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CS678 - Advanced NLP 

Intro: 
Neural Language Models

Antonis Anastasopoulos

antonis@gmu.edu

mailto:antonis@gmu.edu


Our goal today
What is natural language processing? 

Specifically today: 

- Class Logistics 

- Neural Networks for NLP and Language Modeling 
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Hello, everyone!
Research Interests: NLP and AI 

NLP for Low-Resource Languages 
Machine Translation 
Multilinguality and Cross-Lingual Learning 
Fairness in NLP 

Collaborations:  
Carnegie Mellon University, U. Washington, Google, 
Amazon (AWS), Meta, U. of Notre Dame, Microsoft, 
Karya.

Antonis Anastasopoulos,  
Asst. Prof.@GMU CS 

Researcher @Archimedes AI
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A bit about you
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Language  
is Hard!
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Engineering Solutions

8

} Create a grammar of 
the language

} Consider 
morphology and exceptions

} Semantic categories, 
preferences
} And their exceptions

Jane went to the store. 

store to Jane went the. 

Jane went store. 

Jane goed to the store. 

The store went to Jane. 

The food truck went to Jane.



Are These Sentences OK?
ジェインは店へ⾏った。 

は店⾏ったジェインは。 

ジェインは店へ⾏た。 

店はジェインへ⾏った。 

屋台はジェインのところへ⾏った。
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Μπορείτε να διαβάσετε αυτήν  
την πρόταση; 

Potete leggere questa frase? 

इस वाक्य क्या आप को पढ़ सकते हैं? 

mungawerenge chiganizo ichi?



Phenomena to Handle
Morphology 

Syntax 

Semantics/World Knowledge 

Discourse 

Pragmatics 

Multilinguality
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Neural Nets for NLP

11



Neural Nets for NLP
Neural nets are a tool to do hard things!
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Neural Nets for NLP
Neural nets are a tool to do hard things!

Combined with lots of data and compute, they can approximate any 
function!
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What do you think of 
when you think of NLP?

12



What will you learn?

13



What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate 



What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate 

2. Understand the limitations of current technologies 



What will you learn?

13

1. The generics of how large pre-trained neural language models are trained and operate 

2. Understand the limitations of current technologies 

3. Learn about the harms associated with their use and ways to mitigate them



How will you learn? 
(syllabus highlights)
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Syllabus Highlights
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    I’ll try to have some sort of interactive element every day
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Syllabus Highlights
Mostly lectures, but  
    I’ll try to have some sort of interactive element every day

- I will provide additional readings for anyone interested
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Lectures
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Lectures
You should ask lots of questions

- interrupting (by raising a hand) to ask your question is strongly 
encouraged

- Asking questions later (or in real time)

Interaction improves learning!
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Logistics
We will use Discord for 

Announcements  

Distributing course materials before/after class
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Language Models
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Calculating the Probability 
of a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P( . ) .

But word order and context matters!
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Calculating the Probability 
of a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P(Jane went to the store) = P(Jane | < s > ) × P(went |Jane) ×
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Calculating the Probability 
of a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!
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• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)
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Count-based Language 
Models
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    The cat sat on the mat . 
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Count-based Language 
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Add smoothing to deal with zero counts:

p(xi |xi−n+1:i−1) =
c(xi−n+1:i) + α

c(xi−n+1:i−1) + α |V |
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Count-based Language 
Models

Corpus: 
    The cat sat on the mat . 
    A dog chased the cat .

A mouse ate some cheese . 
The mouse ran under a mat .

p(A cat chased the mouse .) =
p(<s> ||A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p( . |mouse)

|V | = |{the, a, cat, sat, . . . } | = 15 α = 1
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An Alternative: 
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

• Optimize feature weights using gradient descent, 
etc.
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Example:
Previous words: “giving a"

a 
the 
talk 
gift 
hat 
…

Words we’re 
predicting

3.0 
2.5 
-0.2 
0.1 
1.2 
…

b=

How likely 
are they?

-6.0 
-5.1 
0.2 
0.1 
0.5 
…

w1,a=

How likely 
are they 

given prev. 
word is “a”?

-0.2 
-0.3 
1.0 
2.0 
-1.2 
…

w2,giving=

How likely 
are they 

given 2nd prev. 
word is “giving”?

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

Total 
score
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Softmax
• Convert scores into probabilities by taking the 

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

0.002 
0.003 
0.329 
0.444 
0.090 

…

p=



A Computation Graph View
giving a

Each vector is size of output vocabulary



A Computation Graph View
giving a

lookup2



A Computation Graph View
giving a

lookup2 lookup1



A Computation Graph View
giving a

lookup2 lookup1

+ +

bias



A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores



A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs



A Computation Graph View
giving a

lookup2 lookup1

+ +

bias
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Each vector is size of output vocabulary



Neural Networks: 
A Tool for Doing Hard Things

55



An Example Prediction Problem: Sentence Classification

56



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie

I   love   this   movie



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



An Example Prediction Problem: Sentence Classification

56

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup bias



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias scores



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores



A First Try: 
Bag of Words (BOW)

Each word has a vector of weights for each tag

57

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs
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What do Our Vectors Represent?
Each word has its own 5 elements corresponding to [very good, good, 
neutral, bad, very bad]
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What do Our Vectors Represent?
Each word has its own 5 elements corresponding to [very good, good, 
neutral, bad, very bad]

“hate” will have a high value for “very bad”, etc.
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Combination Features
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Combination Features
Does it contain “don’t” and “love”?

Does it contain “don’t”, “i”, “love”, and “nothing”? 

60



Basic Idea of Neural Networks (for NLP Prediction Tasks)
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Basic Idea of Neural Networks (for NLP Prediction Tasks)

61

I hate this movie

lookup lookup lookup lookup

softmax

probs

some complicated function 
to extract combination 

features 
(neural net)

scores
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Continuous Bag of Words (CBOW)
Each word has a feature vector, each feature has weights
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I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup
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What do Our Vectors Represent?
Each vector has “features” (e.g. is this an animate object? is this a positive 
word, etc.)

We sum these features, then use these to make predictions

Still no combination features: only the expressive power of a linear model, 
but dimension reduced

63



Deep CBOW
Add several feature transforms
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Deep CBOW
Add several feature transforms

64

I hate this movie

+

bias

=

scores

W

+ + +

=
tanh( 
  W1*h + b1)

tanh( 
  W2*h + b2)
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What do Our Vectors Represent?
Now things are more interesting!

We can learn feature combinations (a node in the second layer might be 
“feature 1 AND feature 5 are active”)

e.g. capture things such as “not” AND “hate”
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What is a Neural Net? 
Computation Graphs
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Original Motivation: Neurons in the Brain

Image credit: Wikipedia

Current Conception: Computation Graphs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
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69

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument 
(and also an data dependency). They are just 
pointers to nodes.
A node with an incoming edge is a function of that 
edge’s tail node.

f(u) = u>

A node knows how to compute its value and the 
value of its derivative w.r.t each argument (edge) 
times a derivative of an arbitrary input       .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:
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y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.



Algorithms (1)
Graph construction 
Forward propagation 

In topological order, compute the value of the node given its inputs
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f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation
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f(U,V) = UV

f(M,v) = Mv
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f(u,v) = u · v
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f(x1, x2, x3) =
X
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graph:
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Forward Propagation
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f(u) = u>
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f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation
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f(u) = u>
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f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X
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graph:
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Forward Propagation
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f(U,V) = UV

f(M,v) = Mv
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f(u,v) = u · v
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X
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Forward Propagation
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f(u) = u>
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f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X
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x>A

b · x

x>Ax

Forward Propagation
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x>Ax+ b · x+ c



Algorithms (2)

84



Algorithms (2)
Back-propagation: 

Process examples in reverse topological order 

Calculate the derivatives of the parameters with respect to the final value 
(This is usually a “loss function”, a value we want to minimize)
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Algorithms (2)
Back-propagation: 

Process examples in reverse topological order 

Calculate the derivatives of the parameters with respect to the final value 
(This is usually a “loss function”, a value we want to minimize)

Parameter update: 
Move the parameters in the direction of this derivative 
W -= α * dl/dW
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BACKPROPAGATION OF ERRORS
Intuitions

81
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Error Back-Propagation

82
Slide from (Stoyanov & Eisner, 2012)
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)
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Text Credit: Max Deutsch (https://medium.com/deep-writing/)

Language Models
• Language models are generative models of text



s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

Language Models
• Language models are generative models of text



s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione. 

Harry was watching him. He looked like Madame Maxime. When she strode up 
the wrong staircase to visit himself. 

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?” 
said Snape. He put his head back behind them and read groups as they crossed a 
corner and fluttered down onto their ink lamp, and picked up his spoon. The 
doorbell rang. It was a lot cleaner down in London.

Language Models
• Language models are generative models of text
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The Generation Problem
• We have a model of P(Y|X), how do we use it to 

generate a sentence?

• Two methods:

• Sampling: Try to generate a random sentence 
according to the probability distribution.

• Argmax: Try to generate the sentence with the 
highest probability.
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Ancestral Sampling

• Randomly generate words one-by-one. 
 
 
 

• An exact method for sampling from P(X), no further 
work needed.

while yj-1 != “</s>”: 
  yj ~ P(yj | X, y1, …, yj-1)
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Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first

• Will prefer multiple common words to one rare word

while yj-1 != “</s>”: 
  yj = argmax P(yj | X, y1, …, yj-1)


