
© J. Marques-Silva

LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA, Univ. Lleida, Catalunya, Spain

ESSAI, Athens, Greece, July 2024

My team’s recent & not so recent work...

© J. Marques-Silva 2 / 215

New area of research, since circa 2018...

© J. Marques-Silva 2 / 215

New area of research, since circa 2018...

Enhancing ML by
exploiting AR & FM !

© J. Marques-Silva 2 / 215

Lecture 01

© J. Marques-Silva 3 / 215

Recent & ongoing ML successes

© J. Marques-Silva 4 / 215

Can we trust ML models?

• Accuracy in training/test data

• Complex ML models are brittle
• Extensive work on finding adversarial examples
• Extensive work on learning robust ML models

• More recently, complex ML models hallucinate

• One must be able to validate operation of ML model, with rigor
• Explanations; robustness; verification

© J. Marques-Silva 5 / 215

ML models are brittle — adversarial examples

© J. Marques-Silva 6 / 215

ML models are brittle — adversarial examples

© J. Marques-Silva 6 / 215

ML models are brittle — adversarial examples

http://g
radien

tscienc
e.org/i

ntro_a
dversa

rial/

© J. Marques-Silva 6 / 215

Adversarial examples can be very problematic

Finlayson et al., Nature 2019

© J. Marques-Silva 6 / 215

eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning

© J. Marques-Silva 7 / 215

eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning

© J. Marques-Silva 7 / 215

eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning

© J. Marques-Silva 7 / 215

Importance of XAI

©DARPA
© J. Marques-Silva 8 / 215

Importance of XAI

©DARPA
© J. Marques-Silva 8 / 215

XAI & EU guidelines (AI HLEG)

© J. Marques-Silva 9 / 215

XAI & the principle of explicability

& thousands of recent papers!
© J. Marques-Silva 9 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

© J. Marques-Silva 10 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

© J. Marques-Silva 10 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

© J. Marques-Silva 10 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

© J. Marques-Silva 10 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

© J. Marques-Silva 10 / 215

XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

Main motivation
for our work !
(since 2019)

© J. Marques-Silva 10 / 215

Can we trust (non-symbolic) XAI? – some questions

• Many proposed solutions for XAI
• Most, and the better-known, are heuristic
• I.e. no guarantees of rigor

• Many proposed uses of XAI
• Regular complaints about issues with existing (heuristic) methods of XAI

• Q: Can heuristic XAI be trusted in high-risk and/or safety-critical domains?
• Q: Can we validate results of heuristic XAI?

© J. Marques-Silva 11 / 215

Can we trust (non-symbolic) XAI? – some questions

• Many proposed solutions for XAI
• Most, and the better-known, are heuristic
• I.e. no guarantees of rigor

• Many proposed uses of XAI
• Regular complaints about issues with existing (heuristic) methods of XAI

• Q: Can heuristic XAI be trusted in high-risk and/or safety-critical domains?
• Q: Can we validate results of heuristic XAI?

© J. Marques-Silva 11 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP

© J. Marques-Silva 12 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP

© J. Marques-Silva 12 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP

© J. Marques-Silva 12 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP

© J. Marques-Silva 12 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP

© J. Marques-Silva 12 / 215

What have we been up to? 1. Created the field of symbolic (formal) XAI – II

[MI22, Mar22, MS23, Mar24]

2019 2020 2021 2022 2023

XP definitions

AXp, CXp, duality

Tractability

DTs, NBCs, etc.

Efficient solutions

RFs, DLs, BTs, etc.

Queries

Member., Enum., etc.

Input distrib.

Inp. constr.

Prob. XPs

DTs, NBCs, etc.

New topics

Distil., etc.

© J. Marques-Silva 13 / 215

What have we been up to? 2. Uncovered key myths of non-symbolic XAI – I

[RSG16, LL17, RSG18, Rud19]

© J. Marques-Silva 14 / 215

What have we been up to? 2. Uncovered key myths of non-symbolic XAI – II

[MSH24, HMS24, HM23c]

© J. Marques-Silva 15 / 215

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 16 / 215

Unit #01

Foundations

Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)

© J. Marques-Silva 17 / 215

Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)

© J. Marques-Silva 17 / 215

Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)

© J. Marques-Silva 17 / 215

Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T

© J. Marques-Silva 18 / 215

Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T

© J. Marques-Silva 18 / 215

Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T

© J. Marques-Silva 18 / 215

Example ML models – classification – decision trees (DTs)

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Literals in DTs can use = or P

© J. Marques-Silva 19 / 215

Example ML models – classification – decision trees (DTs)

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Literals in DTs can use = or P

© J. Marques-Silva 19 / 215

Example ML models – regression – regression trees (RTs)

x1

x3

x2

9/2 9/4

0

1/2

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

• Literals in RTs can use = or P

© J. Marques-Silva 20 / 215

Example ML models – classification – rules

• Ordered rules – decision lists (DLs):

IF x1 ^ x2 THEN predict Y
ELSE IF ␣x2 _ x3 THEN predict N
ELSE THEN predict Y
F = t1, 2, 3u;D1 = D2 = D3 = t0, 1u;K = tY,Nu

• Unordered rules – decision sets (DSs):

IF x1 + x2 ě 0 THEN predict ‘

IF x1 + x2 ă 0 THEN predict a

F = t1, 2u;D1 = D2 = R;K = t‘ , au

• Issues of DSs: overlap; incomplete coverage

© J. Marques-Silva 21 / 215

Example ML models – classification – rules

• Ordered rules – decision lists (DLs):

IF x1 ^ x2 THEN predict Y
ELSE IF ␣x2 _ x3 THEN predict N
ELSE THEN predict Y
F = t1, 2, 3u;D1 = D2 = D3 = t0, 1u;K = tY,Nu

• Unordered rules – decision sets (DSs):

IF x1 + x2 ě 0 THEN predict ‘

IF x1 + x2 ă 0 THEN predict a

F = t1, 2u;D1 = D2 = R;K = t‘ , au

• Issues of DSs: overlap; incomplete coverage

© J. Marques-Silva 21 / 215

Example ML models – classification – random forests (RFs)

x1

x2

0 2

1

P t0, 1u

P t0, 2u P t1u

P t2u
1

2

4 5

3

x1

x2

1 2

x3

1 0

P t0u

P t0, 1u P t2u

P t1, 2u

P t0u P t1, 2u

1

2

4 5

3

6 7

x1

0 x3

2 1

P t1, 2u P t0u

P t0, 1u P t2u

1

2
3

4 5

• For each input, each DT picks a class
• Result uses majority or weighted voting of the DTs

© J. Marques-Silva 22 / 215

Example ML models – classification – neural networks (NNs)

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

© J. Marques-Silva 23 / 215

Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability

Basics of (non-symbolic) XAI – more detail later

• Feature attribution:
• LIME [RSG16]

• SHAP [LL17]

• ...

• Feature selection:
• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...

• Feature selection:
• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...
• Feature selection:

• Anchors [RSG18]

• ...

• Hybrid approaches:
• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...
• Feature selection: select set of features

• Anchors [RSG18]

• ...

• Hybrid approaches:
• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...
• Feature selection: select set of features

• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...

• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...
• Feature selection: select set of features

• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Basics of (non-symbolic) XAI – more detail later

• Feature attribution: assign relative importance to features
• LIME [RSG16]

• SHAP [LL17]

• ...
• Feature selection: select set of features

• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: the (interpretable) model is the explanation [Mol20, Rud19]

• DTs, DLs, ...

© J. Marques-Silva 24 / 215

Some examples

• Anchors: [RSG18]

• SHAP: [LL17, LEC+20]

© J. Marques-Silva 25 / 215

Some examples

• Anchors: [RSG18]

• SHAP: [LL17, LEC+20]

© J. Marques-Silva 25 / 215

Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”

• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,
• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”
• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,
• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules

© J. Marques-Silva 26 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N

• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y

© J. Marques-Silva 27 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N
• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y

© J. Marques-Silva 27 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N

• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y

© J. Marques-Silva 27 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N
• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y

© J. Marques-Silva 27 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N
• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y

• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y

© J. Marques-Silva 27 / 215

A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N
• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y
© J. Marques-Silva 27 / 215

A decision tree example

x1

0 x3

1 x4

1 x2

0 1

= 1 = 0

= 1 = 0

= 1 = 0

= 1 = 0

1

2
3

4
5

6
7

8 9

• Explanation for why κ(0, 0, 0, 0) = 1?

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

© J. Marques-Silva 28 / 215

A decision tree example

x1

0 x3

1 x4

1 x2

0 1

= 1 = 0

= 1 = 0

= 1 = 0

= 1 = 0

1

2
3

4
5

6
7

8 9

• Explanation for why κ(0, 0, 0, 0) = 1?

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

© J. Marques-Silva 28 / 215

A decision tree example

x1

0 x3

1 x4

1 x2

0 1

= 1 = 0

= 1 = 0

= 1 = 0

= 1 = 0

1

2
3

4
5

6
7

8 9

• Explanation for why κ(0, 0, 0, 0) = 1?
• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

© J. Marques-Silva 28 / 215

A decision tree example

x1

0 x3

1 x4

1 x2

0 1

= 1 = 0

= 1 = 0

= 1 = 0

= 1 = 0

1

2
3

4
5

6
7

8 9

• Explanation for why κ(0, 0, 0, 0) = 1?
• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

© J. Marques-Silva 28 / 215

A decision tree example

x1

0 x3

1 x4

1 x2

0 1

= 1 = 0

= 1 = 0

= 1 = 0

= 1 = 0

1

2
3

4
5

6
7

8 9

• Explanation for why κ(0, 0, 0, 0) = 1?
• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?
• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

© J. Marques-Silva 28 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?
• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?
• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A random forest example [IMS21]

x1

x2

Y N

N

= 1

= 1 = 0

= 0
1

2

4 5

3

x3

N x4

Y N

= 1 = 0

= 1 = 0

1

2
3

4 5

x3

x1

Y N

x2

Y N

= 1

= 1 = 0

= 0

= 1 = 0

1

2

4 5

3

6 7

• Explanation for why κ(1, 0, 0, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?
• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y

© J. Marques-Silva 29 / 215

A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?

• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1
• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y

© J. Marques-Silva 30 / 215

A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?

• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1
• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y

© J. Marques-Silva 30 / 215

A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?
• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1

• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y

© J. Marques-Silva 30 / 215

A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?
• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1
• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y

© J. Marques-Silva 30 / 215

An arbitrary classifier

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 0, 0, 0), 1)

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x3 = 0u suffices for DT to predict 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 31 / 215

An arbitrary classifier

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 0, 0, 0), 1)

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x3 = 0u suffices for DT to predict 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 31 / 215

An arbitrary classifier

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 0, 0, 0), 1)

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x3 = 0u suffices for DT to predict 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 31 / 215

Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability

Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

© J. Marques-Silva 32 / 215

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/

Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

Basic knowledge on
SAT & SMT assumed.
See links below.

© J. Marques-Silva 32 / 215

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/

SAT/SMT/MILP/CP solvers used as oracles – more detail later

• Deciding satisfiability, entailment

• Computing prime implicants/implicates

• Computing MUSes, MCSes
• Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. [MM20]

• Enumeration of MUSes, MCSes
• Algorithms: Marco, Camus, etc. [LS08, LPMM16]

• Solving MaxSAT, MaxSMT
• Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. [MHL+13]

• Solving quantification problems, e.g. QBF
• Algorithms: Abstraction refinement [JKMC16]

© J. Marques-Silva 33 / 215

Basic definitions in propositional logic

• Atoms (tx, x1, . . .u) & literals (x1,␣x1)

• Well-formed formulas using ␣, ^,_, . . .

• Clause: disjunction of literals

• Term: conjunction of literals

• Conjunctive normal form (CNF): conjunction of clauses

• Disjunctive normal form (DNF): disjunction of terms

• Simple to generalize to more expressive domains

• CO(ψ(x)) decides whether ψ(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.

© J. Marques-Silva 34 / 215

Basic definitions in propositional logic

• Atoms (tx, x1, . . .u) & literals (x1,␣x1)

• Well-formed formulas using ␣, ^,_, . . .

• Clause: disjunction of literals

• Term: conjunction of literals

• Conjunctive normal form (CNF): conjunction of clauses

• Disjunctive normal form (DNF): disjunction of terms

• Simple to generalize to more expressive domains

• CO(ψ(x)) decides whether ψ(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.

© J. Marques-Silva 34 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ (φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold

© J. Marques-Silva 35 / 215

Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 36 / 215

Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 36 / 215

Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 36 / 215

Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 36 / 215

Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

© J. Marques-Silva 36 / 215

Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability

Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 37 / 215

Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 37 / 215

Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?
• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 37 / 215

Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?
• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions
© J. Marques-Silva 37 / 215

Decision sets with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver (many alternatives)
6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 38 / 215

Decision sets with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver (many alternatives)
6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 38 / 215

Decision sets with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?
• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver (many alternatives)
6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 38 / 215

Decision sets with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?
• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver (many alternatives)
6 There exists a model iff there exists a point in feature space yielding both predictions

© J. Marques-Silva 38 / 215

Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

© J. Marques-Silva 39 / 215

Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

© J. Marques-Silva 39 / 215

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

© J. Marques-Silva 40 / 215

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

© J. Marques-Silva 40 / 215

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !

© J. Marques-Silva 40 / 215

Example – encoding a simple NN in MILP

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 o1
0 0 -0.5 0 0
1 0 0.5 0.5 1
0 1 0.5 0.5 1
1 1 1.5 1.5 1

MILP encoding:
x1 + x2 ´ 0.5 = y1 ´ s1
z1 = 1Ñ y1 ď 0

z1 = 0Ñ s1 ď 0

o1 = (y1 ą 0)

x1, x2, z1, o1 P t0, 1u
y1, s1 ě 0

Instance: (x, c) = ((1, 0), 1)

1 + 0´ 0.5 = 0.5´ 0

1_ 0.5 ď 0

0_ 0 ď 0

1 = (0.5 ą 0)

x1 = 1, x2 = 0, z1 = 0, o1 = 1

y1 = 0.5, s1 = 0

Checking: x = (0, 0)

0 + 0´ 0.5 = 0´ 0.5

0_ 0 ď 0

1_ 0.5 ď 0

0 = (0 ą 0)

x1 = 0, x2 = 0, z1 = 1, o1 = 0

y1 = 0, s1 = 0.5

© J. Marques-Silva 41 / 215

Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable

• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?

• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• t␣x1,␣x2, x3u or t1, 2, 3u is an explanation

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• t␣x1,␣x2, x3u or t1, 2, 3u is an explanation Really?

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• t␣x1,␣x2, x3u or t1, 2, 3u is a weak explanation!

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable
• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• t␣x1,␣x2, x3u or t1, 2, 3u is a weak explanation!

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!
• t1, 3u is easier to grasp; also, it is irreducible

© J. Marques-Silva 42 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 43 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 43 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 43 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 43 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is an explanation for the prediction?

• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?

• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?

© J. Marques-Silva 44 / 215

Questions?

© J. Marques-Silva 45 / 215

Lecture 02

© J. Marques-Silva 46 / 215

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 47 / 215

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 47 / 215

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 47 / 215

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 47 / 215

Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models

© J. Marques-Silva 47 / 215

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 48 / 215

Unit #02

Principles of Symbolic XAI – Feature Selection

Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?

• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 49 / 215

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 49 / 215

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 49 / 215

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 49 / 215

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?
• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u

© J. Marques-Silva 49 / 215

What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨) = Skips

• What is an explanation?
• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?
• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u
© J. Marques-Silva 49 / 215

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 50 / 215

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 50 / 215

The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model

© J. Marques-Silva 50 / 215

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)

• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 51 / 215

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 51 / 215

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 51 / 215

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free

© J. Marques-Silva 51 / 215

Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)
• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

AXp(X) := WAXp(X)^ @(X 1 Ĺ X).␣WAXp(X 1)

• But, WAXp is monotone; hence,

AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free
© J. Marques-Silva 51 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?

• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)? No
• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
• Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: @(x P F).
Ź

jPX (xj = vj)Ñ(σ(x))

© J. Marques-Silva 52 / 215

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 53 / 215

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 53 / 215

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 53 / 215

More notation

• Notation xS = vS :
[xS = vS] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx

© J. Marques-Silva 53 / 215

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 54 / 215

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 54 / 215

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1

© J. Marques-Silva 54 / 215

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)

• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 55 / 215

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 55 / 215

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 55 / 215

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

CXp(Y) := WCXp(Y)^ @(t P Y).␣WCXp(Yzttu)

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed

© J. Marques-Silva 55 / 215

Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)
• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

CXp(Y) := WCXp(Y)^ @(Y 1 Ĺ Y).␣WCXp(Y 1)

• But, WCXp is also monotone; hence,

CXp(Y) := WCXp(Y)^ @(t P Y).␣WCXp(Yzttu)

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed
© J. Marques-Silva 55 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No
• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)? No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)? Yes
• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)? No
• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: D(x P F).
Ź

jRY (xj = vj)^ (␣σ(x))

© J. Marques-Silva 56 / 215

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 57 / 215

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 57 / 215

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS] ă 1

• Definition of CXp remains unchanged

© J. Marques-Silva 57 / 215

Detour: global explanations

[INM19b]

• AXps and CXps are defined locally (because of v) but hold globally
• Localized explanations
• Can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

• One can define explanations without picking a given point in feature space
• Let q P T, and refefine the similarity predicate:

• Classification: σ(x) = [κ(x) = q]
• Regression: σ(x) = [|κ(x)´ q| ď δ], δ is user-specified

• Let L = t(xi = vi) | i P F ^ vi P Vu

• Let S Ĺ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
• Then, S is a global AXp if,

@(x P F).
ľ

(xi=vi)PS
(xi = vi)Ñ(σ(x))

• Counterexamples are minimal hitting sets of global AXps and vice-versa [INM19b]

© J. Marques-Silva 58 / 215

Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps:

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps:

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps

• BTW,
• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps
• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215

Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215

Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner

• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 61 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 61 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 61 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 61 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 61 / 215

Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner
• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

Exploiting MSMP, i.e.
basic algorithm used
for different problems.

© J. Marques-Silva 61 / 215

Detour: More Connections with Automated Reasoning

© J. Marques-Silva 62 / 215

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 63 / 215

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 63 / 215

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(η

2. For any η1 Ĺ η, φ* η1

© J. Marques-Silva 63 / 215

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 64 / 215

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 64 / 215

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 64 / 215

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 64 / 215

Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T (K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U (K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS

© J. Marques-Silva 64 / 215

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,

• Hard constraints, B:
B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 65 / 215

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 65 / 215

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 65 / 215

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 65 / 215

Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,
• Hard constraints, B:

B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp
• Can use MUS/MCS algorithms for AXps/CXps

© J. Marques-Silva 65 / 215

Unit #03

Tractability in Symbolic XAI

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 66 / 215

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time

• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 66 / 215

DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 66 / 215

DT explanations in polynomial time

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1
• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]

© J. Marques-Silva 66 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 67 / 215

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 67 / 215

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 67 / 215

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 67 / 215

Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

• Practically efficient enumeration of AXps – later

© J. Marques-Silva 67 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H

• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v

• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets

• L contains all the CXps of the DT
• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L

• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L

• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L

• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L

• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L

• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u

• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu

• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Finding all CXps in polynomial-time

• Basic algorithm:
• L =H
• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)
• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 68 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 69 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 69 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 69 / 215

Are interpretable models really interpretable? – DTs

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?
• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...

© J. Marques-Silva 69 / 215

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 70 / 215

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 70 / 215

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 70 / 215

Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]

© J. Marques-Silva 70 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]

© J. Marques-Silva 71 / 215

Explanation redundancy in DTs is ubiquitous – published DT examples [IIM22]

DT Ref D #N #P %R %C %m %M %avg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50

[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50

[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36

[BA97, Figure 1] 3 12 7 14 8 33 33 33

[BBHK10, Ch. 08, Fig. 8.2] 3 7 4 25 12 50 50 50

[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33

[DL01, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33

[DL01, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33

[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50

[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50

[Qui93, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41

[RM08, Ch. 01, Fig. 1.5] 3 9 5 20 12 33 33 33

[RM08, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33

[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50

[VLE+16, Figure 4] 6 39 20 65 63 20 40 33

[Fla12, Ch. 02, Fig. 2.1(right)] 2 5 3 33 25 50 50 50

[Kot13, Figure 1] 3 10 6 33 11 33 33 33

[Mor82, Figure 1] 3 9 5 80 75 33 50 41

[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33

[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29

[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50

[Zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33

[BHO09, Figure 1b] 4 13 7 71 50 33 50 36

[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25

© J. Marques-Silva 72 / 215

Many DTs have paths that are not minimal XPs – Russell&Norvig’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• Explanation for (P,H, T,W) = (Full, Yes, Thai,No)?

© J. Marques-Silva 73 / 215

Many DTs have paths that are not minimal XPs – Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• Explanation for (x, y) = (1.25,´1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva 73 / 215

Many DTs have paths that are not minimal XPs – Alpaydin’s book

[Alp14]x1 ą w10?

x2 ą w20?

l l

l

Y

N Y

N

• Explanation for (x1, x2) = (α, β), with α ą w10 and β ď w20?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva 73 / 215

Many DTs have paths that are not minimal XPs – S.-S.&B.-D.’s book

[SB14]

Color

Not Tasty Softness

Not Tasty Tasty

Other Pale Grade

Other Gives2Pressume

• Explanation for (color, softness) = (Pale Grade,Other)?

© J. Marques-Silva 73 / 215

Many DTs have paths that are not minimal XPs – Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• Explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• Explanation for (L, T,A) = (Short, Follow-Up, Known)?

© J. Marques-Silva 73 / 215

Explanation redundancy in DTs is ubiquitous – DTs from datasets [IIM20, HIIM21, IIM22]

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22

anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16

backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54

bank (19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27

biodegradation (41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21

cancer (9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37

car (6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30

colic (22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25

compas (11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27

contraceptive (9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21

dermatology (34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17

divorce (54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50

german (21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22

heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34

heart-h (13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32

kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35

lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25

letter (16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9

lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16

mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19

mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25

pendigits (16 10992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11

promoters (58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33

recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16

seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42

shuttle (9 58000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30

soybean (35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10

spambase (57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25

spect (22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65

splice (2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —
© J. Marques-Silva 74 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?

• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?

(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215

Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires
• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215

Are interpretable models really interpretable? – DTs/DLs in practice [MSI23]

0 20 40 60 80
Datasets

0

20

40

60

80

100

Pe
rce

nta
ge

 of
 R

ed
un

da
nt

Li
ter

als
 (%

)

Minimum Redundancy
Average Redundancy
Maximum Redundancy

DTs learned with Interpretable AI, max depth 6

0 50 100 150 200 250 300 350
Datasets

0

20

40

60

80

100

Pe
rce

nta
ge

 of
 R

ed
un

da
nt

Li
ter

als
 (%

)

Minimum Redundancy
Average Redundancy
Maximum Redundancy

DLs learned with CN2
© J. Marques-Silva 76 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 77 / 215

From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 77 / 215

From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 77 / 215

From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 77 / 215

From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs
• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space

© J. Marques-Silva 77 / 215

Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

© J. Marques-Silva 78 / 215

Example

A

P

Y N

P

N

V

Z

N S

G

N Y

H

N C

Y G

Y N

Y

Y

Y

Y

=0

=1 =0

=1

=0

=0

=1

=1
=2

=1

=0 =1

=0

=1 =0

=1 =0

=1 =0

=0

=0

=1

=1

1

2

4 5

3

6

8

10

12 13

15

17 18

16

19 20

21 22

23 24

14

11

9

7

R01: IF [P] THEN κ(¨) = Y
R02: IF [A^ P]THEN κ(¨) = N
R03: IF [P^ N^ V^ Z = 1] THEN κ(¨) = N
R04: IF [P^ N^ V^ Z = 2^ S^ G] THEN κ(¨) = N
R05: IF [A^ Z = 2^ S^ G] THEN κ(¨) = Y
R06: IF [P^ N^ V^ Z = 2^ S^ H] THEN κ(¨) = N
R07: IF [A^ Z = 2^ S^ H^ C] THEN κ(¨) = Y
R08: IF [A^ Z = 2^ H^ G] THEN κ(¨) = Y
R09: IF [P^ N^ V^ Z = 2^ C^ G] THEN κ(¨) = N
R10: IF [A^ Z = 0] THEN κ(¨) = Y
R11: IF [A^ V] THEN κ(¨) = Y
R12: IF [A^ N] THEN κ(¨) = Y

© J. Marques-Silva 78 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Explanation graphs – overview of results

[HIIM21]

• Concept of explanation graph (XpG)

• Explanations of decision trees reducible to XpG’s

• Explanations of decision graphs reducible to XpG’s

• Explanations of OBDDs reducible to XpG’s

• Explanations of OMDDs reducible to XpG’s

• Explanations (AXp’s and CXp’s) of XpG’s computed in polynomial time

© J. Marques-Silva 79 / 215

Example of XpG – DTs

• DT; point: (O, L, Y,P); prediction T:
x3

x1

T x2

x1

L N

N

x4

L x1

T x2

T L

P tNu

P tOu P tW, Tu

P tHu

P tTu P tWu

P tL,Mu

P tYu

P tEu P tP, Fu

P tW,Ou P tTu

P tHu P tL,Mu

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

• XpG:
s3

s1

1 s2

s1

0 0

0

s4

0 s1

1 s2

1 0

0

1 0

0

0 0

1

1

0 1

1 0

0 1

1

2

4
5

8

12 13

9

3

6
7

10
11

14 15

© J. Marques-Silva 80 / 215

Example of XpG – OMDDs

• OMBBD; point: (0, 1, 2); prediction R:

x3

x2 x2

x1 x1

GR B

1

2 3

4 5

6 7 8

1 2
0

0 1 0 1

0 1 0 1

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 81 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F

Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free

If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S

• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F
Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:
• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:

s3

s2 s2

s1 s1

01 0

1

2 3

4 5

6 7 8

0 1
0

0 1 0 1

1 0 1 0

© J. Marques-Silva 82 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Example monotonic classifier – (v, c) = ((10, 10, 5, 0),A)

[MGC+21]

Variable Meaning Range

κ(¨) fi M Student grade P tA,B, C,D, E, Fu

S Final score P t0, . . . , 10u

Feat. id Feat. var. Feat. name Domain

1 Q Quiz t0, . . . , 10u

2 X Exam t0, . . . , 10u

3 H Homework t0, . . . , 10u

4 R Project t0, . . . , 10u

M = ITE(S ě 9,A, ITE(S ě 7,B, ITE(S ě 5, C, ITE(S ě 4,D, ite(S ě 2, E, F)))))
S = max [0.3ˆ Q+ 0.6ˆ X+ 0.1ˆ H,R]
Also, F ď E ď D ď C ď B ď A
And, κ(x1) ď κ(x2) if x1 ď x2

© J. Marques-Silva 83 / 215

Explaining monotonic classifiers

• Instance (v, c)
• Domain for i P F : λ(i) ď xi ď µ(i)
• Idea: refine lower and upper bounds on the prediction

• vL and vU
• Utilities:

• FixAttr(i):
vL Ð (vL1 , . . . , vi, . . . , vLN)
vU Ð (vU1 , . . . , vi, . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

• FreeAttr(i):
vL Ð (vL1 , . . . , λ(i), . . . , vLN)
vU Ð (vU1 , . . . , µ(i), . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

© J. Marques-Silva 84 / 215

Computing one AXp

1: vL Ð (v1, . . . , vN)
2: vU Ð (v1, . . . , vN) Ź Ensures: κ(vL) = κ(vU)
3: (C,D,P)Ð (F ,H,H) Ź S : Some possible seed
4: for all i P S do
5: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D) Ź Require: κ(vL) = κ(vU), given S
6: for all i P FzS do Ź Loop inv.: κ(vL) = κ(vU)
7: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D)

8: if κ(vL) = κ(vU) then Ź If invariant broken, fix it
9: (vL, vU,D,P)Ð FixAttr(i, v, vL, vU,D,P)

10: return P

• Obs: S =H for computing a single AXp/CXp

© J. Marques-Silva 85 / 215

Computing one AXp – example

• λ(i) = 0 and µ(i) = 10

• v = (10, 10, 5, 0), with κ(v) = A
• Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (10,10,5,0) (10,10,5,0) (0,10,5,0) (10,10,5,0) C A ! (10,10,5,0) (10,10,5,0)

2 (10,10,5,0) (10,10,5,0) (10,0,5,0) (10,10,5,0) E A ! (10,10,5,0) (10,10,5,0)

3 (10,10,5,0) (10,10,5,0) (10,10,0,0) (10,10,10,0) A A % (10,10,0,0) (10,10,10,0)

4 (10,10,0,0) (10,10,10,0) (10,10,0,0) (10,10,10,10) A A % (10,10,0,0) (10,10,10,10)

© J. Marques-Silva 86 / 215

Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Recap computation of (W)AXps/(W)CXps

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 87 / 215

Recap computation of (W)AXps/(W)CXps

WAXp(X) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 87 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:

• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:

• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:
• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u

© J. Marques-Silva 88 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:

• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:

• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Review exercise – all CXps & AXps for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding CXps:
• 1st path: I1 = t3u

• 2nd path: I2 = t2u

• 3rd path: I3 = t1u

• 4th path: I4 = t1u

• L = tt1u, t2u, t3uu = C

• Finding AXps:
(i.e. all MHSes of sets in C

• A = tt1, 2, 3uu

© J. Marques-Silva 89 / 215

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 90 / 215

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 90 / 215

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 90 / 215

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp: t1, 2u

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 90 / 215

Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp: t1, 2u

• Quiz: write down the constraints and confirm AXp with SAT solver

© J. Marques-Silva 90 / 215

Questions?

© J. Marques-Silva 91 / 215

Lecture 03

© J. Marques-Silva 92 / 215

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 93 / 215

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 93 / 215

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 93 / 215

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 93 / 215

Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers

© J. Marques-Silva 93 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)

• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u

• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u

• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u

• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u

• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u

• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u

• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)
• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 94 / 215

Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0

© J. Marques-Silva 95 / 215

Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0

© J. Marques-Silva 95 / 215

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 96 / 215

Some comments...

© J. Marques-Silva 97 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?

• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?

• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?

• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...

© J. Marques-Silva 98 / 215

Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?
• Most likely answer: No! But ...

• Would you...
• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...
© J. Marques-Silva 98 / 215

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

© J. Marques-Silva 99 / 215

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

© J. Marques-Silva 99 / 215

Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

An optimal tool that
produces non-optimal DTs...!?

© J. Marques-Silva 99 / 215

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

© J. Marques-Silva 100 / 215

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

© J. Marques-Silva 100 / 215

BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

And massive
path redundancy!

© J. Marques-Silva 100 / 215

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101 / 215

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101 / 215

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101 / 215

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101 / 215

And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!

© J. Marques-Silva 101 / 215

Unit #04

(Efficient) Intractability in Symbolic XAI

Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

© J. Marques-Silva 102 / 215

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Prediction change with rule up to Rj (with dj = c), if τj* K and τk(K, for 1 ď k ă j, with
ek = 1: [

fj Ø
(
tj ^

ľ

1ďkăj,ek=1
␣tk

)]
© J. Marques-Silva 102 / 215

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Require that at least one fj, with ej = 0 and 1 ď j ď n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):(

ł

1ďjďn,ej=0
fj
)

© J. Marques-Silva 102 / 215

An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• The set of soft clauses is given by: S fi t(li), i = 1, . . . ,mu
• The set of hard clauses is given by:

B fi
ľ

1ďiďm
Exi=vi(li, . . .)^

ľ

1ďjďn
Eτj(tj, . . .)^

ľ

1ďjďn,ej=0

(
fj Ø

(
tj ^

ľ

1ďkăj,ek=1
␣tk

))
^

(
ł

1ďjďn,ej=0
fj
)

• B Y S (K
• MUSes are AXp’s & MCSes are CXp’s

© J. Marques-Silva 103 / 215

Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 104 / 215

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 104 / 215

What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?

© J. Marques-Silva 104 / 215

Easy to spot problems – BT for zoo dataset

& Anchor

[INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

© J. Marques-Silva 105 / 215

Easy to spot problems – BT for zoo dataset

& Anchor

[INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance:

(& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

© J. Marques-Silva 105 / 215

Easy to spot problems – BT for zoo dataset & Anchor [INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance (& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

© J. Marques-Silva 105 / 215

Easy to spot problems – BT for zoo dataset & Anchor [INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)

© J. Marques-Silva 105 / 215

Easy to spot problems – BT for zoo dataset & Anchor [INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)

© J. Marques-Silva 105 / 215

Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans

Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 106 / 215

Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)

Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 106 / 215

Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K

And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 106 / 215

Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 106 / 215

Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans
Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?

© J. Marques-Silva 106 / 215

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) = c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 107 / 215

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) = c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 107 / 215

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) = c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 107 / 215

How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) = c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...

© J. Marques-Silva 107 / 215

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 108 / 215

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 108 / 215

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 108 / 215

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 108 / 215

How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]

© J. Marques-Silva 108 / 215

Incorrect explanations are ubiquitous & likely... [NSM+19]

© J. Marques-Silva 109 / 215

Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI

Efficacy map – progress until 2022 [MI22, Mar22, MS23]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, and ineffective (hard in practice):
• Neural networks (NNs) [INM19a]

• Bayesian networks (BNs) [SCD18]

© J. Marques-Silva 110 / 215

Efficacy map – recent progress [HM23b]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs

DLs

RFs
BTs

NNs

BNs

Practical scalability (effectiveness)
Effective Ineffective

Co
m
pu
ta
tio
na
lc
om

pl
ex
ity

Co
m
pu
ta
tio
na
lly
ha
rd

Po
ly
-t
im
e

Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, but some practical scalability:
• Neural networks (NNs) [HM23b]

• Comp. hard, and ineffective (hard in practice):
• Bayesian networks (BNs) [SCD18]

© J. Marques-Silva 111 / 215

Results for RFs in 2021 (with SAT) [IMS21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid (21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4

appendicitis (7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0

banknote (4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0

biodegradation (41 2 106)5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3

heart-c (13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0

ionosphere (34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0

karhunen (64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0

letter (16 26 398)8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30

magic (10 2 381)6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1

new-thyroid (5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0

pendigits (16 10 220)6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4

ring (20 2 740)6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8

segmentation (19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0

shuttle (9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1

sonar (60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0

spectf (44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0

texture (40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0

twonorm (20 2 740)5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0

vowel (13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34

waveform-40 (40 3 500)5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0

wpbc (33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21

© J. Marques-Silva 112 / 215

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

© J. Marques-Silva 113 / 215

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

© J. Marques-Silva 113 / 215

Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...

© J. Marques-Silva 113 / 215

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 114 / 215

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 114 / 215

More recent results (from 2024)... [IHM+24a]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 115 / 215

More recent results (from 2024)... [IHM+24a]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 115 / 215

More recent results (from 2024)... [IHM+24a]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 115 / 215

Unit #05

Queries in Symbolic XAI

Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes

• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...

• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s

© J. Marques-Silva 116 / 215

Recall computing one AXp/CXp – oneXP

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

© J. Marques-Silva 117 / 215

Generic oracle-based enumeration algorithm

Input: Parameters Paxp , Pcxp , T , F , κ, v

1: HÐH Ź H defined on set U = tu1, . . . , umu; initially no constraints
2: repeat
3: (outc, u)Ð SAT(H) Ź Use SAT oracle to pick assignment s.t. known constraints in H
4: if outc = true then
5: S Ð ti P F | ui = 0u Ź S : fixed features
6: U Ð ti P F | ui = 1u Ź U : universal features; F = S Y U
7: if Pcxp(U ; T ,F , κ, v) then Ź U = FzS Ě some CXp
8: P Ð oneXP(U ;Pcxp, T ,F , κ, v)
9: reportCXp(P)

10: HÐ HY t(_iPP␣ui)u Ź P Ď U : one 1-value variable must be 0 in future iterations
11: else Ź S Ě some AXp
12: P Ð oneXP(S;Paxp, T ,F , κ, v)
13: reportAXp(P)

14: HÐ HY t(_iPPui)u Ź P Ď S : one 0-value variable must be 1 in future iterations
15: until outc = false

© J. Marques-Silva 118 / 215

DT classifier – example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (1, 1, 1, 1, 1) H 1 – t3u (␣u3) t(␣u3)u

2 (1, 1, 0, 1, 1) t3u 1 – t5u (␣u5) t(␣u3), (␣u5)u

3 (1, 1, 0, 1, 0) t3, 5u 0 t3, 5u – (u3 _ u5) t(␣u3), (␣u5), (u3_u5)u

5 [outc = false] – – – – – t(␣u3), (␣u5), (u3_u5)u

© J. Marques-Silva 119 / 215

DT classifier – another example run of enumerator

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (0, 0, 0, 0, 0) t1, 2, 3, 4, 5u 0 t3, 5u – (u3 _ u5) t(u3 _ u5)u

2 (0, 0, 1, 0, 0) t1, 2, 4, 5u 1 – t3u (␣u3) t(u3 _ u5), (␣u3)u

3 (0, 0, 1, 0, 1) t1, 2, 4u 1 – t5u (␣u5) t(u3_u5), (␣u3), (␣u5)u

5 [outc = false] – – – – – t(u3_u5), (␣u3), (␣u5)u

© J. Marques-Silva 120 / 215

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d = c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time

• For AXp’s: run std dualization algorithm [FK96]
• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 121 / 215

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d = c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time
• For AXp’s: run std dualization algorithm [FK96]

• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 121 / 215

DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d = c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time
• For AXp’s: run std dualization algorithm [FK96]

• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

P t0u

P t0u

P t0u P t1u

P t0u

P t0u P t1u

P t1u

P t1u

P t0u

P t0u P t1u

P t1u

P t1u
1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 121 / 215

Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 122 / 215

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 122 / 215

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 122 / 215

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 122 / 215

(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs

© J. Marques-Silva 122 / 215

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 123 / 215

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X

• NA and NC need not be equal
• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 123 / 215

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 123 / 215

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 123 / 215

Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC

© J. Marques-Silva 123 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp

• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!

• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt

© J. Marques-Silva 124 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?

• Yes! Thus, feature 1 is AXp-necessary
• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?

• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps:
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps: tt1u, t2u, t3, 4uu
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:
• CXps: tt1u, t2u, t3, 4uu
• AXps: tt1, 2, 3u, t1, 2, 4uu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 125 / 215

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 126 / 215

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 126 / 215

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 126 / 215

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 126 / 215

Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X)u

C := tX Ď F | CXp(X)u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)

© J. Marques-Silva 126 / 215

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 127 / 215

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 127 / 215

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 127 / 215

An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)

© J. Marques-Silva 127 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)

• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)

• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,
• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?
• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement

© J. Marques-Silva 128 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .

• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.

• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]

• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]

• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]

• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:
• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:
• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases

© J. Marques-Silva 129 / 215

A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F , Classifier κ
1: function FRPCGR(v, t;F , κ)
2: HÐH Ź H overapproximates the subsets of F that do not contain an AXp containing t
3: repeat
4: (outc, s)Ð SAT(H, st) Ź Use SAT oracle to pick candidate WAXp containing t
5: if outc = true then
6: P Ð ti P F | si = 1u Ź Set P is the candidate WAXp, and t P P
7: D Ð ti P F | si = 0u Ź Set D contains the features not included in P
8: if ␣WAXp(P) then Ź Is P not a WAXp?
9: HÐ HY newPosCl(D; t, κ) Ź P is not a WAXp; must pick some non-picked feature
10: else Ź P is a WAXp
11: if ␣WAXp(Pzttu) then Ź P without t not a WAXp?
12: reportWeakAXp(P) Ź Feature t is included in any AXp X Ď P
13: return true
14: HÐ HY newNegCl(P; t, κ) Ź WAXp(Pzttu) holds; some feature in P must not be picked
15: until outc = false
16: return false Ź If H becomes inconsistent, then there is no AXp that contains t

© J. Marques-Silva 130 / 215

An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——

© J. Marques-Silva 131 / 215

An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——

© J. Marques-Silva 131 / 215

Another example

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u1 _␣u2 _␣u3)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u1 _␣u2)
(1, 0, 0, 1) t1, 4u ! ! —— (␣u1)
(0, 1, 0, 1) t2, 4u ! ! —— (␣u2)
(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——

© J. Marques-Silva 132 / 215

Another example

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u1 _␣u2 _␣u3)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u1 _␣u2)
(1, 0, 0, 1) t1, 4u ! ! —— (␣u1)
(0, 1, 0, 1) t2, 4u ! ! —— (␣u2)
(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——

© J. Marques-Silva 132 / 215

Questions?

© J. Marques-Silva 133 / 215

Lecture 04

© J. Marques-Silva 134 / 215

Recapitulate third lecture

• Logic encoding for explaining DLs
• And status of (in)tractability in logic-based XAI

• Query: enumeration of explanations

• Query: feature necessity, AXp & CXp

• Query: feature relevancy

© J. Marques-Silva 135 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?

• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)
• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?

• No! Thus, feature 3 is not AXp-necessary
• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?
• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?
• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?
• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?
• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?
• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?
• No! There are no singleton AXps

• Confirmation:
• CXps: tt1u, t2u, t3, 4uu (2 is also AXp-necessary)
• AXps: tt1, 2, 3u, t1, 2, 4uu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 136 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?

• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?

• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?

• Yes! Features 1 and 2 (i.e. singleton AXps)
• Are there AXp-necessary features?

• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?
• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?

• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?
• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?

• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?
• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?
• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?
• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?
• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?
• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?
• No! There are no singleton CXps

• Confirmation:
• AXps: tt1u, t2u, t3, 4uu
• CXps: tt1, 2, 3u, t1, 2, 4uu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 137 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)

• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:

• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps:

• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps: tt1u, t2, 3uu
• AXp-necessary:

• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps: tt1u, t2, 3uu
• AXp-necessary: t1u (singleton CXp)
• CXp-necessary:

• Relevant:
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps: tt1u, t2, 3uu
• AXp-necessary: t1u (singleton CXp)
• CXp-necessary: H
• Relevant:

• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps: tt1u, t2, 3uu
• AXp-necessary: t1u (singleton CXp)
• CXp-necessary: H
• Relevant: t1, 2, 3u
• Irrelevant:

© J. Marques-Silva 138 / 215

Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps: tt1, 2u, t1, 3uu
• All CXps: tt1u, t2, 3uu
• AXp-necessary: t1u (singleton CXp)
• CXp-necessary: H
• Relevant: t1, 2, 3u
• Irrelevant: t4, 5u

© J. Marques-Silva 138 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)

• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps:

• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps:

• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps: tt1, 2u, t1, 3uu
• AXp-necessary:

• CXp-necessary:
• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps: tt1, 2u, t1, 3uu
• AXp-necessary: H
• CXp-necessary:

• Relevant:
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps: tt1, 2u, t1, 3uu
• AXp-necessary: H
• CXp-necessary: t1u (singleton AXp)
• Relevant:

• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps: tt1, 2u, t1, 3uu
• AXp-necessary: H
• CXp-necessary: t1u (singleton AXp)
• Relevant: t1, 2, 3u
• Irrelevant:

© J. Marques-Silva 139 / 215

Yet another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 10)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)
• Obs: If x1 = 0 and x2 = x3 = 0, then κ(x) = 0; i.e. must either set x1 = 1 or x2 = x3 = 1

• Hint: Can construct restricted truth-tables

• All AXps: tt1u, t2, 3uu
• All CXps: tt1, 2u, t1, 3uu
• AXp-necessary: H
• CXp-necessary: t1u (singleton AXp)
• Relevant: t1, 2, 3u
• Irrelevant: t4, 5u

© J. Marques-Silva 139 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?

• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?

• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?
• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?
• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Some use cases

Q: How to decide whether some protected feature occurs in some explanation?
• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?
• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration

© J. Marques-Silva 140 / 215

Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 141 / 215

Detour: Monotonic Classification & Voting Power

© J. Marques-Silva 142 / 215

Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 143 / 215

Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 143 / 215

Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 143 / 215

Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)

© J. Marques-Silva 143 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped

• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep

• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep

• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep

• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep

• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped

• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u

© J. Marques-Silva 144 / 215

An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u ; Q: Is feature 6 relevant?

© J. Marques-Silva 144 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:
C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu

© J. Marques-Silva 145 / 215

What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 146 / 215

What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 146 / 215

What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 146 / 215

What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 146 / 215

What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 146 / 215

An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player

© J. Marques-Silva 147 / 215

An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]

• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player

© J. Marques-Silva 147 / 215

An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player

© J. Marques-Silva 147 / 215

An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player

© J. Marques-Silva 147 / 215

An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player

© J. Marques-Silva 147 / 215

Understanding weighted voting games

• Obs: A WVG is a monotonically increasing boolean classifier
• Each subset-minimal winning coalition is an AXp of the instance (1, 1)

• Recall EEC voting example:
Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• The corresponding classifier is:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

which we have seen before! E.g. t2, 3, 4, 5u is an AXp & feature 6 (L) is irrelevant

© J. Marques-Silva 148 / 215

Understanding weighted voting games

• Obs: A WVG is a monotonically increasing boolean classifier
• Each subset-minimal winning coalition is an AXp of the instance (1, 1)

• Recall EEC voting example:
Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• The corresponding classifier is:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

which we have seen before! E.g. t2, 3, 4, 5u is an AXp & feature 6 (L) is irrelevant

© J. Marques-Silva 148 / 215

Understanding weighted voting games

• Obs: A WVG is a monotonically increasing boolean classifier
• Each subset-minimal winning coalition is an AXp of the instance (1, 1)

• Recall EEC voting example:
Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• The corresponding classifier is:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

which we have seen before! E.g. t2, 3, 4, 5u is an AXp & feature 6 (L) is irrelevant
© J. Marques-Silva 148 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:
C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Another example

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:
C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:

A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:

A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:

A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:
A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:
A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:
A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:
C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:
A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:
C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Yet another example

• WVG: [16; 9, 9, 7, 3, 1, 1]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:
A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:
C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 150 / 215

Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23c]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other

© J. Marques-Silva 151 / 215

Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23c]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other

© J. Marques-Silva 151 / 215

Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23c]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other

© J. Marques-Silva 151 / 215

Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23c]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other

© J. Marques-Silva 151 / 215

Unit #06

Advanced Topics

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

General definition of prediction sufficiency

• Instance (v, c)
• Let S Ď F :

• Recall,
Υ(S; v) = tx P F | xS = vSu

• S Ď F suffices for prediction c if:

@(x P F).(x P Υ(S; v))Ñ(σ(x))

• Obs: a WAXp is just one possible example
• But there are other ways to study prediction sufficiency:

• One can envision defining other sets of points Γ, parameterized by E = (M, (v, c));
S Ď F suffices for prediction c if:

@(x P F).(x P Γ(S; E))Ñ(σ(x))

• And one can also envision generalizations of σ!

© J. Marques-Silva 152 / 215

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X) := @(x P F).

ľ

jPX
(xj = vj)Ñ(κ(x) = c)

• For non-boolean features, use of =may convey little information, e.g. with real-valued features,
having x1 = 1.157 does not help in understanding what values of feature 1 are also acceptable

• Inflated explanations allow for more expressive literals, i.e. = replaced with P, and
individual values replaced by ranges of values

• Operational definition: Given an AXp, expand set of values of each feature, in some chosen
order, such that the set of picked features remains unchanged

© J. Marques-Silva 153 / 215

Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X) := @(x P F).

ľ

jPX
(xj = vj)Ñ(κ(x) = c)

• For non-boolean features, use of =may convey little information, e.g. with real-valued features,
having x1 = 1.157 does not help in understanding what values of feature 1 are also acceptable

• Inflated explanations allow for more expressive literals, i.e. = replaced with P, and
individual values replaced by ranges of values

• Operational definition: Given an AXp, expand set of values of each feature, in some chosen
order, such that the set of picked features remains unchanged

© J. Marques-Silva 153 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)

• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)
• AXp: t1, 2u

• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)
• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)
• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)
• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)
• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)

© J. Marques-Silva 154 / 215

Approach

• Compute AXp X
• For each feature:

• Categorical: iteratively add elements to literal
• Ordinal:

• Expand literal for larger values;
• Expand literal for smaller values

• Obs: More complex alternative is to find AXp and expand domains simultaneously
• This is conjectured to change the complexity class of finding one explanation

© J. Marques-Silva 155 / 215

Approach

• Compute AXp X
• For each feature:

• Categorical: iteratively add elements to literal
• Ordinal:

• Expand literal for larger values;
• Expand literal for smaller values

• Obs: More complex alternative is to find AXp and expand domains simultaneously
• This is conjectured to change the complexity class of finding one explanation

© J. Marques-Silva 155 / 215

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

Probabilistic (formal) explanations

[WMHK21, IIN+22, IHI+22, ABOS22, IHI+23, IMM24]

• Explanation size is critical for human understanding [Mil56]

• Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

• Definition of weak probabilistic AXp X Ď F :

WPAXp(X) := Pr(κ(x) = c) | xX = vX) ě δ

• Obs: xX = vX requires points x P F to match the values of v for the features dictated by X
• Obs: for δ = 1 we obtain a WAXp

© J. Marques-Silva 156 / 215

Probabilistic (formal) explanations

[WMHK21, IIN+22, IHI+22, ABOS22, IHI+23, IMM24]

• Explanation size is critical for human understanding [Mil56]

• Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

• Definition of weak probabilistic AXp X Ď F :

WPAXp(X) := Pr(κ(x) = c) | xX = vX) ě δ

• Obs: xX = vX requires points x P F to match the values of v for the features dictated by X
• Obs: for δ = 1 we obtain a WAXp

© J. Marques-Silva 156 / 215

Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX) ě δ :=
|tx P F : κ(x) = c^ (xX = vX)u|

|tx P F : (xX = vX)u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X).␣WeakPAXp(X ztju;F, κ, v, c, δ)

© J. Marques-Silva 157 / 215

Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX) ě δ :=
|tx P F : κ(x) = c^ (xX = vX)u|

|tx P F : (xX = vX)u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X).␣WeakPAXp(X ztju;F, κ, v, c, δ)

© J. Marques-Silva 157 / 215

Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX) ě δ :=
|tx P F : κ(x) = c^ (xX = vX)u|

|tx P F : (xX = vX)u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X).␣WeakPAXp(X ztju;F, κ, v, c, δ)

© J. Marques-Silva 157 / 215

Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX) ě δ :=
|tx P F : κ(x) = c^ (xX = vX)u|

|tx P F : (xX = vX)u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X).␣WeakPAXp(X ztju;F, κ, v, c, δ)

© J. Marques-Silva 157 / 215

Definitions

• Weak probabilistic AXp (WPAXp): – definition is non-monotonic

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX) ě δ :=
|tx P F : κ(x) = c^ (xX = vX)u|

|tx P F : (xX = vX)u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp): – may differ from PAXp due to non-monotonicity

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X).␣WeakPAXp(X ztju;F, κ, v, c, δ)

© J. Marques-Silva 157 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)

• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)
• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)
• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)
• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)
• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)
• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]

© J. Marques-Silva 158 / 215

Results for decision trees

Dataset
MinPAXp LmPAXp Anchor

DT Path δ Length Prec Time Length Prec mĎ Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg FRP avg avg
100 11 3 6.8 100 2.34 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96

adult 1241 89 14 3 10.7 95 11 3 6.2 98.4 5.36 11 3 6.3 98.6 99.0 0.01 u 12 3 10.0 29.4 93.7 2.20

90 11 2 5.6 94.6 4.64 11 2 5.8 95.2 96.4 0.01

100 12 1 4.4 100 0.35 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 32.9 3.10

dermatology 71 100 13 1 5.1 95 12 1 4.1 99.7 0.37 12 1 4.1 99.7 99.3 0.00 u 34 1 13.1 43.2 87.2 25.13

90 11 1 4.0 98.8 0.35 11 1 4.0 98.8 100 0.00

100 12 2 4.8 100 0.93 12 2 4.9 100 100 0.00 d 36 2 7.9 44.8 69.4 1.94

kr-vs-kp 231 100 14 3 6.6 95 11 2 3.9 98.1 0.97 11 2 4.0 98.1 100 0.00 u 12 2 3.6 16.6 97.3 1.81

90 10 2 3.2 95.4 0.92 10 2 3.3 95.4 99.0 0.00

100 12 4 8.2 100 16.06 11 4 8.2 100 100 0.00 d 16 3 13.2 43.1 71.3 12.22

letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 18.28 11 4 8.0 99.5 100 0.00 u 16 3 13.7 47.3 66.3 10.15

90 12 4 7.7 97.7 16.35 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 0.92 14 3 6.5 100 100 0.00 d 35 2 8.6 55.4 33.6 5.43

soybean 219 100 16 3 7.3 95 14 3 6.4 99.8 0.95 14 3 6.4 99.8 100 0.00 u 35 3 19.2 66.0 75.0 38.96

90 14 3 6.1 98.1 0.94 14 3 6.1 98.2 98.5 0.00

0 12 3 7.4 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 65.3 63.3 24.12

spambase 141 99 14 3 8.5 95 9 1 3.7 96.1 2.16 9 1 3.8 96.5 100 0.01 u 57 3 28.0 86.2 65.3 834.70

90 6 1 2.4 92.4 2.15 8 1 2.4 92.2 100 0.01

Table 1: Assessing explanations of MinPAXp, LmPAXp and Anchor for DTs. (For each dataset, we run the explainers on
500 samples randomly picked or all samples if there are less than 500.) In column DT, N and A denote, resp., the
number of nodes and the training accuracy of the DT. Column δ reports (in %) the value of the threshold δ. In column
Path, avg (resp. M and m) denotes the average (resp. max. and min.) depth of paths consistent with the instances. In
column Length, avg (resp. M and m) denotes the average (resp. max. and min.) length of the explanations; and FRP
denotes the avg. % of features in Anchor’s explanations that do not belong to the consistent paths. Prec reports (in
%) the average precision (defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are
subset-minimal, i.e. PAXp’s. Time reports (in seconds) the average runtime to compute an explanation. Finally, D
indicates which distribution is applied on data given to Anchor: either data distribution (denoted by d) or uniform
distribution (denoted by u).

© J. Marques-Silva 159 / 215

Results for naive Bayes classifiers

Dataset (#F #I) NBC AXp LmPAXpď9 LmPAXpď7 LmPAXpď4

A% Length δ Length Precision W% Time Length Precision W% Time Length Precision W% Time

adult (13 200) 81.37 6.8˘ 1.2

98 6.8˘ 1.1 100˘ 0.0 100 0.003 6.3˘ 0.9 99.61˘ 0.6 96 0.023 4.8˘ 1.3 98.73˘ 0.5 48 0.059

95 6.8˘ 1.1 99.99˘ 0.2 100 0.074 5.9˘ 1.0 98.87˘ 1.8 99 0.058 3.9˘ 1.0 96.93˘ 1.1 80 0.071

93 6.8˘ 1.1 99.97˘ 0.4 100 0.104 5.7˘ 1.3 98.34˘ 2.6 100 0.086 3.4˘ 0.9 95.21˘ 1.6 90 0.093

90 6.8˘ 1.1 99.95˘ 0.6 100 0.164 5.5˘ 1.4 97.86˘ 3.4 100 0.100 3.0˘ 0.8 93.46˘ 1.5 94 0.103

agaricus (23 200) 95.41 10.3˘ 2.5

98 7.7˘ 2.7 99.12˘ 0.8 92 0.593 6.4˘ 3.0 98.75˘ 0.6 87 0.763 6.0˘ 3.1 98.67˘ 0.5 29 0.870

95 6.9˘ 3.1 97.62˘ 2.1 95 0.954 5.3˘ 3.2 96.59˘ 1.6 92 1.273 4.8˘ 3.3 96.24˘ 1.2 55 1.217

93 6.5˘ 3.1 96.65˘ 2.8 95 1.112 4.8˘ 3.1 95.38˘ 1.9 93 1.309 4.3˘ 3.1 94.92˘ 1.3 64 1.390

90 5.9˘ 3.3 94.95˘ 4.1 96 1.332 4.0˘ 3.0 92.60˘ 2.8 95 1.598 3.6˘ 2.8 92.08˘ 1.7 76 1.830

chess (37 200) 88.34 12.1˘ 3.7

98 8.1˘ 4.1 99.27˘ 0.6 64 0.383 5.9˘ 4.9 98.70˘ 0.4 64 0.454 5.7˘ 5.0 98.65˘ 0.4 46 0.457

95 7.7˘ 3.8 98.51˘ 1.4 68 0.404 5.5˘ 4.4 97.90˘ 0.9 64 0.483 5.3˘ 4.5 97.85˘ 0.8 46 0.478

93 7.3˘ 3.5 97.56˘ 2.4 68 0.419 5.0˘ 4.1 96.26˘ 2.2 64 0.485 4.8˘ 4.1 96.21˘ 2.1 64 0.493

90 7.3˘ 3.5 97.29˘ 2.9 70 0.413 4.9˘ 4.0 95.99˘ 2.6 64 0.483 4.8˘ 4.0 95.93˘ 2.5 64 0.543

vote (17 81) 89.66 5.3˘ 1.4

98 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.95˘ 0.2 100 0.007 4.6˘ 1.1 99.60˘ 0.4 64 0.014

95 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.93˘ 0.3 100 0.008 4.1˘ 1.0 98.25˘ 1.7 64 0.018

93 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.1˘ 0.9 98.10˘ 1.9 64 0.018

90 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.0˘ 1.2 97.24˘ 3.1 64 0.022

kr-vs-kp (37 200) 88.07 12.2˘ 3.9

98 7.8˘ 4.2 99.19˘ 0.5 64 0.387 6.5˘ 4.7 98.99˘ 0.4 64 0.427 6.1˘ 4.9 98.88˘ 0.3 43 0.457

95 7.3˘ 3.9 98.29˘ 1.4 64 0.416 6.0˘ 4.3 97.89˘ 1.1 64 0.453 5.5˘ 4.5 97.79˘ 0.9 43 0.462

93 6.9˘ 3.5 97.21˘ 2.5 69 0.422 5.6˘ 3.8 96.82˘ 2.2 64 0.448 5.2˘ 4.0 96.71˘ 2.1 43 0.468

90 6.8˘ 3.5 96.65˘ 3.1 69 0.418 5.4˘ 3.8 95.69˘ 3.0 64 0.468 5.0˘ 4.0 95.59˘ 2.8 61 0.487

mushroom (23 200) 95.51 10.7˘ 2.3

98 7.5˘ 2.4 98.99˘ 0.7 90 0.641 6.5˘ 2.6 98.74˘ 0.5 83 0.751 6.3˘ 2.7 98.70˘ 0.4 18 0.828

95 6.5˘ 2.6 97.35˘ 1.8 96 1.011 5.1˘ 2.5 96.52˘ 1.0 90 1.130 5.0˘ 2.5 96.39˘ 0.8 54 1.113

93 5.8˘ 2.8 95.77˘ 2.7 96 1.257 4.4˘ 2.5 94.67˘ 1.6 94 1.297 4.2˘ 2.4 94.48˘ 1.3 65 1.324

90 5.3˘ 3.0 94.01˘ 3.9 97 1.455 3.8˘ 2.3 92.36˘ 2.2 96 1.543 3.6˘ 2.2 92.07˘ 1.6 76 1.650

threeOf9 (10 103) 83.13 4.2˘ 0.4

98 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 78 0.001

95 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.0˘ 0.2 99.23˘ 1.4 100 0.002

93 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.9˘ 0.2 99.20˘ 1.5 100 0.002

90 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.8˘ 0.4 98.29˘ 3.3 100 0.003

xd6 (10 176) 81.36 4.5˘ 0.9

98 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

95 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

93 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.001

90 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.002

mamo (14 53) 80.21 4.9˘ 0.8

98 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 4.6˘ 0.6 99.66˘ 0.5 53 0.007

95 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.80˘ 1.6 85 0.009

93 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.68˘ 1.7 85 0.009

90 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.6˘ 0.8 96.18˘ 3.2 96 0.011

tumor (16 104) 83.21 5.3˘ 0.9

98 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.7 99.96˘ 0.2 100 0.008 4.1˘ 0.7 99.41˘ 0.5 91 0.012

95 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.83˘ 0.7 100 0.012 3.2˘ 0.6 96.02˘ 1.5 94 0.016

93 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.74˘ 1.2 100 0.014 3.1˘ 0.7 95.50˘ 1.4 95 0.016

90 5.3˘ 0.8 100˘ 0.0 100 0.000 5.1˘ 0.7 99.67˘ 1.4 100 0.016 3.0˘ 0.6 95.30˘ 1.6 95 0.017

Table 2: Assessing LmPAXp explanations for NBCs. Columns #F and #I show, respectively, number of features and
tested instances in the Dataset. Column A% reports (in %) the training accuracy of the classifier. Column δ reports (in
%) the value of the parameter δ. LmPAXpď9 , LmPAXpď7 and LmPAXpď4 denote, respectively, LmPAXp’s of (target)
length 9, 7 and 4. Columns Length and Precision report, respectively, the average explanation length and the average
explanation precision (˘ denotes the standard deviation). W% shows (in %) the number of success/wins where the
explanation size is less than or equal to the target size. Finally, the average runtime to compute an explanation is
shown (in seconds) in Time. (Note that the reported average time is the mean of runtimes for instances for which we
effectively computed an approximate explanation, namely instances that have AXp’s of length longer than the target
length; whereas for the remaining instances the trimming process is skipped and the runtime is 0 sec, thus we
exclude them when calculating the average.)

© J. Marques-Silva 160 / 215

Results for decision diagrams

Dataset #I #F δ

MinPAXp LmPAXp

OMDD Length Prec Time Length Prec mĎ Time

#N A% M m avg avg avg M m avg avg avg
100 9 6 8.0 100 24.24 9 6 7.9 100 100 1.57

lending 100 9 1103 81.7 95 9 5 7.8 99.7 21.48 9 6 7.8 99.8 100 1.49
90 9 4 7.2 96 24.65 9 5 7.4 97.0 100 1.48

100 6 4 5.1 100 0.10 6 4 5.1 100 100 0.03
monk2 100 6 70 79.3 95 6 4 5.1 100 0.09 6 4 5.1 100 100 0.03

90 6 3 4.8 98.1 0.09 6 3 4.8 98.1 100 0.03

100 8 4 6.1 100 0.26 8 4 6.2 100 100 0.04
postoperative 74 8 109 80 95 8 2 6.0 99.3 0.25 8 2 6.0 99.3 100 0.04

90 8 2 5.3 95.9 0.23 8 2 5.4 96.6 94.6 0.04

100 9 5 7.7 100 3.60 9 5 7.8 100 100 0.38
tic_tac_toe 100 9 424 70.3 95 9 5 7.5 99.5 3.24 9 5 7.7 99.6 99.0 0.38

90 9 3 7.3 98.3 4.06 9 3 7.5 98.6 98.0 0.38

100 9 4 4.6 100 0.10 9 4 4.6 100 100 0.03
xd6 100 9 76 83.1 95 9 3 3.8 97 0.09 9 3 3.8 97.0 99.0 0.03

90 9 3 3.3 94.8 0.10 9 3 3.4 94.6 100 0.03

Table 3: Assessing MinPAXp and LmPAXp explanations of OMDDs. Columns #I, #F denote, resp. the number of tested
instances and the number of features. In column OMDD, N and A denote, resp., the number of nodes and the test
accuracy of the OMDD. Column δ reports (in %) the value of the threshold δ. In column Length, avg (resp. M and m)
denotes the average (resp. max. and min.) length of the explanations. Prec reports (in %) the average precision
(defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are subset-minimal, i.e.
PAXp’s. Time reports (in seconds) the average runtime to compute an explanation.

© J. Marques-Silva 161 / 215

Remarks on LmPAXps

[IHI+23]

• LmPAXps ignore non-monotonicity, and so overapproximate PAXps
• Theoretical guarantees, but may be reducible

• For DTs, computation of LmPAXps is in P

• Experimental results confirm LmPAXps match PAXps in most cases

• Recent results on approximating LmPAXps for RFs [IMM24]

© J. Marques-Silva 162 / 215

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) = c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!

© J. Marques-Silva 163 / 215

Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) = c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!

© J. Marques-Silva 163 / 215

Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) = c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!

© J. Marques-Silva 163 / 215

Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) = c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!
© J. Marques-Silva 163 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:

• AXps:

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps:

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:
• AXps: tt1u, t2u, t3, 4uu

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps: tt1u, t2u, t3u, t4uu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u

© J. Marques-Silva 164 / 215

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215

How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215

How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?

• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215

How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215

How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps?

• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?

• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps? tt3, 4uu
• dCXps?

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps? tt3, 4uu
• dCXps? tt3u, t4uu

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1, 3, 4u, t2, 3, 4uu
• CXps? tt1, 2u, t3u, t4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps? tt3, 4uu
• dCXps? tt3u, t4uu

• Given ϵ, larger adversarial examples are excluded

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 166 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps?

• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps? tt1, 2, 3u, t1, 2, 4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps? tt1, 2, 3u, t1, 2, 4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps? tt1, 2, 3u, t1, 2, 4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...

• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps? tt1, 2, 3u, t1, 2, 4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps?

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Another example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:
• AXps? tt1u, t2ut3, 4uu
• CXps? tt1, 2, 3u, t1, 2, 4uu

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• Constant function...
• dAXps? tHu

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

© J. Marques-Silva 167 / 215

Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24a, IHM+24b]

© J. Marques-Silva 168 / 215

Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24a, IHM+24b]

© J. Marques-Silva 168 / 215

Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24a, IHM+24b]

© J. Marques-Silva 168 / 215

Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24a, IHM+24b]

© J. Marques-Silva 168 / 215

Basic algorithm [HM23b]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• Obs: Efficiency of logic-based XAI tracks efficiency of robustness tools
• Limitation: Running time grows with number of features

© J. Marques-Silva 169 / 215

Basic algorithm [HM23b]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• Obs: Efficiency of logic-based XAI tracks efficiency of robustness tools

• Limitation: Running time grows with number of features

© J. Marques-Silva 169 / 215

Basic algorithm [HM23b]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• Obs: Efficiency of logic-based XAI tracks efficiency of robustness tools
• Limitation: Running time grows with number of features

© J. Marques-Silva 169 / 215

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 170 / 215

Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons

© J. Marques-Silva 170 / 215

Recent improvements

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• To drop features from S Ď F , it is open whether paralellization might be applicable
• Algorithm FindAXpDel is mostly sequential (see above)
• Exploit parallelization for other algorithms, e.g. dichotomic search [IHM+24b]

• However, to decide whether S is an AXp, we can exploit parallelization:
• Recall: AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)
• Each ␣WAXp(¨) (and also WAXp(¨)) check can be run in parallel!
• Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]

© J. Marques-Silva 171 / 215

Recent improvements

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• To drop features from S Ď F , it is open whether paralellization might be applicable
• Algorithm FindAXpDel is mostly sequential (see above)
• Exploit parallelization for other algorithms, e.g. dichotomic search [IHM+24b]

• However, to decide whether S is an AXp, we can exploit parallelization:
• Recall: AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)
• Each ␣WAXp(¨) (and also WAXp(¨)) check can be run in parallel!
• Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]

© J. Marques-Silva 171 / 215

Recent improvements

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• To drop features from S Ď F , it is open whether paralellization might be applicable
• Algorithm FindAXpDel is mostly sequential (see above)
• Exploit parallelization for other algorithms, e.g. dichotomic search [IHM+24b]

• However, to decide whether S is an AXp, we can exploit parallelization:
• Recall: AXp(X) := WAXp(X)^ @(t P X).␣WAXp(X zttu)
• Each ␣WAXp(¨) (and also WAXp(¨)) check can be run in parallel!
• Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]

© J. Marques-Silva 171 / 215

More recent results (from 2024)... [IHM+24a, IHM+24b]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 172 / 215

More recent results (from 2024)... [IHM+24a, IHM+24b]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 172 / 215

More recent results (from 2024)... [IHM+24a, IHM+24b]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons

© J. Marques-Silva 172 / 215

Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics

Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model

© J. Marques-Silva 173 / 215

Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model

© J. Marques-Silva 173 / 215

Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model

© J. Marques-Silva 173 / 215

Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model

© J. Marques-Silva 173 / 215

Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative

• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm

© J. Marques-Silva 174 / 215

Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative
• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm

© J. Marques-Silva 174 / 215

Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative
• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm

© J. Marques-Silva 174 / 215

Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative
• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm

© J. Marques-Silva 174 / 215

Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 175 / 215

Questions?

© J. Marques-Silva 176 / 215

Lecture 05

© J. Marques-Silva 177 / 215

Recapitulate fourth lecture

• Monotonic classifiers vs. weighted voting games

• Advanced topics:
• Inflated explanations
• Probabilistic explanations
• Constrained explanations
• Distance-restricted explanations
• Explanations using surrogate models
• Certified explainability

© J. Marques-Silva 178 / 215

Monotonicity & WCGs

• Every WVG G, described by [q;n1, . . . ,nm], can be represented as a monotonically
increasing boolean classifierM = (F , t0, 1um, t0, 1u, κ), such that:

• Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter i votes
Yes; otherwise it takes value 0;

• The classification function κ : F Ñ t0, 1u is defined by:

κ(x) =
#

1 if
řm

i=1 nixi ě q

0 otherwise

• The target instance is (1, 1); and
• Each minimal winning coalition C corresponds to an AXp of E = (M, (1, 1))

6 WVGs can be analyzed by studying the AXps/CXps of monotonically increasing boolean
classifiers

© J. Marques-Silva 179 / 215

Monotonicity & WCGs

• Every WVG G, described by [q;n1, . . . ,nm], can be represented as a monotonically
increasing boolean classifierM = (F , t0, 1um, t0, 1u, κ), such that:

• Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter i votes
Yes; otherwise it takes value 0;

• The classification function κ : F Ñ t0, 1u is defined by:

κ(x) =
#

1 if
řm

i=1 nixi ě q

0 otherwise

• The target instance is (1, 1); and
• Each minimal winning coalition C corresponds to an AXp of E = (M, (1, 1))

6 WVGs can be analyzed by studying the AXps/CXps of monotonically increasing boolean
classifiers

© J. Marques-Silva 179 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:
C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:
A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:
C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 180 / 215

Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 181 / 215

Unit #07

Principles of Symbolic XAI – Feature Attribution

Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores

Detour: Standard SHAP Intro (from another course...)

© J. Marques-Silva 182 / 215

What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

© J. Marques-Silva 183 / 215

What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

© J. Marques-Silva 183 / 215

What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?

© J. Marques-Silva 183 / 215

What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?
© J. Marques-Silva 183 / 215

How are Shapley values used in explainability?

• Instance: (v, c)

• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
(n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes

© J. Marques-Silva 184 / 215

How are Shapley values used in explainability?

• Instance: (v, c)
• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v

• ϕ: 2F Ñ R defined by,
ϕ(S) = 1/2|FzS|

ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
(n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes

© J. Marques-Silva 184 / 215

How are Shapley values used in explainability?

• Instance: (v, c)
• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)

• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
(n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes

© J. Marques-Silva 184 / 215

How are Shapley values used in explainability?

• Instance: (v, c)
• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
(n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes
© J. Marques-Silva 184 / 215

How are Shapley values used in explainability?

• Instance: (v, c)
• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
(n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes

Marginal contribution
(in SHAP lingo)!

© J. Marques-Silva 184 / 215

How are Shapley values computed in practice?

• Exact evaluation is computationally (very) hard [VLSS21, ABBM21, VLSS22, ABBM23, HMS24]

• SHAP proposes a sample-based approach; with no guarantees of rigor [LL17]

• Recent experiments revealed little to no correlation between Shapley values and SHAP’s
results [HM23c]

• Polynomial-time algorithm for deterministic decomposable boolean circuits [ABBM21]

• Polynomial-time algorithm for boolean functions represented with a truth-table [HM23c]

© J. Marques-Silva 185 / 215

How are Shapley values computed in practice?

• Exact evaluation is computationally (very) hard [VLSS21, ABBM21, VLSS22, ABBM23, HMS24]

• SHAP proposes a sample-based approach; with no guarantees of rigor [LL17]

• Recent experiments revealed little to no correlation between Shapley values and SHAP’s
results [HM23c]

• Polynomial-time algorithm for deterministic decomposable boolean circuits [ABBM21]

• Polynomial-time algorithm for boolean functions represented with a truth-table [HM23c]

© J. Marques-Silva 185 / 215

What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

© J. Marques-Silva 186 / 215

What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

© J. Marques-Silva 186 / 215

What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

© J. Marques-Silva 186 / 215

What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp

© J. Marques-Silva 186 / 215

Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :

• Issue I1 occurs if,
Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j =i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 187 / 215

Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j =i (|Sv(j)| ă |Sv(i)|)]

Any of these issues is a cause
of (serious) concern per se!

© J. Marques-Silva 187 / 215

Some stats – all boolean functions with 4 variables [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

Issue-related metric Value Recap issue

of functions 65536
number of instances 1048576

of I1 issues 781696
of functions with I1 issues 65320
% I1 issues / function 99.67 [Irrelevant(i)^ (Sv(i) = 0)]

of I2 issues 105184
of functions with I2 issues 40448
% I2 issues / function 61.72 [Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)]

of I3 issues 43008
of functions with I3 issues 7800
% I3 issues / function 11.90 [Relevant(i)^ (Sv(i) = 0)]

of I4 issues 5728
of functions with I4 issues 2592
% I4 issues / function 3.96 [Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

of I5 issues 1664
of functions with I5 issues 1248
% I5 issues / function 1.90 [Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]

© J. Marques-Silva 188 / 215

Previous results do matter! Let’s go non-boolean...

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Instance ((1, 1, 2), 1) – which feature matters the most for prediction 1?

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs – make sense...

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs – also make sense...

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs & Svs

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Computing XPs, AEs & Svs – what???

x1

x3

x2

4 7

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500 !!!
DT2 0.278 0.028 -0.222 !!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]

© J. Marques-Silva 189 / 215

Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 190 / 215

Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 190 / 215

Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α

© J. Marques-Silva 190 / 215

Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α (you can pick the α...)

© J. Marques-Silva 190 / 215

Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α (you can pick the α...)

Example devised by O. Letoffe, PhD student at IRIT
© J. Marques-Silva 190 / 215

More detail

row x1 x2 ρ(x) ρa(x)
α = 1/2

ρb(x)
α = 1/4

1 0 0 1´ 6α ´2 ´1/2

2 0 1 1 + 2α 2 3/2

3 1 0 1 1 1
4 1 1 1 1 1

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

S rows(S) υe(S)

H 1, 2, 3, 4 1´ α

tx1u 3, 4 1

tx2u 2, 4 1 + α

tx1, x2u 4 1

i = 1

S υe(S) υe(S Y t1u) ∆1(S) ς(S) ς(S)ˆ∆1(S)

H 1´ α 1 α 1/2 α/2

t2u 1 + α 1 ´α 1/2 ´α/2

ScE(1) = 0
i = 2

S υe(S) υe(S Y t2u) ∆2(S) ς(S) ς(S)ˆ∆2(S)

H 1´ α 1 + α 2α 1/2 α

t1u 1 1 0 1/2 0

ScE(2) = α
© J. Marques-Silva 191 / 215

Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect?

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect? No!

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect? No!

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect? No!

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect? No!

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect? No!

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI

© J. Marques-Silva 192 / 215

An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]

© J. Marques-Silva 193 / 215

An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]

© J. Marques-Silva 193 / 215

An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]

© J. Marques-Silva 193 / 215

An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]

© J. Marques-Silva 193 / 215

An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]

© J. Marques-Silva 193 / 215

Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 / 215

Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 / 215

Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 / 215

Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 / 215

Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution

© J. Marques-Silva 194 / 215

Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores

Recap: weighted voting games

• General set up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counte (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter

© J. Marques-Silva 195 / 215

What are power indices?

• Power indices assign a measure of importance to each voter

• Many power indices proposed over the years:
• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

© J. Marques-Silva 196 / 215

What are power indices?

• Power indices assign a measure of importance to each voter
• Many power indices proposed over the years:

• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...

• What characterizes power indices?
• Account for the cases when voter is critical for a winning coalition

• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

© J. Marques-Silva 196 / 215

What are power indices?

• Power indices assign a measure of importance to each voter
• Many power indices proposed over the years:

• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal

© J. Marques-Silva 196 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:
• A winning coalition is subset-minimal if removing any single voter results in a losing coalition

• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:
• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:
• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier

© J. Marques-Silva 197 / 215

Example power indices I

[LHAMS24]

• Necessary definitions (using formal XAI notation...):
WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps

© J. Marques-Silva 198 / 215

Example power indices I

[LHAMS24]

• Necessary definitions (using formal XAI notation...):
WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps

© J. Marques-Silva 198 / 215

Example power indices I

[LHAMS24]

• Necessary definitions (using formal XAI notation...):
WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps
© J. Marques-Silva 198 / 215

Example power indices II

• Additional definitions:
Crit(i,S; E) := WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...

© J. Marques-Silva 199 / 215

Example power indices II

• Additional definitions:
Crit(i,S; E) := WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...

© J. Marques-Silva 199 / 215

Example power indices II

• Additional definitions:
Crit(i,S; E) := WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...

© J. Marques-Silva 199 / 215

Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215

Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215

Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215

Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 201 / 215

Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 201 / 215

Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 201 / 215

Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5

• Deegan-Packel scores: x0.312, 0.087, 0.150, 0.150, 0.150, 0.150y
• Banzhaf scores (normalized): x0.542, 0.125, 0.083, 0.083, 0.083, 0.083y
• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 202 / 215

Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5

• Deegan-Packel scores: x0.312, 0.087, 0.150, 0.150, 0.150, 0.150y
• Banzhaf scores (normalized): x0.542, 0.125, 0.083, 0.083, 0.083, 0.083y
• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 202 / 215

Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5

• Deegan-Packel scores: x0.312, 0.087, 0.150, 0.150, 0.150, 0.150y
• Banzhaf scores (normalized): x0.542, 0.125, 0.083, 0.083, 0.083, 0.083y
• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 202 / 215

Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 203 / 215

Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 203 / 215

Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 203 / 215

Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores

From power indices to feature importance scores

• A Feature Importance Score (FIS) is a measure of feature importance in XAI,
parameterizable on an explanation problem and a chosen characteristic function

• Explanation problem: (M, (v, q))
• Define characteristic function using explanation problem (more next slide)

• Obs: Can adapt (generalized) power indices as templates for feature importance scores

• Obs: Can devise new templates and/or new FISs

© J. Marques-Silva 204 / 215

Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates

© J. Marques-Silva 205 / 215

Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates

© J. Marques-Silva 205 / 215

Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates

© J. Marques-Silva 205 / 215

Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates

© J. Marques-Silva 205 / 215

Some examples (2 of 2)

• Recall WAXp based characteristic function:

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Some FISs:
• Shapley-Shubik:

ScS(i; E) := TScS(i; E , υa) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)
|F | ˆ

(
|F|´1
|S|´1

))

• Banzhaf:
ScB(i; E) := TScB(i; E , υa) :=

ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)

2|F|´1

)

© J. Marques-Silva 206 / 215

Some examples (2 of 2)

• Recall WAXp based characteristic function:

υa(S) :=

#

1 if E[σ(x) | xS = vS] = 1

0 otherwise

• Some FISs:
• Shapley-Shubik:

ScS(i; E) := TScS(i; E , υa) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)
|F | ˆ

(
|F|´1
|S|´1

))

• Banzhaf:
ScB(i; E) := TScB(i; E , υa) :=

ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)

2|F|´1

)

© J. Marques-Silva 206 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:

• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:
• SS: x0.083, 0.083, 0.417, 0.417y

• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:
• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y

• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:
• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y

• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:
• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y

• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:
• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11

© J. Marques-Silva 207 / 215

Questions?

© J. Marques-Silva 208 / 215

Unit #08

Conclusions & Research Directions

Outline – Unit #08

Some Words of Concern

Conclusions & Research Directions

Can heuristic XAI’s myths be stopped?

LIME on 2023/05/31:

© J. Marques-Silva 209 / 215

Can heuristic XAI’s myths be stopped?

LIME on 2024/07/02:

© J. Marques-Silva 209 / 215

Can heuristic XAI’s myths be stopped?

SHAP on 2023/05/31:

© J. Marques-Silva 209 / 215

Can heuristic XAI’s myths be stopped?

SHAP on 2024/07/02:

© J. Marques-Silva 209 / 215

What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "

© J. Marques-Silva 210 / 215

What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "

© J. Marques-Silva 210 / 215

What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "

© J. Marques-Silva 210 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

© J. Marques-Silva 211 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

© J. Marques-Silva 211 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

© J. Marques-Silva 211 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

© J. Marques-Silva 211 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

© J. Marques-Silva 211 / 215

Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

Plenty of redundancy

© J. Marques-Silva 211 / 215

Outline – Unit #08

Some Words of Concern

Conclusions & Research Directions

Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.

© J. Marques-Silva 212 / 215

Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.

© J. Marques-Silva 212 / 215

Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.

© J. Marques-Silva 212 / 215

Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.

© J. Marques-Silva 212 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!

© J. Marques-Silva 213 / 215

What this course covered

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions

© J. Marques-Silva 214 / 215

Q & A

Acknowledgment: joint work with X. Huang, Y. Izza, O. Létoffé, A. Ignatiev, N. Narodytska, M.
Cooper, N. Asher, A. Morgado, J. Planes, et al.

© J. Marques-Silva 215 / 215

© J. Marques-Silva 216 / 215

References i

[ABBM21] Marcelo Arenas, Pablo Barceló, Leopoldo E. Bertossi, and Mikaël Monet.
The tractability of SHAP-score-based explanations for classification over deterministic and
decomposable boolean circuits.
In AAAI, pages 6670–6678, 2021.

[ABBM23] Marcelo Arenas, Pablo Barceló, Leopoldo E. Bertossi, and Mikaël Monet.
On the complexity of SHAP-score-based explanations: Tractability via knowledge compilation and
non-approximability results.
J. Mach. Learn. Res., 24:63:1–63:58, 2023.

[ABOS22] Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Subercaseaux.
On computing probabilistic explanations for decision trees.
In NeurIPS, 2022.

[ACL03] Nicolas-Gabriel Andjiga, Fréderic Chantreuil, and Dominique Lepelley.
La mesure du pouvoir de vote.
Mathématiques et sciences humaines. Mathematics and social sciences, (163), 2003.

[Alp14] Ethem Alpaydin.
Introduction to machine learning.
MIT press, 2014.

© J. Marques-Silva 217 / 215

References ii

[Alp16] Ethem Alpaydin.
Machine Learning: The New AI.
MIT Press, 2016.

[BA97] Leonard A. Breslow and David W. Aha.
Simplifying decision trees: A survey.
Knowledge Eng. Review, 12(1):1–40, 1997.

[BAMT21] Ryma Boumazouza, Fahima Cheikh Alili, Bertrand Mazure, and Karim Tabia.
ASTERYX: A model-agnostic sat-based approach for symbolic and score-based explanations.
In CIKM, pages 120–129, 2021.

[BBHK10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn.
Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in
Computer Science.
Springer, 2010.

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and
Wojciech Samek.
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
PloS one, 10(7):e0130140, 2015.

© J. Marques-Silva 218 / 215

References iii

[BFOS84] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees.
Wadsworth, 1984.

[BHO09] Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173–187, 2009.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

[BI65] John F Banzhaf III.
Weighted voting doesn’t work: A mathematical analysis.
Rutgers L. Rev., 19:317, 1965.

[BIL+24] Gagan Biradar, Yacine Izza, Elita Lobo, Vignesh Viswanathan, and Yair Zick.
Axiomatic aggregations of abductive explanations.
In AAAI, pages 11096–11104, 2024.

[BMB+23] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu Liu.
First three years of the international verification of neural networks competition (VNN-COMP).
Int. J. Softw. Tools Technol. Transf., 25(3):329–339, 2023.

© J. Marques-Silva 219 / 215

References iv

[Bra20] Max Bramer.
Principles of Data Mining, 4th Edition.
Undergraduate Topics in Computer Science. Springer, 2020.

[CG16] Tianqi Chen and Carlos Guestrin.
XGBoost: A scalable tree boosting system.
In KDD, pages 785–794, 2016.

[CH04] Hana Chockler and Joseph Y Halpern.
Responsibility and blame: A structural-model approach.
Journal of Artificial Intelligence Research, 22:93–115, 2004.

[CM21] Martin C. Cooper and Joao Marques-Silva.
On the tractability of explaining decisions of classifiers.
In CP, October 2021.

[Col71] James S Coleman.
Control of collectivities and the power of a collectivity to act.
In Bernhardt Lieberman, editor, Social choice, chapter 2.10. Gordon and Breach, New York, 1971.

[DL01] Sašo Džeroski and Nada Lavrač, editors.
Relational data mining.
Springer, 2001.

© J. Marques-Silva 220 / 215

References v

[DP78] John Deegan and Edward W Packel.
A new index of power for simple n-person games.
International Journal of Game Theory, 7:113–123, 1978.

[DSZ16] Anupam Datta, Shayak Sen, and Yair Zick.
Algorithmic transparency via quantitative input influence: Theory and experiments with learning
systems.
In IEEE S&P, pages 598–617, 2016.

[EG95] Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278–1304, 1995.

[EU21a] EU.
European Artificial Intelligence Act.
https://eur-lex.europa.eu/eli/reg/2024/1689/oj, 2021.

[EU21b] EU.
European Artificial Intelligence Act – Proposal.
https:
//eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206,
2021.

© J. Marques-Silva 221 / 215

https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206

References vi

[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

[FK96] Michael L. Fredman and Leonid Khachiyan.
On the complexity of dualization of monotone disjunctive normal forms.
J. Algorithms, 21(3):618–628, 1996.

[Fla12] Peter A. Flach.
Machine Learning - The Art and Science of Algorithms that Make Sense of Data.
Cambridge University Press, 2012.

[GR22] Niku Gorji and Sasha Rubin.
Sufficient reasons for classifier decisions in the presence of domain constraints.
In AAAI, February 2022.

[GZM20] Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour.
Decision tree-based diagnosis of coronary artery disease: CART model.
Comput. Methods Programs Biomed., 192:105400, 2020.

[HCM+23] Xuanxiang Huang, Martin C. Cooper, António Morgado, Jordi Planes, and João Marques-Silva.
Feature necessity & relevancy in ML classifier explanations.
In TACAS, pages 167–186, 2023.

© J. Marques-Silva 222 / 215

References vii

[HII+22] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin Cooper, Nicholas Asher, and Joao Marques-Silva.
Tractable explanations for d-DNNF classifiers.
In AAAI, February 2022.

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On efficiently explaining graph-based classifiers.
In KR, November 2021.
Preprint available from https://arxiv.org/abs/2106.01350.

[HM23a] Xuanxiang Huang and João Marques-Silva.
From decision trees to explained decision sets.
In ECAI, pages 1100–1108, 2023.

[HM23b] Xuanxiang Huang and João Marques-Silva.
From robustness to explainability and back again.
CoRR, abs/2306.03048, 2023.

[HM23c] Xuanxiang Huang and João Marques-Silva.
The inadequacy of Shapley values for explainability.
CoRR, abs/2302.08160, 2023.

© J. Marques-Silva 223 / 215

https://arxiv.org/abs/2106.01350

References viii

[HM23d] Xuanxiang Huang and Joao Marques-Silva.
A refutation of shapley values for explainability.
CoRR, abs/2309.03041, 2023.

[HM23e] Xuanxiang Huang and Joao Marques-Silva.
Refutation of shapley values for XAI – additional evidence.
CoRR, abs/2310.00416, 2023.

[HM23f] Aurélie Hurault and João Marques-Silva.
Certified logic-based explainable AI - the case of monotonic classifiers.
In TAP, pages 51–67, 2023.

[HMS24] Xuanxiang Huang and Joao Marques-Silva.
On the failings of Shapley values for explainability.
International Journal of Approximate Reasoning, page 109112, 2024.

[HP83] Manfred J Holler and Edward W Packel.
Power, luck and the right index.
Journal of Economics, 43(1):21–29, 1983.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurIPS, pages 7265–7273, 2019.

© J. Marques-Silva 224 / 215

References ix

[Ign20] Alexey Ignatiev.
Towards trustable explainable AI.
In IJCAI, pages 5154–5158, 2020.

[IHI+22] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
On computing probabilistic abductive explanations.
CoRR, abs/2212.05990, 2022.

[IHI+23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
On computing probabilistic abductive explanations.
Int. J. Approx. Reason., 159:108939, 2023.

[IHM+24a] Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva.
Distance-restricted explanations: Theoretical underpinnings & efficient implementation.
CoRR, abs/2405.08297, 2024.

[IHM+24b] Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva.
Distance-restricted explanations: Theoretical underpinnings & efficient implementation.
In KR, 2024.

[IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/2010.11034, 2020.

© J. Marques-Silva 225 / 215

References x

[IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva.
On tackling explanation redundancy in decision trees.
J. Artif. Intell. Res., 75:261–321, 2022.

[IIN+22] Yacine Izza, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
Provably precise, succinct and efficient explanations for decision trees.
CoRR, abs/2205.09569, 2022.

[IISM24] Yacine Izza, Alexey Ignatiev, Peter J. Stuckey, and João Marques-Silva.
Delivering inflated explanations.
In AAAI, pages 12744–12753, 2024.

[IISMS22] Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and Joao Marques-Silva.
Using MaxSAT for efficient explanations of tree ensembles.
In AAAI, February 2022.

[IM21] Alexey Ignatiev and Joao Marques-Silva.
SAT-based rigorous explanations for decision lists.
In SAT, pages 251–269, July 2021.

[IMM18] Alexey Ignatiev, António Morgado, and João Marques-Silva.
PySAT: A python toolkit for prototyping with SAT oracles.
In SAT, pages 428–437, 2018.

© J. Marques-Silva 226 / 215

References xi

[IMM24] Yacine Izza, Kuldeep Meel, and João Marques-Silva.
Locally-minimal probabilistic explanations.
In ECAI, 2024.

[IMS21] Yacine Izza and Joao Marques-Silva.
On explaining random forests with SAT.
In IJCAI, pages 2584–2591, July 2021.

[INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva.
From contrastive to abductive explanations and back again.
In AIxIA, pages 335–355, 2020.

[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511–1519, 2019.

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurIPS, pages 15857–15867, 2019.

[INM19c] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.

© J. Marques-Silva 227 / 215

References xii

[JKMC16] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke.
Solving QBF with counterexample guided refinement.
Artif. Intell., 234:1–25, 2016.

[Joh78] Ronald John Johnston.
On the measurement of power: Some reactions to Laver.
Environment and Planning A, 10(8):907–914, 1978.

[KBD+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV, pages 97–117, 2017.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett.
The marabou framework for verification and analysis of deep neural networks.
In CAV, pages 443–452, 2019.

[KMND20] John D Kelleher, Brian Mac Namee, and Aoife D’arcy.
Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case
studies.
MIT Press, 2020.

© J. Marques-Silva 228 / 215

References xiii

[Kot13] Sotiris B. Kotsiantis.
Decision trees: a recent overview.
Artif. Intell. Rev., 39(4):261–283, 2013.

[LC01] Stan Lipovetsky and Michael Conklin.
Analysis of regression in game theory approach.
Applied Stochastic Models in Business and Industry, 17(4):319–330, 2001.

[LEC+20] Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
From local explanations to global understanding with explainable AI for trees.
Nat. Mach. Intell., 2(1):56–67, 2020.

[LHAMS24] Olivier Létoffé, Xuanxiang Huang, Nicholas Asher, and Joao Marques-Silva.
From SHAP scores to feature importance scores.
CoRR, abs/2405.11766, 2024.

[LHMS24] Olivier Létoffé, Xuanxiang Huang, and Joao Marques-Silva.
On correcting SHAP scores.
CoRR, abs/2405.00076, 2024.

© J. Marques-Silva 229 / 215

References xiv

[Lip18] Zachary C. Lipton.
The mythos of model interpretability.
Commun. ACM, 61(10):36–43, 2018.

[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765–4774, 2017.

[LPMM16] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva.
Fast, flexible MUS enumeration.
Constraints, 21(2):223–250, 2016.

[LS08] Mark H. Liffiton and Karem A. Sakallah.
Algorithms for computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning, 40(1):1–33, 2008.

[Mar22] João Marques-Silva.
Logic-based explainability in machine learning.
In Reasoning Web, pages 24–104, 2022.

[Mar24] Joao Marques-Silva.
Logic-based explainability: Past, present & future.
CoRR, abs/2406.11873, 2024.

© J. Marques-Silva 230 / 215

References xv

[MGC+20] Joao Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explaining naive bayes and other linear classifiers with polynomial time and delay.
In NeurIPS, 2020.

[MGC+21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers.
In ICML, pages 7469–7479, July 2021.

[MH23] Joao Marques-Silva and Xuanxiang Huang.
Explainability is NOT a game.
CoRR, abs/2307.07514, 2023.

[MHL+13] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and Joao Marques-Silva.
Iterative and core-guided MaxSA solving: A survey and assessment.
Constraints, 18(4):478–534, 2013.

[MI22] João Marques-Silva and Alexey Ignatiev.
Delivering trustworthy AI through formal XAI.
In AAAI, pages 12342–12350, 2022.

[Mil56] George A Miller.
The magical number seven, plus or minus two: Some limits on our capacity for processing information.
Psychological review, 63(2):81–97, 1956.

© J. Marques-Silva 231 / 215

References xvi

[Mil19] Tim Miller.
Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell., 267:1–38, 2019.

[MM20] João Marques-Silva and Carlos Mencía.
Reasoning about inconsistent formulas.
In IJCAI, pages 4899–4906, 2020.

[Mol20] Christoph Molnar.
Interpretable machine learning.
Lulu.com, 2020.
https://christophm.github.io/interpretable-ml-book/.

[Mor82] Bernard M. E. Moret.
Decision trees and diagrams.
ACM Comput. Surv., 14(4):593–623, 1982.

[MS23] Joao Marques-Silva.
Disproving XAI myths with formal methods – initial results.
In ICECCS, 2023.

© J. Marques-Silva 232 / 215

https://christophm.github.io/interpretable-ml-book/

References xvii

[MSH24] Joao Marques-Silva and Xuanxiang Huang.
Explainability is Not a game.
Commun. ACM, 67(7):66–75, jul 2024.

[MSI23] Joao Marques-Silva and Alexey Ignatiev.
No silver bullet: interpretable ml models must be explained.
Frontiers in Artificial Intelligence, 6, 2023.

[NH10] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807–814, 2010.

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267–278, 2019.

[Pen46] Lionel S Penrose.
The elementary statistics of majority voting.
Journal of the Royal Statistical Society, 109(1):53–57, 1946.

[PG86] David A. Plaisted and Steven Greenbaum.
A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293–304, 1986.

© J. Marques-Silva 233 / 215

References xviii

[PM17] David Poole and Alan K. Mackworth.
Artificial Intelligence - Foundations of Computational Agents.
CUP, 2017.

[Qui93] J Ross Quinlan.
C4.5: programs for machine learning.
Morgan-Kaufmann, 1993.

[RCC+22] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges.
Statistics Surveys, 16:1–85, 2022.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[RM08] Lior Rokach and Oded Z Maimon.
Data mining with decision trees: theory and applications.
World scientific, 2008.

[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

© J. Marques-Silva 234 / 215

References xix

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527–1535. AAAI Press, 2018.

[Rud19] Cynthia Rudin.
Stop explaining black box machine learning models for high stakes decisions and use interpretable
models instead.
Nature Machine Intelligence, 1(5):206–215, 2019.

[Rud22] Cynthia Rudin.
Why black box machine learning should be avoided for high-stakes decisions, in brief.
Nature Reviews Methods Primers, 2(1):1–2, 2022.

[SB14] Shai Shalev-Shwartz and Shai Ben-David.
Understanding Machine Learning - From Theory to Algorithms.
Cambridge University Press, 2014.

© J. Marques-Silva 235 / 215

References xx

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

[Sha53] Lloyd S. Shapley.
A value for n-person games.
Contributions to the Theory of Games, 2(28):307–317, 1953.

[SK10] Erik Strumbelj and Igor Kononenko.
An efficient explanation of individual classifications using game theory.
J. Mach. Learn. Res., 11:1–18, 2010.

[SK14] Erik Strumbelj and Igor Kononenko.
Explaining prediction models and individual predictions with feature contributions.
Knowl. Inf. Syst., 41(3):647–665, 2014.

[SS54] Lloyd S Shapley and Martin Shubik.
A method for evaluating the distribution of power in a committee system.
American political science review, 48(3):787–792, 1954.

© J. Marques-Silva 236 / 215

References xxi

[Tse68] G.S. Tseitin.
On the complexity of derivations in the propositional calculus.
In H.A.O. Slesenko, editor, Structures in Constructives Mathematics and Mathematical Logic, Part II, pages
115–125, 1968.

[VLE+16] Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision
medicine.
Scientific reports, 6(1):1–8, 2016.

[VLSS21] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu.
On the tractability of SHAP explanations.
In AAAI, pages 6505–6513, 2021.

[VLSS22] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu.
On the tractability of SHAP explanations.
J. Artif. Intell. Res., 74:851–886, 2022.

[WFHP17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.
Data Mining.
Morgan Kaufmann, 2017.

© J. Marques-Silva 237 / 215

References xxii

[WMHK21] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok.
The computational complexity of understanding binary classifier decisions.
J. Artif. Intell. Res., 70:351–387, 2021.

[WWB23] Min Wu, Haoze Wu, and Clark W. Barrett.
VeriX: Towards verified explainability of deep neural networks.
In NeurIPS, 2023.

[YIS+23] Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, Nina Narodytska, and Joao Marques-Silva.
Eliminating the impossible, whatever remains must be true: On extracting and applying background
knowledge in the context of formal explanations.
In AAAI, 2023.

[Zho12] Zhi-Hua Zhou.
Ensemble methods: foundations and algorithms.
CRC press, 2012.

[Zho21] Zhi-Hua Zhou.
Machine Learning.
Springer, 2021.

© J. Marques-Silva 238 / 215

	Foundations
	ML Models: Classification & Regression Problems
	Basics of (non-symbolic) XAI
	Motivation for Explanations
	Brief Glimpse of Logic
	Reasoning About ML Models
	Understanding Intrinsic Interpretability

	Principles of Symbolic XAI – Feature Selection
	Definitions of Explanations
	Duality Properties
	Computational Problems

	Tractability in Symbolic XAI
	Explanations for Decision Trees
	XAI Queries for DTs
	Myth #01: Intrinsic Interpretability
	Detour: From Decision Trees to Explained Decision Sets
	Explanations for Decision Graphs
	Explanations for Monotonic Classifiers
	Review examples

	(Efficient) Intractability in Symbolic XAI
	Explaining Decision Lists
	Myth #02: Model-Agnostic Explainability
	Progress Report on Symbolic XAI
	Progress in Formal Explainability

	Queries in Symbolic XAI
	Enumeration of Explanations
	Enumeration of Explanations

	Feature Necessity & Relevancy
	Feature Necessity & Relevancy

	Advanced Topics
	Changing Assumptions
	Inflated Explanations
	Probabilistic Explanations
	Constrained Explanations
	Distance-Restricted Explanations
	Additional Topics

	Principles of Symbolic XAI – Feature Attribution
	Exact Shapley Values for XAI
	Myth #03 – Shapley Values for Explainability

	Myth #03: Shapley Values for XAI
	Corrected SHAP Scores
	Voting Power & Power Indices
	Feature Importance Scores

	Conclusions & Research Directions
	Some Words of Concern
	Conclusions & Research Directions

