Learning to behave via Imitation ESSAI 2024 Course Lecture 4/5

George Vouros

University of Piraeus, Greece

July 25, 2024

Outline

- Day 1: Motivation & Introduction to Deep Reinforcement Learning
- Day 2: Inverse Reinforcement Learning and Connections to Probabilistic Inference
- Day 3: Imitation Learning
- Day 4: Non-Markovian, Multimodal Imitation Learning
- Day 5: Imitating in Constrained Settings, Multiagent Imitation Learning.

Problem (ambiguous) statement

Given a set of demonstrated trajectories D generated by an unknown expert policy π_{ϵ} , learn a policy π that generates trajectories that are "as close as possible" to the expert trajectories.

What can go wrong?

- Lack of training data
- Noisy or erroneous training data
- Distribution mismatch
- Compounding errors
- Discrimination ability (different actions in very similar settings)

What else can go wrong?

- Partial observability imposing non-Markovian behaviour
- Collapsing multi-modal behaviour in executing tasks in a single policy

non-Markovian Behaviour

 $\pi_{\theta}(a_t|o_t)$

VS

$$\pi_{\theta}(a_t|o_1, o_2, ..., o_t)$$

Usually behaviour depends on history of observations:

$$\pi_{\theta}: \mathbf{H} \to \mathcal{P}(\mathcal{A})$$

where $\mathbf{H} = \prod_{i=1}^{t} O_i$, t = 2, 3...History provides (temporal) context.

non-Markovian Behaviour: Basic

non-Markovian Behaviour: with Sequential models

non-Markovian Behaviour: with Sequential models

Using **H** may exacerbate correlations occurring in demonstrations: Instantiations of an action correlate to future actions.

non-Markovian Behaviour: with Sequential models

Causal misidentification: access to more information leads to worse generalization performance in the presence of distributional shift.

non-Markovian Behaviour: with Sequential models

Using **H** may exacerbate correlations occurring in demonstrations: Instantiations of an action correlate to future actions.

Figure 2: Causal dynamics of imitation. Parents of a node represent its causes.

non-Markovian Behaviour: with Sequential models

Causal misidentification: access to more information leads to worse generalization performance in the presence of distributional shift.

Figure 4: Diagnosing causal misidentification: net reward (y-axis) vs number of training samples (x-axis) for ORIGINAL and CONFOUNDED, compared to expert reward (mean and stdev over 5 runs). Also see Appendix E.

non-Markovian Behaviour: with Sequential models

Using **H** may exacerbate correlations occurring in demonstrations: **Causal misidentification** is the phenomenon whereby cloned policies fail by misidentifying the causes of expert actions

Figure 2: Causal dynamics of imitation. Parents of a node represent its causes.

Solutions proposed:

- Learn policies corresponding to various causal graphs
- Perform targeted interventions to efficiently search over the hypothesis set for the correct causal model.
 - Intervention with expert advise (DAgger style)
 - Use environmental returns (if you can) and compute the likelihood of graphs by means of exp(R), rolling-out the policies

non-Markovian Behaviour: with VAE

See also Bastas and Vouros "Data-driven prediction of Air Traffic Controllers reactions to resolving conflicts"

non-Markovian Behaviour: with VAE in a supervised setting

See also Bastas and Vouros "Data-driven prediction of Air Traffic Controllers reactions to resolving conflicts"

non-Markovian Behaviour: with VAE for state reconstruction (although originally proposed in a MARL setting)

Work done by A.Kontogiannis et al.

Multimodal Behaviour

Multimodal Behaviour

Multimodal Behaviour

The same expert may take different actions in the same situation.

Multimodal Behaviour: Mode collapse

Most imitation learning algorithms suffer from mode collapse: I.e. their inability to distinguish between modalities and learn the average.

Multimodal Behaviour: Mode collapse

Given the analogy, take D_{KL} as an example: Given that P is the state action distribution from the demonstrations, and Q is the state action distribution learnt.

Should you compare Q against P or P against Q?

Multimodal Behaviour: Mode collapse

GAIL suffers from the mode collapse problem.

Multimodal Behaviour for discrete actions

Multimodal Behaviour for continuous actions

Averaging different modalities !

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
- Discretization with high-dimentional action spaces
- Compute the likelihood of each different option (and break ties randomly)

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians

$$\pi(\boldsymbol{a}|\boldsymbol{o}) = \sum_{i} w_{i} \mathcal{N}(\mu_{i}, \sigma_{i})$$

- Latent variable models
- Diffusion models

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians

$$\pi(\boldsymbol{a}|\boldsymbol{o}) = \sum_{i} w_{i} \mathcal{N}(\mu_{i},\sigma_{i})$$

You must choose k: number of modes (how many?)

- Latent variable models
- Diffusion models

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models

Using latent variables models you can represent any distribution (conditional to the size of the NN).

The particular way to correlate these variables to actual inputs/outputs is by means of variational autoencoders (VAEs).

Diffusion models

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The InfoGAIL case

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The InfoGAIL case

InfoGAIL assumes a mixture of expert policies $\pi_E = \{\pi_E^0, \pi_E^1, \dots\}$ and specifies a generative process of expert trajectories τ_E based on GAIL, as:

$$s_0 \sim \rho_0, c \sim p(c), \pi \sim p(\pi|c), a_t \sim \pi(a_t|s_t, c), s_{t+1} \sim (s_{t+1}|a_t, s_t)$$

where the policies $\pi(a|s,c)$ are also conditioned to the discrete latent variable c.

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The InfoGAIL case

InfoGAIL seeks to maximize the mutual information between latent codes and trajectories, denoted $I(c; \tau)$, introducing the variational lower bound

$$L_{I}(\pi, q) = \mathbb{E}_{c \sim p(c), a \sim \pi(\cdot|s, c)} [logq(c|\tau)] + H(c) \leq I(c; \tau)$$

where $q(c|\tau) \approx q(c|s, a)$ is an approximation of the true posterior $P(c|\tau)$.

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The InfoGAIL case

InfoGAIL objective:

$$L_{I}(\pi, q) = \mathbb{E}_{c \sim p(c), a \sim \pi(\cdot|s, c)} [logq(c|\tau)] + H(c) \leq I(c; \tau)$$
$$min_{\pi_{\theta}, q} max_{D} \mathbb{E}_{\pi_{\theta}} [log(D(s, a))] + \mathbb{E}_{\pi_{E}} [log(1-D(s, a))] - \lambda_{1} \mathcal{H}(\pi_{\theta}) - \lambda_{1} L_{I}(\pi_{\theta}, q)$$

Multimodal Behaviour for continuous actions

How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Triple-GAIL case

Fei et al, 2020, "Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:

- a selector $C_{\alpha}(c|s,a)$, characterizing $p_{C_{\alpha}}(c|s,a)$
- a generator $\pi_{\theta}(a|s,c)$, characterizing $p_{\pi_{\theta}}(a|s,c)$
- a discriminator $D\psi(s, a, c)$

Seeking for an equilibrium between $p_{C_{\alpha}}(c|s, a)$ and $p_{\pi_{\theta}}(a|s, c)$, assuming that p(s, c) and p(s, a) can be obtained from the demonstrations and generated data, respectively.

Adversarial game: The generator and the selector play against the discriminator.

Fei et al, 2020, "Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Triple-GAIL case

Triple-GAIL consists of three main components:

- ▶ a selector $C_{\alpha}(c|s,a)$, characterizing $p_{C_{\alpha}}(c|s,a)$
- a generator $\pi_{ heta}(a|s,c)$, characterizing $p_{\pi_{ heta}}(a|s,c)$
- a discriminator $D_{\psi}(s, a, c)$

Triple-GAIL objective:

$$\begin{split} \min_{\pi_{\theta}, C_{\alpha}} \max_{D_{\psi}} \mathbb{E}_{\pi_{\theta}} [log(D_{\psi}(s, a, c))] + \mathbb{E}_{\pi_{E}} [log(1 - D_{\psi}(s, a, c))] + \\ (1 - \omega) \mathbb{E}_{C_{\alpha}} [log(D_{\psi}(s, a, c))] + \\ \lambda_{E} R_{E} + \lambda_{G} R_{G} - \lambda_{H} H(\pi_{\theta}) \end{split}$$

Fei et al, 2020, "Triple-GAIL: A Multi-Modal Imitation Learning framework with Generative Adversarial Nets"

Multimodal Behaviour for continuous actions

How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Directed-Info GAIL case Learning intra-trajectory modalities.

Sharma et al, "Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using Directed Information"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Directed-Info GAIL case Learning intra-trajectory modalities.

Figure 1: Left: Graphical model used in Info-GAIL Li et al. (2017). Right: Causal model in this work. The latent code causes the policy to produce a trajectory. The current trajectory, and latent code produce the next latent code

Sharma et al, "Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using

Directed Information"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models: The Directed-Info GAIL case Learning intra-trajectory modalities.

Directed-Info GAIL objective: Variational lower bound of the directed information:

$$L_1(\pi, q) = \sum_t \mathbb{E}_{c^{1:t} \sim p(c^{1:t}), a^{t-1} \sim \pi(\cdot | s^{t-1}, c^{1:t-1})} [logq(c^t | c^{1:t-1}, \tau^{1:t})] + H(c) \le I(\tau \to c)$$

$$\begin{split} & \min_{\pi_{\theta},q} \max_{D} \mathbb{E}_{\pi_{\theta}} [\log(D(s,a))] + \mathbb{E}_{\pi_{E}} [\log(1-D(s,a))] - \lambda_{1} H(\pi_{\theta}) - \lambda_{1} L_{1}(\pi_{\theta},q) \\ & \text{A VAE is pre-trained on the expert trajectories to estimate } p(c^{1:t}) \\ & \text{Sharma et al, "Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demonstrations using } 39 / 55 \end{split}$$

Data

Multimodal Behaviour for continuous actions

How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models
 - Forward diffusion process: adds noise to input
 - Reverse denoising process that learns to generate data by denoising

Reverse denoising process (generative)

Picture from Jiaming Song et al., "Denoising Diffusion Models: A generative big bang"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}), q(x_N|x_0) \approx \mathcal{N}(x_N; 0, \mathbf{I}))$$
$$q(x_{1:N}|x_0) = \prod_{t=1}^N q(x_t|x_{t-1})$$

Picture from Jiaming Song et al., "Denoising Diffusion Models: A generative big bang"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Goal: Generate data by approx. the denoising model $q(x_{t-1}|x_t)$.

$$p(x_N) = \mathcal{N}(x_N; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t)), \sigma_t^2 \mathbf{I}) \rightarrow p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^N p_{\theta}(x_{t-1}|x_t)$$

Picture from Jiaming Song et al., "Denoising Diffusion Models: A generative big bang"

.

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Adding noise:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I}), \text{ with } q(x_N|x_0) \approx \mathcal{N}(x_N; 0, \mathbf{I}))$$

Denoising:

$$p(x_N) = \mathcal{N}(x_N; \mathbf{O}, \mathbf{I}), \text{ and } p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t)), \sigma_t^2 \mathbf{I})$$

Different choices:

$$- x_i = a_t^i - x_i = \tau_i = [(s_0^i, a_0^i), (s_1^i, a_1^i), ..., (s_T^i, a_T^i)]$$

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Noising Actions: $x_i = a_t^i$

$$\begin{aligned} a_t^0 &= \text{ true action} \\ a_t^{i+1} &= a_t^i + f(s_t, a_t^i), f(s_t, a_t^i) = \text{noise} \\ \text{Learned model} &= \hat{f}(s_t, a_t) \\ a_t^{i-1} &= a_t^i - \hat{f}(s_t, a_t^i), \end{aligned}$$

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Noising Actions: $x_i = a_t^i$

Represent the policy via the reverse process:

$$\pi_{\theta}(a|s) = p_{\theta}(a^{0:N}|s) = \mathcal{N}(a^{N}; \mathbf{0}, \mathbf{I}) \prod_{i=1}^{N} p_{\theta}(a^{i-1}|a^{i}, s)$$

where

 $p_{\theta}(a^{i-1}|a^{i},s)$ is modeled as a Gaussian distribution $\mathcal{N}(a^{i-1}; \mu_{\theta}(a^{i},s,i), \sigma_{i}^{2}\mathbf{I}).$

Objective: Train the denoising model by sampling from demonstrated trajectories.

Wang et al 2023 "Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning"

Multimodal Behaviour for continuous actions How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Noising Actions: $x_i = a_t^i$

Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

Cheng Chi*¹, Zhenjia Xu*¹, Siyuan Feng², Eric Cousineau², Yilun Du³, Benjamin Burchfiel², Russ Tedrake ^{2,3}, Shuran Song^{1,4}

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

Tony Z. Zhao¹ Vikash Kumar³ Sergey Levine² Chelsea Finn¹ ¹ Stanford University ² UC Berkeley ³ Meta

Multimodal Behaviour for continuous actions

How to resolve this problem?

- More expressive continuous distributions
 - Mixture of Gaussians
 - Latent variable models
 - Diffusion models

Noising Trajectories: $x_i = \tau^i$

$$p_{\theta}(\tau^{i-1}|\tau^{i}) = \mathcal{N}(\tau^{i-1}|\mu_{\theta}(\tau_{i},i),\sigma_{i}^{2}\mathbf{I})$$

What really happens here?

Janner et al 2022 "Planning with Diffusion for Flexible Behavior Synthesis"

Multimodal Behaviour for continuous **and multidimentional** actions

Easy to discretize continuous actions in $1\mathsf{D}$

but what if we have nD?

Multimodal Behaviour for continuous **and multidimentional** actions

Autoregressive discretization

consider multidimensional (nD) actions

$$\mathbf{a}_t = (a_t^1, a_t^2, \dots)$$

We need to learn $\pi_{\theta}(\mathbf{a}_t|s_t)$:

$$\pi_{\theta}(\mathbf{a}_{t}|s_{t}) = \\\pi_{\theta}(a_{t}^{1}, a_{t}^{2}, \dots, a_{t}^{n}|s_{t}) = \\\pi_{\theta}(a_{t}^{n}|s_{t}, a_{t}^{0}, a_{t}^{1}, \dots, a_{t}^{n-1})\pi_{\theta}(a_{t}^{n-1}|s_{t}, a_{t}^{0}, a_{t}^{1}, \dots, a_{t}^{n-2})\dots\pi_{\theta}(a_{t}^{1}|s_{t})$$

Multimodal Behaviour for continuous **and multidimentional** actions

Autoregressive discretization

$$\pi_{\theta}(a_t|s_t) = \pi_{\theta}(a_t^n|s_t, a_t^0 \dots a_t^{n-1})\pi_{\theta}(a_t^{n-1}|s_t, a_t^0 \dots a_t^{n-2}) \dots \pi_{\theta}(a_t^1|s_t)$$

Mitigating compounding error via learning many tasks

- Already discussed: making mistakes to learn a robust policy
- Learn reaching different goal states

Mitigating compounding error via learning many tasks

- Already discussed: making mistakes to learn a robust policy
- Learn reaching different goal states: Goal Conditioned Behavioural Cloning

Learn: $\pi_{\theta}(a|s,g)$, where g is a goal state **Maximizing** $\log \pi_{\theta}(a_t^i|s_t^i, g^i = s_T^i)$ **Given demos** $\{s_1^i, a_1^i, s_2^i, a_2^i, \dots, s_{T-1}^i, a_{T-1}^i, s_T^i\}$ for reaching **goal** states $g^i = s_T^i$ 52 / 55

Learn reaching different goal states via behavioural cloning

Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised Learning

Goal Conditioned Behavioural Cloning

Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and Reinforcement Learning

Goal Conditioned Behavioural Cloning

GNM: A General Navigation Model to Drive Any Robot

Dhruv Shah^{$\dagger\beta$}, Ajay Sridhar^{$\dagger\beta$}, Arjun Bhorkar^{β}, Noriaki Hirose^{$\beta\tau$}, Sergey Levine^{β}

The GNM video The ViNT video