,1),(4,2),(3,4)]
 [(1,2),(3,1),(2,4),(4,3)]
 [(1,3),(3,4),(2,1),(4,2)]
 [(1,2),(3,1),(4,3),(2,4)]
 [(1,3),(3,4),(4,2),(2,1)]
 …
Where is the problem?

– Different assignments describe the same solution!
– There are only two different solutions (very „similar“ solutions).
– The search space is non-necessarily large.



N-queens: a better model

Pre-assign queens to columns, use only variables for rows
Variables: X1,…,Xn
Domain: 1,…,N
Constraints:
 all_different({X1,…,Xn}),
 "i<j: |Xi – Xj| \= j-i

Solutions (for 4 queens) in the form Xi values
 [2,4,1,3]
 [3,1,4,2]

Model properties:
– fewer variables (= smaller state space)
– fewer constraints (= faster propagation)

Remove symmetrical solutions:
 X1 =< ceiling(N/2) 

 a so-called symmetry breaking constraint



Seesaw problem

The problem:
 Adam (36 kg), Boris (32 kg) and Cecil (16 kg)

want to sit on a seesaw with the length 10 foots
such that the minimal distances between them are more than 2 
foots and the seesaw is balanced.

A constraint model:
 A,B,C in -5..5      position
 36*A+32*B+16*C = 0    equilibrium state
 |A-B|>2, |A-C|>2, |B-C|>2  minimal distances

-5 -4 -3 -2 -1 0 1 2 3 4 5



Seesaw problem:  a different perspective

• A set of similar constraints typically indicates a structured sub-problem 
that can be represented using a global constraint.

• We can use a global constraint describing allocation of activities to 
exclusive resource.

A,B,C in -5..5,
 A =< 0,
 36*A+32*B+16*C = 0,
 abs(A-B)>2,
 abs(A-C)>2,
 abs(B-C)>2

A in -4..0
 B in -1..5
 C in -5..5

A,B,C in -5..5,
 A =< 0,
 36*A+32*B+16*C = 0,
 cumulative([task(A,3,_,1,1),task(B,3,_,1,2),
               task(C,3,_,1,3)],[limit(1)]),

A in -4..0
B in -1..5
C in (-5..-3) \/ (-1..5)

abs(A-B)>2,
abs(A-C)>2,
abs(B-C)>2

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
A B C

task(start,duration,end,capacity,id)



Assignment problem

The problem:
 There are 4 workers and 4 products and a table describing the 

efficiency of producing the product by a given worker. The task is 
assign workers to products (one to one) in such a way that the 
total efficiency is at least 19.

A constraint model:
 W1,W2,W3,W4 in 1..4  a product per worker
 all_different([W1,W2,W3,W4]) different products
 T1,W1+T2,W2+T3,W3+T4,W4 ³ 19   total efficiency

P1 P2 P3 P4
W1 7 1 3 4
W2 8 2 5 1
W3 4 3 7 2
W4 3 1 6 3



Assignment problem - a dual model
Why do we assign products to workers?
Cannot we do it in an opposite way, that is, to assign a worker to

a product?
Of course, we can swap the role of values and variables!
• This new model is called a dual model.

Which model is better?
• In this particular case, the dual model propagates earlier (thus it is assumed 

to be better).

:-use_module(library(clpfd)).

assignment_dual(Products):-
 Products = [P1,P2,P3,P4],
 
 domain(Products,1,4),
 all_different(Products),
 element(P1,[7,8,4,3],EP1),
 element(P2,[1,2,3,1],EP2),
 element(P3,[3,5,7,6],EP3),
 element(P4,[4,1,2,3],EP4),
 EP1+EP2+EP3+EP4 #>= 19,

 labeling([ff],Products).

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

Number of choice points

Primal model 15
Dual model 11

element(X,List,Y) ó ListX = Y



Assignment problem - composing models

a primal model

a dual model (redundant)

a channelling constraint

labelling one model is enough

:-use_module(library(clpfd)).

assignment_combined(Workers):-
 Workers= [W1,W2,W3,W4],
 domain(Workers,1,4),
 all_different(Workers),
 element(W1,[7,1,3,4],EW1),
 element(W2,[8,2,5,1],EW2),
 element(W3,[4,3,7,2],EW3),
 element(W4,[3,1,6,3],EW4),
 EW1+EW2+EW3+EW4 #>= 19,

 Products = [P1,P2,P3,P4], 
 domain(Products,1,4),
 all_different(Products),
 element(P1,[7,8,4,3],EP1),
 element(P2,[1,2,3,1],EP2),
 element(P3,[3,5,7,6],EP3),
 element(P4,[4,1,2,3],EP4),
 EP1+EP2+EP3+EP4 #>= 19,

 assignment(Workers,Products),

 labeling([ff],Workers).

We can combine both primal and dual model
in a single model to get better domain pruning.

P1 in 1..2
P2 in 1..4
P3 in 2..4
P4 in 1..4

W1 in 1..4
W2 in 1..4
W3 in 1..4
W4 in 1..4

W1 in (1..2)\/{4}
W2 in 1..4
W3 in 2..4
W4 in 2..4



Golomb ruler

• A ruler with M marks such that 
distances between any two 
marks are different.

• The shortest ruler is the optimal 
ruler.

• Hard for  M³16, no exact 
algorithm for M ³ 24!

• Applied in radioastronomy.

Solomon W. Golomb
Professor
University of Southern California
http://csi.usc.edu/faculty/golomb.html

0 1 4 9 11



Golomb ruler – a model
A base model:

Variables X1, …, XM with the domain 0..M*M

X1 = 0 ruler start

X1< X2<…< XM no permutations of variables

"i<j Di,j = Xj – Xi difference variables

all_different({D1,2, D1,3, … D1,M, D2,3, … DM,M-1})

Model extensions:

D1,2 < DM-1,M symmetry breaking

better bounds (implied constraints) for Di,j

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j

 so Di,j ³ Sj-i = (j-i)*(j-i+1)/2 lower bound

XM = XM – X1 = D1,M = D1,2 + D2,3 + … Di-1,i + Di,j + Dj,j+1 + … + DM-1,M

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M)

 so Di,j £ XM – (M-1-j+i)*(M-j+i)/2 upper bound

0 1 4 9 11

0 2 7 10 11"



• What is the effect of different constraint models?

• What is the effect of different search strategies?

Golomb ruler - some results

size

7
8
9

10
11

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

base model

220
1 462

13 690
120 363

2 480 216

base model
+ symmetry

80
611

5 438
49 971

985 237

base model
+ symmetry
+ implied constraints

30
190

1 001
7 011

170 495

size fail first leftmost first

7
8
9

10
11

step

60
370

2 384
17 545

906 323

enum

40
390

2 664
20 870

1 004 515

bisect

40
350

2 113
14 982

779 851

step

30
190

1 001
7 011

170 495

enum

30
220

1 182
8 782

209 251

bisect

30
200
921

6 430
159 559

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM



Course summary

Constraint satisfaction is a technology for declarative 
solving combinatorial (optimization) problems.
Constraint modeling
– describing problems as constraint satisfaction problems 

(variables, domains, constraints)
Constraint satisfaction
– local search techniques
– combination of depth-first search with inference 

(constraint propagation/consistency techniques)
– ad-hoc algorithms encoded in global constraints

It is easy to model problems in terms of a CSP
… but it is complicated to design solvable models.



© 2024 Roman Barták
Charles University, Faculty of Mathematics and Physics

bartak@ktiml.mff.cuni.cz


