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Outline

▸ Day 1: Motivation & Introduction to Deep Reinforcement
Learning

▸ Day 2: Inverse Reinforcement Learning and Connections to
Probabilistic Inference

▸ Day 3: Imitation Learning

▸ Day 4: Non-Markovian, Multimodal Imitation Learning

▸ Day 5: Imitating in Constrained Settings, Multiagent
Imitation Learning.
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Imitation Learning

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an
unknown expert policy πϵ, learn a policy π that generates
trajectories that are “as close as possible” to the expert
trajectories.
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Imitation learning

What can go wrong?

▸ Lack of training data

▸ Noisy or erroneous training data

▸ Distribution mismatch

▸ compounding errors

▸ Discrimination ability (different actions in very similar
settings)

▸ Collapsing multi-modal behaviour in executing tasks in a
single policy

▸ Being unaware of other agents’ policies in multi-agent settings
(collaborative or not)

▸ ... and others that will be revealed during the course
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Introduction to (Deep) Reinforcement Learning

Reinforcement Learning provides a formalism for behaviour

Examples
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Imitation Learning

Basic Setting (Behavioural Cloning)
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Imitation Learning

Basic Setting Example

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”
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Imitation Learning

Basic Setting Example

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”
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Imitation Learning

▸ Does Behavioural Cloning work well?

▸ Under which circumstances?

▸ How to mitigate limitations?

▸ Better algorithms?
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Imitation Learning

What is important to imitation learning?

What is the major difference to supervised learning?
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Imitation Learning

What is important to imitation learning?

The difference to supervised learning: Test data are not i.i.d and
depend on the policy (current decisions affect future states
and observations)
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Imitation Learning

Basic Setting (Behavioural Cloning)
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Imitation Learning

Autonomous Land Vehicle In a Neural Network (ALVINN)

The video
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https://youtu.be/ntIczNQKfjQ


Imitation Learning

Basic Setting (Behavioural Cloning)
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Imitation Learning

Why does not work in general?
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Imitation Learning

Potential factors making it work well

▸ Not much stochasticity in demonstrated actions

▸ Similar situations require same action

▸ Situations not from the training data set are unlikely
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Imitation Learning

Can we make it work?
Ans: YES! : The DAVE autonomous car Video
During training:

During inference:

Bojarski et al (2016) INVIDIA 17 / 53

https://youtu.be/NJU9ULQUwng


Imitation Learning

Can we make it work?
Ans: YES! : The Quadcopter Video
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https://youtu.be/umRdt3zGgpU


Imitation Learning

Potential factors making it work well

▸ Collect data covering the states and actions space or be smart
about it.

▸ Train robust and/or powerful models

▸ Transfer knowledge from different tasks

[LIS-FRA] [LHR-FCO]

19 / 53



Imitation Learning

A subtle issue

We train πθ using samples from pD , and this results into
generating output under pθ, different from pD .
Under the perspective of “compounding errors”, there is a subtle
difference between supervised and imitation learning:

▸ Supervised learning: maxθ Est∼pD(st)[logπθ(at ∣st))]
▸ Imitation learning: minEst∼pθ(st)[c(st , at))]
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Imitation Learning

A subtle issue

▸ Imitation learning: minEst∼pθ(st)[c(st , at))]
The cost measures the mistaken decisions made by πθ
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Imitation Learning

A subtle issue

▸ Imitation learning: minEst∼pθ(st)[c(st , at))]
The cost measures the mistaken decisions made by πθ.
A simple one:

c(st , at) =
⎧⎪⎪⎨⎪⎪⎩

0 if at = π∗(st)
1 otherwise
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Imitation Learning

What is the worst case?

c(st , at) =
⎧⎪⎪⎨⎪⎪⎩

0 if at = π∗(st)
1 otherwise

assume that πθ(a ≠ π∗(s)∣s) ≤ ϵ, for all s ∈ Dtrain

Therefore,
J(πθ) = E[∑

t

c(st , at)] = O(ϵT 2)

Because it does not know how to recover from errors. 23 / 53



Imitation Learning

How worse can it be for s ∼ ptrain?

c(st , at) =
⎧⎪⎪⎨⎪⎪⎩

0 if at = π∗(st)
1 otherwise

assume that πθ(a ≠ π∗(s)∣s) ≤ ϵ, for all s ∼ ptrain
and Eptrain(s)[πθ(a ≠ π

∗(s)∣s)] ≤ ϵ

The bound
It can be shown that

J(πθ) = E[∑
t

c(st , at)] = O(ϵT 2)

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”
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Imitation Learning

Early reduction-based approaches

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”
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Imitation Learning

Early approaches

Ross et al., (2011) “A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”
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Imitation Learning

Main idea:
Intentionally add (some) mistakes and actions of recovery:
Essentially, shift ptrain = pD towards pθ, or incorporate agents’
experience given s ∼ pθ into p′train = p′D
Also called ”data augmentation”.
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Imitation Learning

Making pD(st) = pθ(st)
So, augment pD(st) by states (and expert labels) sampled from
pθ(st).

DAgger: Dataset Aggregation

Collect data from pθ(st), by running the policy πθ(at ∣st) and
getting labels at for unseen states st .
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Imitation Learning

DAgger: Dataset Aggregation

Collect data from pθ(st), by running the policy πθ(at ∣st) and
getting labels at for unseen states st .

DAgger: The algorithm

1. train πθ from expert demonstrations
D = {s1, a1, s2, a2, ..., sT , aT}

2. run πθ(at ∣st) to get dataset Dθ = {s ′1, s ′2, ..., s ′H}
3. ask the human to label Dθ with actions at

4. Aggregate D ← D ∪Dθ

5. GoTo 1
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Imitation Learning

DAgger: The algorithm

1. train pθ from expert demonstrations
D = {s1, a1, s2, a2, ..., sT , aT}

2. run pθ(at ∣st) to get dataset Dθ = {s ′1, s ′2, ..., s ′H}
3. ask the human to label Dθ with actions at

4. Aggregate D ← D ∪Dθ

5. GoTo 1

DAgger: The problem

The problem is step 3: Humans cannot easily label a huge amount
of data or even a small amount of data with detailed,
multi-dimensional, continuous actions.
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Imitation Learning

DAgger in the context of adversarial and online learning

Cost of πθ:
L(πθ) = Est∼pθ(st)[c(st , at))]

Learning a new policy:

πn+1
θ = argminπ

n

∑
i=1
Li = argminπ

n

∑
i=1

Est∼piθ(st)
[c(st , at)]
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Imitation Learning

DAgger in the context of adversarial and online learning

Avg.Regret

γn =
1

n
[
n

∑
i=1
Li(πi

θ) −minπθ∈Π
n

∑
i=1
Li(πθ)]
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Imitation Learning

Theoretical guarantees of DAgger

The best policy in the sequence of policies π1∶N guarantees:

J(πθ) ≤ T (ϵN + γN) +O(T /N)

where,

▸ ϵN : Average loss on aggregated dataset

▸ γN : Average regret of π1∶N

▸ N: Iterations of DAgger
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Imitation Learning

Theoretical guarantees of DAgger

The best policy in the sequence of policies π1∶N guarantees:

J(πθ) ≤ T (ϵN + γN) +O(T /N)

Follow-the-Leader is a no-regret algorithm.
For strongly convex loss, N = O(TlogT ) iterations:

J(πθ) ≤ T ϵN +O(1)
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Imitation Learning

DAgger: The algorithm

1. train pθ from expert demonstrations
D = {s1, a1, s2, a2, ..., sT , aT}

2. run pθ(at ∣st) to get dataset Dθ = {s ′1, s ′2, ..., s ′H}
3. ask the human to label Dθ with actions at

4. Aggregate D ← D ∪Dθ

5. GoTo 1

DAgger: The problem

The problem is step 3: Humans cannot easily label a huge amount
of data or even a small amount of data with detailed,
multi-dimensional, continuous actions.
For DAgger, if the number of trajectories sampled per
iteration is small, then the probability of getting a high
bound on error increases.
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Imitation Learning

Can machines learn autonomously?

Lets revisit the objective of minimizing mistaken decisions.
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Imitation Learning

A subtle issue

▸ Imitation learning: minEst∼pθ(st)[c(st , at))]
The cost measures the mistaken decisions made by πθ.

c(st , at) =
⎧⎪⎪⎨⎪⎪⎩

0 if at = π∗(st)
1 otherwise
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Imitation Learning

A subtle issue

Imitation learning objective

min
θ

Eat∼πθ(at ∣st),st+1∼p(st+1∣st ,at)[c(st+1)]

min
θ

Es1∶T ,a1∶T [∑
t

c(st , at)]
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Imitation Learning

A subtle issue

Imitation learning objective

min
θ

Es1∶T ,a1∶T [∑
t

−rE(st , at)]
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Imitation Learning

Assuming that demonstrations are produced by THE expert, who
acts with a reward rE , unknown to us.

max
θ

Es1∶T ,a1∶T [∑
t

rE(st , at)]

recall that given the probabilistic model

p(O1∶T ∣τ) = exp(∑
t

rE(st , at))

thus,

∑
t

rE(st , at) = logp(O1∶T ∣τ)
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Imitation Learning

max
θ

Es1∶T ,a1∶T [∑
t

rE(st , at)]

with

∑
t

rE(st , at) = logp(O1∶T ∣τ)

Maximum likelihood learning:

L = maxθ
1

N

N

∑
i=1

logp(τi ∣O1∶T ,E) = maxθ
1

N

N

∑
i=1

rE(τi) − logZ

Z = ∫ p(τ)exp(rE(τ))dτ

41 / 53



Imitation Learning

Maximum likelihood learning:

L = maxθ
1

N

N

∑
i=1

logp(τi ∣O1∶T ,E) = maxθ
1

N

N

∑
i=1

rE(τi) − logZ

Z = ∫ p(τ)exp(rE(τ))dτ

and it turns out that the objective is:

L = maxθ[Eτ∼π∗(τ)rE(τ) −Eτ∼πθ(τ)rE(τ)]

Assuming the rE is known, in the MaxEnt RL setting

L′ = maxθ(Eτ∼πθ(τ)[rE(τ)] +Eπθ
[H(πθ(τ))]) −Eτ∼π∗(τ)rE(τ)
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Imitation Learning

However, the expert reward is unknown, so the objective in an
IRL setting would be:

L′ =minr [maxθEτ∼π(τ)[r(τ) +H(π(τ)))] −Eτ∼π∗(τ)r(τ)]
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Imitation Learning

Given this objective, can we approximate the expert policy
without learning the reward?

L = minr [maxθEτ∼π(τ)[r(τ) +H(π(τ)))] −Eτ∼π∗(τ)r(τ)]

In an IRL setting, we solve this problem by finding a reward
function such that the expert performs better than the other
policies.
An then, running RL on the output of IRL to approximate the
expert policy.
Can we skip the first part, avoiding the RL part for every reward
approximation?
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Imitation Learning

Given this objective, can we approximate the expert policy
without learning the reward?

Consider occupancy measures: states, actions distributions that an
agent encounters when navigating the environment with policy π

ρ ∶ S ×A→ R

Defined to be1

ρ(s, a) = π(a∣s)
∞
∑
t=0

γtP(st = s ∣π).

1Ho & Ermon, Generative Adversarial Learning, 2016
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Imitation Learning

Imitation Learning in Constrained Settings

As shown by (Puterman, 1994) the set of valid occupancy
measures can be written as a feasible set of affine constraints

D = {ρ ∶ ρ ≥ 0 and

∑
a

ρ(s, a) = µ(s) + γ∑
s′,a

P(s ∣s ′, a)ρ(s ′, a),

∀s ∈ S}

Very inefficient to evaluate and we need to know the transition
function.

.

Puterman, M. L. “Markov Decision Processes: Discrete Stochastic Dynamic

Programming”. John Wiley Sons, Inc., USA, 1st edition, 1994.
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Imitation Learning

Imitation Learning in Constrained Settings

Given D here is an one-to-one relation between occupancy
measures and policies.

text given ρ ∈ D, ρ(s, a)←→ πρ(s, a) = ρ(s,a)
∑a′ ρ(s,a′)

– Syed, U., et al., “Apprenticeship learning using linear programming”, 2008.

– Ho, J. and Ermon, S. Generative adversarial imitation learning, 2016.
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Imitation Learning

Imitation Learning in Constrained Settings

Given that the causal entropy

H̃ = −∑
s,a

ρ(s, a)(log(ρ(s, a)/∑
a′
ρ(s, a′))

for occupancy measures is strictly concave, and for all π ∈ Π and
ρ ∈ D, it holds that

H(π) = H̃(ρπ) and H(πρ) = H̃(ρ)

, allow us to switch between policies and occupancy measures
when considering functions involving causal entropy and expected
rewards.

Ho, J. and Ermon, S. Generative adversarial imitation learning, 2016.
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Imitation Learning

So, what about “matching” occupancy measures between πE

and πθ?

Given the objective

L = minr [maxθEτ∼π(τ)[r(τ) +H(π(τ)))] −Eτ∼π∗(τ)r(τ)]

This results to the following optimization problem

maxπθ∈ΠH(πθ) subject to ρπθ
(s, a) = ρE(s, a),∀s ∈ S, a ∈ A
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Imitation Learning

So, what about “matching” occupancy measures between πE

and πθ?

Given the objective

L = minr [maxθEτ∼π(τ)[r(τ) +H(π(τ)))] −Eτ∼π∗(τ)r(τ)]

This results to the following optimization problem

maxθ[λH(πθ) −Dm(ρπθ
(s, a), ρE(s, a))]

where, Dm is a distance metric between distributions, penalizing
violations in difference between occupancy measures.
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Imitation Learning
So, what about “matching” occupancy measures between πE

and πθ?

Given the optimization problem

maxθ[λH(πθ) −Dm(ρπθ
, ρE(s, a))]

and setting

Dm(ρπθ
, ρE(s, a)) =

DJS(ρπθ
, ρE(s, a)) =

DKL(ρπθ
∣∣(ρπθ

+ ρE)/2) +DKL(ρE ∣∣(ρπθ
+ ρE)/2)

it turns out the optimal loss is the optimal negative log loss of the
binary classification problem of distinguishing state,action pairs of
πθ and πE :

maxD∈(0,1)S×AEπθ
[log(D(s, a))] +EπE

[log(1 −D(s, a))]
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Inverse reinforcement learning: connection to probabilistic
models

Generative Adversarial Imitation Learning (GAIL)

The generator improves itself to foul the discriminator, while the
discriminator is updated to distinguish expert samples from those
of the generator, as better as possible.
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Inverse reinforcement learning: connection to probabilistic
models

Generative Adversarial Imitation from Observations (GAIfO)
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