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My team’s recent & not so recent work...
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New area of research, since circa 2018...

© J. Marques-Silva 2 / 215



New area of research, since circa 2018...

Enhancing ML by
exploiting AR & FM !
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Lecture 01
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Recent & ongoing ML successes
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Can we trust ML models?

• Accuracy in training/test data

• Complex ML models are brittle
• Extensive work on finding adversarial examples
• Extensive work on learning robust ML models

• More recently, complex ML models hallucinate

• One must be able to validate operation of ML model, with rigor
• Explanations; robustness; verification

© J. Marques-Silva 5 / 215



ML models are brittle — adversarial examples
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ML models are brittle — adversarial examples

http://g
radien

tscienc
e.org/i
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rial/
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Adversarial examples can be very problematic

Finlayson et al., Nature 2019
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eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning
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Importance of XAI

©DARPA
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Importance of XAI

©DARPA
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XAI & EU guidelines (AI HLEG)
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XAI & the principle of explicability

& thousands of recent papers!
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XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS
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• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
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• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

Main motivation
for our work !
(since 2019)
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Can we trust (non-symbolic) XAI? – some questions

• Many proposed solutions for XAI
• Most, and the better-known, are heuristic
• I.e. no guarantees of rigor

• Many proposed uses of XAI
• Regular complaints about issues with existing (heuristic) methods of XAI

• Q: Can heuristic XAI be trusted in high-risk and/or safety-critical domains?
• Q: Can we validate results of heuristic XAI?
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What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF

GDFs

DTs
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NNs

BNs

Practical scalability (effectiveness)
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What have we been up to? 1. Created the field of symbolic (formal) XAI – II

[MI22, Mar22, MS23, Mar24]

2019 2020 2021 2022 2023

XP definitions

AXp, CXp, duality

Tractability

DTs, NBCs, etc.

Efficient solutions

RFs, DLs, BTs, etc.

Queries

Member., Enum., etc.

Input distrib.

Inp. constr.

Prob. XPs

DTs, NBCs, etc.

New topics

Distil., etc.
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – I

[RSG16, LL17, RSG18, Rud19]
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – II

[MSH24, HMS24, HM23c]
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Unit #01

Foundations



Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)
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Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T
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Example ML models – classification – decision trees (DTs)

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Literals in DTs can use = or P
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Example ML models – regression – regression trees (RTs)

x1

x3

x2

9/2 9/4

0

1/2

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

• Literals in RTs can use = or P
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Example ML models – classification – rules

• Ordered rules – decision lists (DLs):

IF x1 ^ x2 THEN predict Y
ELSE IF ␣x2 _ x3 THEN predict N
ELSE THEN predict Y
F = t1, 2, 3u;D1 = D2 = D3 = t0, 1u;K = tY,Nu

• Unordered rules – decision sets (DSs):

IF x1 + x2 ě 0 THEN predict ‘

IF x1 + x2 ă 0 THEN predict a

F = t1, 2u;D1 = D2 = R;K = t‘ , au

• Issues of DSs: overlap; incomplete coverage
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Example ML models – classification – random forests (RFs)

x1

x2

0 2

1

P t0, 1u

P t0, 2u P t1u

P t2u
1

2

4 5

3

x1

x2

1 2

x3

1 0

P t0u

P t0, 1u P t2u

P t1, 2u

P t0u P t1, 2u

1

2

4 5

3

6 7

x1

0 x3

2 1

P t1, 2u P t0u

P t0, 1u P t2u

1

2
3

4 5

• For each input, each DT picks a class
• Result uses majority or weighted voting of the DTs
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Example ML models – classification – neural networks (NNs)

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Basics of (non-symbolic) XAI – more detail later

• Feature attribution:
• LIME [RSG16]

• SHAP [LL17]

• ...

• Feature selection:
• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...
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Some examples

• Anchors: [RSG18]

• SHAP: [LL17, LEC+20]
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Outline – Unit #01

ML Models: Classification & Regression Problems
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What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”

• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules
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A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N

• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y
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A decision tree example

x1
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• Explanation for why κ(0, 0, 0, 0) = 1?

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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A random forest example [IMS21]
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• Explanation for why κ(1, 0, 0, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y
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• Explanation for why κ(1, 1, 1, 1) = Y?
• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y
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A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?

• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1
• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y
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An arbitrary classifier

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 0, 0, 0), 1)

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x3 = 0u suffices for DT to predict 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/
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• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

Basic knowledge on
SAT & SMT assumed.
See links below.
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SAT/SMT/MILP/CP solvers used as oracles – more detail later

• Deciding satisfiability, entailment

• Computing prime implicants/implicates

• Computing MUSes, MCSes
• Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. [MM20]

• Enumeration of MUSes, MCSes
• Algorithms: Marco, Camus, etc. [LS08, LPMM16]

• Solving MaxSAT, MaxSMT
• Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. [MHL+13]

• Solving quantification problems, e.g. QBF
• Algorithms: Abstraction refinement [JKMC16]
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Basic definitions in propositional logic

• Atoms (tx, x1, . . .u) & literals (x1,␣x1)

• Well-formed formulas using ␣, ^,_, . . .

• Clause: disjunction of literals

• Term: conjunction of literals

• Conjunctive normal form (CNF): conjunction of clauses

• Disjunctive normal form (DNF): disjunction of terms

• Simple to generalize to more expressive domains

• CO(ψ(x)) decides whether ψ(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.
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Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ ( φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ ( φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1( φ and ␣x2( φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ and x1 ^ x3( φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold
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Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]
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Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !
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Example – encoding a simple NN in MILP

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 o1
0 0 -0.5 0 0
1 0 0.5 0.5 1
0 1 0.5 0.5 1
1 1 1.5 1.5 1

MILP encoding:
x1 + x2 ´ 0.5 = y1 ´ s1
z1 = 1Ñ y1 ď 0

z1 = 0Ñ s1 ď 0

o1 = (y1 ą 0)

x1, x2, z1, o1 P t0, 1u
y1, s1 ě 0

Instance: (x, c) = ((1, 0), 1)

1 + 0´ 0.5 = 0.5´ 0

1_ 0.5 ď 0

0_ 0 ď 0

1 = (0.5 ą 0)

x1 = 1, x2 = 0, z1 = 0, o1 = 1

y1 = 0.5, s1 = 0

Checking: x = (0, 0)

0 + 0´ 0.5 = 0´ 0.5

0_ 0 ď 0

1_ 0.5 ď 0

0 = (0 ą 0)

x1 = 0, x2 = 0, z1 = 1, o1 = 0

y1 = 0, s1 = 0.5
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable

• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible
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Are interpretable models really interpretable? – DTs
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= 0 = 1
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14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...
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Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?
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• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?
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Questions?
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Lecture 02
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Recapitulate first lecture

• ML models: classification & regression

• Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

• Logic-based reasoning of ML models

• Apparent difficulties with explaining interpretable models
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Unit #02

Principles of Symbolic XAI – Feature Selection



Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems



What is an explanation?

• Notation:
Original DT [PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

Rewritten DT

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

Mapping

x1 = 1 iff Length = Long
x2 = 1 iff Thread = New
x3 = 1 iff Author = Known
κ(¨) = 1 iff κ1(¨ ¨ ¨ ) = Reads
κ(¨) = 0 iff κ1(¨ ¨ ¨ ) = Skips

• What is an explanation?

• Answer to question “Why (the prediction)?” is a rule: IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !

• E.g.: explanation for v = (␣x1,␣x2, x3)?

• It is the case that, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

• One possible explanation is t␣x1,␣x2, x3u or simply t1, 2, 3u
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The similarity predicate

[Mar24]

• Recall ML models for classification & regression:
• Classification: MC = (F ,F,K, κ)

• Regression: MR = (F ,F,V, ρ)

• General: M = (F ,F,T, τ)

• Similarity predicate: σ : F Ñ tJ,Ku

• Classification: σ(x) := [κ(x) = κ(v)]
• Obs: For boolean classifiers, no need for σ

• Regression: σ(x) := [|ρ(x)´ ρ(v)| ď δ] , where δ is user-specified

• Bottom line:
Reason about symbolic explainability by abstracting away type of ML model
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Abductive explanations – answering Why? questions

• Instance (v,q), i.e. c = τ(v)

• Abductive explanation (AXp, PI-explanation): [SCD18, INM19a]

• Subset-minimal set of features X Ď F sufficient for ensuring prediction

WAXp(X ) :=

@(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

• Defining AXp (from weak AXps, WAXps):

• But, WAXp is monotone; hence,

• Finding one AXp (example algorithm; many more exist): [MM20]

• Let X = F , i.e. fix all features
• Invariant: WAXp(X ) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WAXp(X ztiu) holds, then remove i from X , i.e. i becomes free
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A simple example – AXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1. AXp?
• Define X = t1, 2, 3, 4u = F
• Can feature 1 be removed, i.e. @(x P t0, 1u4).␣x2 ^␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. @(x P t0, 1u4).␣x3 ^ x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. @(x P t0, 1u4).x4Ñκ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. @(x P t0, 1u4).JÑκ(x1, x2, x3, x4)?

No

• AXp X = t4u

• In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

• Obs: for some classes of classifiers, poly-time algorithms exist
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Recap weak AXp: @(x P F).
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jPX (xj = vj)Ñ(σ(x))
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More notation

• Notation xS = vS :
[xS = vS ] ”

ľ

iPS
(xi = vi)

• Definition of Υ(S):
Υ(S) := tx P F | xS = vSu

• Expected value, non-real-valued features:

E[τ(x) | xS = vS ] := 1/|Υ(S; v)|

ÿ

xPΥ(S;v)
τ(x)

• Expected value, real-valued features:

E[τ(x) | xS = vS ] := 1/|Υ(S; v)|

ż

Υ(S;v)
τ(x)dx
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Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features: [WMHK21, IHI+22, ABOS22, IHI+23]

WAXp(S) := Pr(σ(x) | xS = vS) = 1

• Using expected values:

WAXp(S) := E[σ(x) | xS = vS ] = 1

• Definition of AXp remains unchanged
• This is true when comparing against 1
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Constrastive explanations – answering Why not? questions

• Instance (v, c), i.e. c = κ(v)

• Contrastive explanation (CXp): [Mil19, INAM20]

• Subset-minimal set of features Y Ď F sufficient for changing prediction

WCXp(Y) :=

D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Defining CXp:

• But, WCXp is also monotone; hence,

• Finding one CXp: [MM20]

• Let Y = F , i.e. free all features
• Invariant: WCXp(Y) must hold. Why?
• Analyze features in any order, one feature i at a time

• If WCXp(Yztiu) holds, then remove i from Y , i.e. i is becomes fixed
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A simple example – CXp’s

• Classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• Point v = (0, 0, 0, 1) with prediction κ(v) = 1

• Define Y = t1, 2, 3, 4u = F

• Can feature 1 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 2 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 3 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^␣κ(x1, x2, x3, x4)?

Yes

• Can feature 4 be removed, i.e. D(x P t0, 1u4).␣x1 ^␣x2 ^␣x3 ^ x4 ^␣κ(x1, x2, x3, x4)?

No

• CXp Y = t4u

• Obs: AXp is MHS of CXp and vice-versa...
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ł4

i=1
xi
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Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

WCXp(S) := Pr(σ(x) | xS = vS) ă 1

• Using expected values:

WCXp(S) := E[σ(x) | xS = vS ] ă 1

• Definition of CXp remains unchanged
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Detour: global explanations

[INM19b]

• AXps and CXps are defined locally (because of v) but hold globally
• Localized explanations
• Can be viewed as attempt at formalizing local explanations [RSG16, LL17, RSG18]

• One can define explanations without picking a given point in feature space
• Let q P T, and refefine the similarity predicate:

• Classification: σ(x) = [κ(x) = q]
• Regression: σ(x) = [|κ(x)´ q| ď δ], δ is user-specified

• Let L = t(xi = vi) | i P F ^ vi P Vu

• Let S Ĺ L be a subset of literals that does not repeat features, i.e. S is not inconsistent
• Then, S is a global AXp if,

@(x P F).
ľ

(xi=vi)PS
(xi = vi)Ñ(σ(x))

• Counterexamples are minimal hitting sets of global AXps and vice-versa [INM19b]
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Definitions of Explanations

Duality Properties

Computational Problems



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):

• AXps:
• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps:

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu

• CXps:
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps:

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu

• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps

• BTW,
• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps

• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Duality in explainability – basic results

[INAM20, Mar22]

• Claim:
S Ď F is an AXp iff it is a minimal hitting set
(MHS) of the set of CXps

• Claim:
S Ď F is a CXp iff it is a minimal hitting set (MHS)
of the set of AXps

• An example, (v, c) = ((0, 0, 1, 0, 1), 1):
• AXps: tt3, 5uu
• CXps: tt3u, t5uu
• Each AXp is an MHS of the set of CXps
• Each CXp is an MHS of the set of AXps
• BTW,

• t2, 5u is not a CXp
• t1, 2, 3, 4, 5u, t1, 2, 3, 5u and t1, 3, 5u are not AXps
• Why?

x1

x2

x3

0 x4

x5

0 1

1

x4

x5

0 1

1

1

= 0

= 0

= 0 = 1

= 0

= 0 = 1

= 1

= 1

= 0

= 0 = 1

= 1

= 1

1

2

4

6
7

10

14 15

11

5

8

12 13

9

3

© J. Marques-Silva 59 / 215



Outline – Unit #02

Definitions of Explanations

Duality Properties

Computational Problems



Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215



Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215



Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215



Computational problems in (formal) explainability

• Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

© J. Marques-Silva 60 / 215



Computing one AXp/CXp

• Encode classifier into suitable logic representation T & pick suitable reasoner

• For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
• Monotone predicates for WAXp & WCXp:

Paxp(S) fi ␣CO (J(ŹiPS(xi = vi))^ (␣σ(x))K) Pcxp(S) fi CO
(r(

Ź

iPFzS(xi = vi)
)
^ (␣σ(x))

z)

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds

Exploiting MSMP, i.e.
basic algorithm used
for different problems.
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Detour: More Connections with Automated Reasoning
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Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π( φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ

• Also, x1* φ and x2* φ

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ( η

2. For any η1 Ĺ η, φ* η1
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Reasoning about inconsistency [MM20]

• Formula T = B Y S , with
• B: background knowledge (base), i.e. hard constraints
• S : additional (inconsistent) knowledge, i.e. soft constraints
• And, T ( K
• E.g. B = t(x1 _ x2), (x1 _␣x3)u, S = t(␣x1), (␣x2), (x3)u

• Minimal unsatisfiable subset (MUS):
• Subset-minimal set U Ď S , s.t. B Y U ( K
• E.g. U = t(␣x1), (␣x2)u

• Minimal correction subset (MCS):
• Subset-minimal set C Ď S , s.t. B Y (SzC)* K
• E.g. C = t(␣x1)u

• Duality:
• MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa [Rei87]

• Variants:
• Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
• Smallest(-cost) MUS
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Computing AXps (resp. CXps) as MUSes (resp. MCSes)

• Recap:

WAXp(X ) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

• Let,

• Hard constraints, B:
B := ^iPF (siÑ(xi = vi))^ EncodeT (␣σ(x))

• Soft constraints: S = tsi | i P Fu

• Claim: Each MUS of (B,S) is an AXp & each MCS of (B,S) is a CXp

• Can use MUS/MCS algorithms for AXps/CXps
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Unit #03

Tractability in Symbolic XAI



Outline – Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples



DT explanations

[IIM20]

middle-middle=x

top-left=x

bottom-right=x

0 bottom-left=x

top-right=x

0 1

1

bottom-left=x

top-right=x

0 1

1

1

0 1

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction 1, it suffices to ensure all
paths with prediction 0 remain
inconsistent

• I.e. find a subset-minimal hitting set of
all 0 paths; these are the features to
keep

• E.g. BR and TR suffice for prediction

• Well-known to be solvable in
polynomial time [EG95]
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DT explanations in polynomial time
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Answering queries in DTs

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Practically efficient enumeration of AXps – later
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Finding all CXps in polynomial-time

• Basic algorithm:
• L =H

• For each leaf node not predicting q:

• I : features with literals inconsistent with v
• Add I to L

• Remove from L non-minimal sets
• L contains all the CXps of the DT

• Example: instance is ((1, 1, 1, 1), 1)

• Add t1, 2u to L
• Add t1, 3u to L
• Add t1, 4u to L
• Add t3u to L
• Add t4u to L
• Remove from L: t1, 3u and t1, 4u
• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes
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• CXps: tt1, 2u, t3u, t4uu
• AXps: tt1, 3, 4u, t2, 3, 4uu, by computing all MHSes
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Are interpretable models really interpretable? – DTs
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• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 one AXp is t3, 5u
Compare with t1, 2, 3, 4, 5u...
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Are interpretable models really interpretable? – large DTs

[GZM20]

Path with 19 internal nodes.
By manual inspection, at least
10 literals are redundant!
(And at least 9 features dropped)

And the cognitive limits of human
decision makers are well-known [Mil56]

Redundancy can be arbitrary large
on path length [IIM20, HIIM21, IIM22]
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Are interpretable models really interpretable? – arbitrary redundancy [IIM20, HIIM21, IIM22]

• Classifier, with x1, . . . , xm P t0, 1u:
κ(x1, x2, . . . , xm´1, xm) =

łm

i=1
xi

• Build DT, by picking variables in order xi1, i2, . . . , imy, permutation of x1, 2, . . . ,my:

xi1

1

xi2

1

xim´1

1

xim

0

1

P t1u P t1u P t1u P t0u

P t0u P t0u P t0u P t1u

• Point: (xi1 , xi2 , . . . , xim´1
, xim) = (0, 0, . . . , 0, 1), and prediction 1

• Explanation using path in DT: ti1, i2, . . . , imu, i.e.
(xi1 = 0)^ (xi2 = 0)^ . . .^ (xim´1

= 0)^ (xim = 1)Ñκ(x1, . . . , xm)

• But timu suffices for prediction, i.e. @(x P t0, 1um).(xim)Ñκ(x)

• AXp’s can be arbitrarily smaller than paths in (optimal) DTs! [IIM20, IIM22]
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Explanation redundancy in DTs is ubiquitous – published DT examples [IIM22]

DT Ref D #N #P %R %C %m %M %avg
[Alp14, Ch. 09, Fig. 9.1] 2 5 3 33 25 50 50 50

[Alp16, Ch. 03, Fig. 3.2] 2 5 3 33 25 50 50 50

[Bra20, Ch. 01, Fig. 1.3] 4 9 5 60 25 25 50 36

[BA97, Figure 1] 3 12 7 14 8 33 33 33

[BBHK10, Ch. 08, Fig. 8.2] 3 7 4 25 12 50 50 50

[BFOS84, Ch. 01, Fig. 1.1] 3 7 4 50 25 33 33 33

[DL01, Ch. 01, Fig. 1.2a] 2 5 3 33 25 33 33 33

[DL01, Ch. 01, Fig. 1.2b] 2 5 3 33 25 33 33 33

[KMND20, Ch. 04, Fig. 4.14] 3 7 4 25 12 50 50 50

[KMND20, Sec. 4.7, Ex. 4] 2 5 3 33 25 50 50 50

[Qui93, Ch. 01, Fig. 1.3] 3 12 7 28 17 33 50 41

[RM08, Ch. 01, Fig. 1.5] 3 9 5 20 12 33 33 33

[RM08, Ch. 01, Fig. 1.4] 3 7 4 50 25 33 33 33

[WFHP17, Ch. 01, Fig. 1.2] 3 7 4 25 12 50 50 50

[VLE+16, Figure 4] 6 39 20 65 63 20 40 33

[Fla12, Ch. 02, Fig. 2.1(right)] 2 5 3 33 25 50 50 50

[Kot13, Figure 1] 3 10 6 33 11 33 33 33

[Mor82, Figure 1] 3 9 5 80 75 33 50 41

[PM17, Ch. 07, Fig. 7.4] 3 7 4 50 25 33 33 33

[RN10, Ch. 18, Fig. 18.6] 4 12 8 25 6 25 33 29

[SB14, Ch. 18, Page 212] 2 5 3 33 25 50 50 50

[Zho12, Ch. 01, Fig. 1.3] 2 5 3 33 25 33 33 33

[BHO09, Figure 1b] 4 13 7 71 50 33 50 36

[Zho21, Ch. 04, Fig. 4.3] 4 14 9 11 2 25 25 25
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Many DTs have paths that are not minimal XPs – Russell&Norvig’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• Explanation for (P,H, T,W) = (Full, Yes, Thai,No)?
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Many DTs have paths that are not minimal XPs – Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• Explanation for (x, y) = (1.25,´1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !
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Many DTs have paths that are not minimal XPs – Alpaydin’s book

[Alp14]x1 ą w10?

x2 ą w20?

l l

l

Y

N Y

N

• Explanation for (x1, x2) = (α, β), with α ą w10 and β ď w20?

Obs: True explanations can be computed for categorical, integer or real-valued features !
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Many DTs have paths that are not minimal XPs – S.-S.&B.-D.’s book

[SB14]

Color

Not Tasty Softness

Not Tasty Tasty

Other Pale Grade

Other Gives2Pressume

• Explanation for (color, softness) = (Pale Grade,Other)?
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Many DTs have paths that are not minimal XPs – Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• Explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• Explanation for (L, T,A) = (Short, Follow-Up, Known)?
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Explanation redundancy in DTs is ubiquitous – DTs from datasets [IIM20, HIIM21, IIM22]

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult ( 12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22

anneal ( 38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16

backache ( 32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54

bank ( 19 36293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27

biodegradation ( 41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21

cancer ( 9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37

car ( 6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30

colic ( 22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25

compas ( 11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27

contraceptive ( 9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21

dermatology ( 34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17

divorce ( 54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50

german ( 21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22

heart-c ( 13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34

heart-h ( 13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32

kr-vs-kp ( 36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35

lending ( 9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25

letter ( 16 18668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9

lymphography ( 18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16

mortality (118 13442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19

mushroom ( 22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25

pendigits ( 16 10992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11

promoters ( 58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33

recidivism ( 15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16

seismic_bumps ( 18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42

shuttle ( 9 58000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30

soybean ( 35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10

spambase ( 57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25

spect ( 22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65

splice ( 2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —
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Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]
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• What is the abductive explanation?
• Recall: one AXp is t3, 4, 6u

• Why?
• We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:
• Would average human decision maker be able to understand the AXp?
• Would he/she be able to compute one AXp, by manual inspection?
(BTW, we have proved that computing one AXp for DLs is computationally hard...) [IM21, MSI23]

© J. Marques-Silva 75 / 215



Are interpretable models really interpretable? – DTs/DLs in practice [MSI23]
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From DTs to explained DSs

[HM23a]

• Decision sets raise a number of issues:
• Overlap: Two rules with different predictions can fire on the same input
• Incomplete coverage: For some inputs, no rule may fire

• A default rule defeats the purpose of unordered rules

• A DS without overlap and complete coverage computes a classification function

• And explaining DSs is computationally hard...

• One can extract explained DSs from DTs

• Extract one AXp (viewed as a logic rule) from each path in DT
• Resulting rules are non-overlapping, and cover feature space
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R01: IF [P] THEN κ(¨) = Y
R02: IF [A^ P]THEN κ(¨) = N
R03: IF [P^ N^ V^ Z = 1] THEN κ(¨) = N
R04: IF [P^ N^ V^ Z = 2^ S^ G] THEN κ(¨) = N
R05: IF [A^ Z = 2^ S^ G] THEN κ(¨) = Y
R06: IF [P^ N^ V^ Z = 2^ S^ H] THEN κ(¨) = N
R07: IF [A^ Z = 2^ S^ H^ C] THEN κ(¨) = Y
R08: IF [A^ Z = 2^ H^ G] THEN κ(¨) = Y
R09: IF [P^ N^ V^ Z = 2^ C^ G] THEN κ(¨) = N
R10: IF [A^ Z = 0] THEN κ(¨) = Y
R11: IF [A^ V] THEN κ(¨) = Y
R12: IF [A^ N] THEN κ(¨) = Y
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Explanation graphs – overview of results

[HIIM21]

• Concept of explanation graph (XpG)

• Explanations of decision trees reducible to XpG’s

• Explanations of decision graphs reducible to XpG’s

• Explanations of OBDDs reducible to XpG’s

• Explanations of OMDDs reducible to XpG’s

• Explanations (AXp’s and CXp’s) of XpG’s computed in polynomial time
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Example of XpG – DTs

• DT; point: (O, L, Y,P); prediction T:
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Example of XpG – OMDDs

• OMBBD; point: (0, 1, 2); prediction R:
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Finding one AXp for XpGs – polynomial time

• Algorithm (with no inconsistent paths):
S Ð F
For each feature i in F

Drop feature i from S , i.e. i is free
If path to some 0 not blocked by
0-valued literals, then

Add feature i back to S

Return S

• Example:

• S = t1, 2, 3u

• Feature 1 cannot be dropped, e.g.
s3Ñ s2Ñ s1Ñ 0

• Both features 2 and 3 dropped from S
• Return S = t1u

• XpG:
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s1 s1
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Example monotonic classifier – (v, c) = ((10, 10, 5, 0),A)

[MGC+21]

Variable Meaning Range

κ(¨) fi M Student grade P tA,B, C,D, E, Fu

S Final score P t0, . . . , 10u

Feat. id Feat. var. Feat. name Domain

1 Q Quiz t0, . . . , 10u

2 X Exam t0, . . . , 10u

3 H Homework t0, . . . , 10u

4 R Project t0, . . . , 10u

M = ITE(S ě 9,A, ITE(S ě 7,B, ITE(S ě 5, C, ITE(S ě 4,D, ite(S ě 2, E, F)))))
S = max [0.3ˆ Q+ 0.6ˆ X+ 0.1ˆ H,R]
Also, F ď E ď D ď C ď B ď A
And, κ(x1) ď κ(x2) if x1 ď x2
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Explaining monotonic classifiers

• Instance (v, c)
• Domain for i P F : λ(i) ď xi ď µ(i)
• Idea: refine lower and upper bounds on the prediction

• vL and vU
• Utilities:

• FixAttr(i):
vL Ð (vL1 , . . . , vi, . . . , vLN)
vU Ð (vU1 , . . . , vi, . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)

• FreeAttr(i):
vL Ð (vL1 , . . . , λ(i), . . . , vLN)
vU Ð (vU1 , . . . , µ(i), . . . , vUN)
(A,B)Ð (Aztiu,B Y tiu)
return (vL, vU,A,B)
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Computing one AXp

1: vL Ð (v1, . . . , vN)
2: vU Ð (v1, . . . , vN) Ź Ensures: κ(vL) = κ(vU)
3: (C,D,P)Ð (F ,H,H) Ź S : Some possible seed
4: for all i P S do
5: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D) Ź Require: κ(vL) = κ(vU), given S
6: for all i P FzS do Ź Loop inv.: κ(vL) = κ(vU)
7: (vL, vU, C,D)Ð FreeAttr(i, v, vL, vU, C,D)

8: if κ(vL) = κ(vU) then Ź If invariant broken, fix it
9: (vL, vU,D,P)Ð FixAttr(i, v, vL, vU,D,P)

10: return P

• Obs: S =H for computing a single AXp/CXp
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Computing one AXp – example

• λ(i) = 0 and µ(i) = 10

• v = (10, 10, 5, 0), with κ(v) = A
• Q: find one AXp (CXp is similar)

Feat. Initial values Changed values Predictions Dec. Resulting values
vL vU vL vU κ(vL) κ(vU) vL vU

1 (10,10,5,0) (10,10,5,0) (0,10,5,0) (10,10,5,0) C A ! (10,10,5,0) (10,10,5,0)

2 (10,10,5,0) (10,10,5,0) (10,0,5,0) (10,10,5,0) E A ! (10,10,5,0) (10,10,5,0)

3 (10,10,5,0) (10,10,5,0) (10,10,0,0) (10,10,10,0) A A % (10,10,0,0) (10,10,10,0)

4 (10,10,0,0) (10,10,10,0) (10,10,0,0) (10,10,10,10) A A % (10,10,0,0) (10,10,10,10)
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Recap computation of (W)AXps/(W)CXps

WAXp(X ) := @(x P F).
ľ

jPX
(xj = vj)Ñ(σ(x))

WCXp(Y) := D(x P F).
ľ

jRY
(xj = vj)^ (␣σ(x))

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Review exercise – one AXp for example DT

• Instance: (v, c) = ((1, 2, 1, 2), Y)

x1

x2

Y x4

Y x3

Y N

N

x3

N Y

N

P t1u

P t1u
P t2u

P t1, 3u P t2u

P t1u P t2u

P t3u

P t2u

P t1u P t2u

P t3u1

2

5
6

10
11

12 13

7

3

8 9

4

• Finding on AXp:

• 1st path inconsistent: H1 = t3u

• 2nd path inconsistent: H2 = t2u

• 3rd path inconsistent: H3 = t1u

• 4th path inconsistent: H4 = t1u

• AXp is MHS of Hj sets: t1, 2, 3u
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Another review exercise – one AXp for example DL

• DL:
R1 : IF (x1 ^ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ^ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ^ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ^ x7) THEN κ(x) = 0

R5 : ELSE IF (␣x4 ^ x6) THEN κ(x) = 1

R6 : ELSE IF (␣x4 ^␣x6) THEN κ(x) = 1

R7 : ELSE IF (␣x2 ^ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

• Instance: v = (0, 1, 0, 1, 0, 1, 0)

• The prediction is 1, due to R3

• AXp:

• Quiz: write down the constraints and confirm AXp with SAT solver
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Questions?
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Lecture 03
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Recapitulate second lecture

• Rigorous definitions of abductive and contrastive explanations

• Example algorithm for finding one AXp/CXp

• Explanations for DTs

• Explanations for XpGs

• Explanations for monotonic classifiers
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Recap AXps/CXps: DT example

• Instance: ((0, 0, 1, 0, 0), 0)

• One AXp: t1, 4, 5u
• All CXps:

• I1: t5u
• I2: t4u
• I3: t2, 5u
• I4: t2, 4u
• I5: t1u
• L = tt1u, t4u, t5uu
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Recap AXps/CXps: DL example

R1: IF (x1 = 1) THEN 0

R2: ELSE IF (x2 = 1) THEN 1

R3: ELSE IF (x4 = 1) THEN 0

RDEF: ELSE THEN 1

• Instance: (v, c) = ((0, 0, 1, 2), 1)

• AXp’s: t1, 4u (prediction unchanged)
• CXp’s:

• t1u, by flipping the value of feature 1
• t4u, by flipping the value of feature 4
• But also, tt1u, t4uu by MHS duality

Entry x1 x2 x3 x4 Rule κ1(x)
00 0 0 0 0 RDEF 1
01 0 0 0 1 R3 0
02 0 0 0 2 RDEF 1
03 0 0 1 0 RDEF 1
04 0 0 1 1 R3 0
05 0 0 1 2 RDEF 1
06 0 1 0 0 R2 1
07 0 1 0 1 R2 1
08 0 1 0 2 R2 1
09 0 1 1 0 R2 1
10 0 1 1 1 R2 1
11 0 1 1 2 R2 1
12 1 0 0 0 R1 0
13 1 0 0 1 R1 0
14 1 0 0 2 R1 0
15 1 0 1 0 R1 0
16 1 0 1 1 R1 0
17 1 0 1 2 R1 0
18 1 1 0 0 R1 0
19 1 1 0 1 R1 0
20 1 1 0 2 R1 0
21 1 1 1 0 R1 0
22 1 1 1 1 R1 0
23 1 1 1 2 R1 0
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Some comments...
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Some necessary comments...

• Std question: Can we apply symbolic XAI to this highly complex ML model XYZ?

• Most likely answer: No!

• Would you...

• ride in a car that fails to break 10% of the time, or that fails to turn 20% of the time?
• fly with a airliner whose planes crash in about 1% of its flights?
• undergo an optional surgery that might be life-threatening in about 5% of the cases?

• For high-risk and safety-critical domains:
• Would you use an ML model that you cannot explain with rigor, and whose heuristic
explanations are likely to be wrong, and so debugging/understanding with rigor is all but
impossible?

• What is the bottom line?
• For high-risk and safety-critical domains, one ought to deploy models that can be explained
with rigor

• If that means using a fairly unexciting NN with up to 100K neurons, that is the cost of trust; for
anything else, one is trying his/her luck, in situations that could become catastrophic!

• More examples next...
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Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273
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Priceless optimal sparse decision trees (OSDT) – & non-optimality!... [HRS19]

Source: Xiyang Hu, Cynthia Rudin, Margo I. Seltzer:
Optimal Sparse Decision Trees.
NeurIPS 2019: 7265-7273

An optimal tool that
produces non-optimal DTs...!?
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BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.
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BTW, highly problematic decision trees also in precision medicine...

Source: G. Valdes, J.M. Luna, E. Eaton, C.B. Simone, L.H. Ungar, & T.D. Solberg.
MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.
Scientific reports, 6(1):1-8, 2016.

And massive
path redundancy!
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And more comments...

• Previous slides: two examples of obviously buggy DTs

• However, it is relatively simple to implement tree learners

• Can one really trust the operation of more complex ML models, even those subject to
extensive testing?

• And how to debug complex ML models if heuristic explanations are also incorrect (more
later)?

• For trustworthy AI, there exists no alternative to rigorous logic-based explanations!
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Unit #04

(Efficient) Intractability in Symbolic XAI



Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c
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• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Prediction change with rule up to Rj (with dj = c), if τj* K and τk( K, for 1 ď k ă j, with
ek = 1: [

fj Ø
(
tj ^

ľ

1ďkăj,ek=1
␣tk

)]
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R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• Clauses for encoding ϕ: Eϕ(z1, . . .), such that z1 = 1 iff ϕ = 1

• For τj: Eτj(tj, . . .)
• For xi = vi: Exi=vi(li, . . .)
• Let ej = 1 iff dj matches c

• Require that at least one fj, with ej = 0 and 1 ď j ď n, to be consistent (i.e. some rule up to
j with prediction other than c to fire):(

ł

1ďjďn,ej=0
fj
)
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An encoding for DLs – components

R1: IF (τ1) THEN d1
R2: ELSE IF (τ2) THEN d2

¨ ¨ ¨

Rj: ELSE IF (τj) THEN dj
¨ ¨ ¨

Rn: ELSE IF (τn) THEN dn
RDEF: ELSE THEN dn+1

• The set of soft clauses is given by: S fi t(li), i = 1, . . . ,mu
• The set of hard clauses is given by:

B fi
ľ

1ďiďm
Exi=vi(li, . . .)^

ľ

1ďjďn
Eτj(tj, . . .)^

ľ

1ďjďn,ej=0

(
fj Ø

(
tj ^

ľ

1ďkăj,ek=1
␣tk

))
^

(
ł

1ďjďn,ej=0
fj
)

• B Y S ( K
• MUSes are AXp’s & MCSes are CXp’s
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Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



What is model-agnostic explainability?

• Wildly popular XAI approach [RSG16, LL17, RSG18]

• Feature attribution: LIME, SHAP, ... [RSG16, LL17]

• Feature selection: Anchors, ... [RSG18]

• Q: Are model-agnostic explanations rigorous?
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Easy to spot problems – BT for zoo dataset

& Anchor

[INM19c, Ign20]

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no
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milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance:

(& Anchor picks): [RSG18]

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)
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Easy to spot problems – BT for zoo dataset & Anchor [INM19c, Ign20]
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0.108808279

yes
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milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)
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bug
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-0.0552432425

yes
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-0.0549824126
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-0.0550289042
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0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)
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Model-agnostic explainers cannot be trusted [INM19c]

Incorrect explanations:
Classifier for deciding bank loans

Two samples: Bessie– (v1, Y) and Clive– (v2,N)
Explanation X: age=45, salary= 50K
And,
X is consistent with Bessie– (v1, Y)
X is consistent with Clive– (v2,N)

6 different outcomes & same explanation !?
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How to validate model-agnostic explanations

• For feature selection, checking rigor is easy

• Let X be the features reported by model-agnostic tool

• Check whether X is a (rigorous) (W)AXp:
1. X is sufficient for prediction:

@(x P F).
ľ

jPX
(xj = vj)Ñ(κ(x) = c)

2. And, X is subset-minimal:

@(t P X ).D(x P F).
ľ

jP(X zttu)
(xj = vj)Ñ(κ(x) = c)

Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...
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Depending on logic encoding used for classifier, different automated reasoners can be
employed

• Approach is bounded by scalability of rigorous explanations...
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How serious is the lack of rigor of model-agnostic explanations?

• Obs: Lack of rigor of model-agnostic explanations known since 2019 [INM19c, Ign20, YIS+23]

• Results for boosted trees, due to non-scalability with NNs [CG16]

• Some results for Anchors [RSG18]

Dataset % Incorrect % Redundant % Correct
adult 80.5% 1.6% 17.9%
lending 3.0% 0.0% 97.0%
rcdv 99.4% 0.4% 0.2%

compas 84.4% 1.7% 13.9%
german 99.7% 0.2% 0.1%

• Obs: Results are not positive even if we count how often prediction changes [NSM+19]

• In this case, BNNs were used, to allow for model counting...

• For feature attribution we proposed different ways of assessing rigor [INM19c, NSM+19, Ign20, YIS+23]
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Incorrect explanations are ubiquitous & likely... [NSM+19]
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Outline – Unit #04

Explaining Decision Lists

Myth #02: Model-Agnostic Explainability

Progress Report on Symbolic XAI



Efficacy map – progress until 2022 [MI22, Mar22, MS23]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]

NBCs

Monotonic

d-DNNF

GDFs

DTs
XpGs
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RFs
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Practical scalability (effectiveness)
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Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, and ineffective (hard in practice):
• Neural networks (NNs) [INM19a]

• Bayesian networks (BNs) [SCD18]
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Efficacy map – recent progress [HM23b]

[INM19c, Ign20, IIM20, MGC+20, MGC+21, HIIM21, IMS21, IM21, CM21, HII+22, IISMS22]
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Computing one XP • Formal explanations efficient for several
families of classifiers

• Polynomial-time:
• Naive-Bayes classifiers (NBCs) [MGC+20]

• Decision trees (DTs) [IIM20, HIIM21]

• XpG’s: DTs, OBDDs, OMDDs, etc. [HIIM21]

• Monotonic classifiers [MGC+21]

• Propositional languages (e.g. d-DNNF, ...) [HII+22]

• Additional results [CM21, HII+22]

• Comp. hard, but effective (efficient in practice):
• Random forests (RFs) [IMS21]

• Decision lists (DLs) [IM21]

• Boosted trees (BTs) [INM19c, Ign20, IISMS22]

• Comp. hard, but some practical scalability:
• Neural networks (NNs) [HM23b]

• Comp. hard, and ineffective (hard in practice):
• Bayesian networks (BNs) [SCD18]
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Results for RFs in 2021 (with SAT) [IMS21]

Dataset (#F #C #I) RF CNF SAT oracle AXp (RFxpl) Anchor

D #N %A #var #cl MxS MxU #S #U Mx m avg %w avg %w
ann-thyroid ( 21 3 718)4 2192 98 17854 29230 0.12 0.15 2 18 0.36 0.05 0.13 96 0.32 4

appendicitis ( 7 2 43) 6 1920 90 5181 10085 0.02 0.02 4 3 0.05 0.01 0.03 100 0.48 0

banknote ( 4 2 138)5 2772 97 8068 16776 0.01 0.01 2 2 0.03 0.02 0.02 100 0.19 0

biodegradation ( 41 2 106)5 4420 88 11007 23842 0.31 1.05 17 22 2.27 0.04 0.29 97 4.07 3

heart-c ( 13 2 61) 5 3910 85 5594 11963 0.04 0.02 6 7 0.07 0.01 0.04 100 0.85 0

ionosphere ( 34 2 71) 5 2096 87 7174 14406 0.02 0.02 22 11 0.11 0.02 0.03 100 12.43 0

karhunen ( 64 10 200)5 6198 91 36708 70224 1.06 1.41 35 29 14.64 0.65 2.78 100 28.15 0

letter ( 16 26 398)8 44304 82 28991 68148 1.97 3.31 8 8 6.91 0.24 1.61 70 2.48 30

magic ( 10 2 381)6 9840 84 29530 66776 0.51 1.84 6 4 2.13 0.07 0.14 99 0.91 1

new-thyroid ( 5 3 43) 5 1766 100 17443 28134 0.03 0.01 3 2 0.08 0.03 0.05 100 0.36 0

pendigits ( 16 10 220)6 12004 95 30522 59922 2.40 1.32 10 6 4.11 0.14 0.94 96 3.68 4

ring ( 20 2 740)6 6188 89 19114 42362 0.27 0.44 11 9 1.25 0.05 0.25 92 7.25 8

segmentation ( 19 7 42) 4 1966 90 21288 35381 0.11 0.17 8 10 0.53 0.11 0.31 100 4.13 0

shuttle ( 9 7 1160)3 1460 99 18669 29478 0.11 0.08 2 7 0.34 0.05 0.14 99 0.42 1

sonar ( 60 2 42) 5 2614 88 9938 20537 0.04 0.06 36 24 0.43 0.04 0.09 100 23.02 0

spectf ( 44 2 54) 5 2306 88 6707 13449 0.07 0.06 20 24 0.34 0.02 0.07 100 8.12 0

texture ( 40 11 550)5 5724 87 34293 64187 0.79 0.63 23 17 3.24 0.19 0.93 100 28.13 0

twonorm ( 20 2 740)5 6266 94 21198 46901 0.08 0.08 12 8 0.28 0.06 0.10 100 5.73 0

vowel ( 13 11 198)6 10176 90 44523 88696 1.66 2.11 8 5 4.52 0.15 1.15 66 1.67 34

waveform-40 ( 40 3 500)5 6232 83 30438 58380 0.50 0.86 15 25 7.07 0.11 0.88 100 11.93 0

wpbc ( 33 2 78) 5 2432 76 9078 18675 1.00 1.53 20 13 5.33 0.03 0.65 79 3.91 21
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Results for NNs in 2019 (with SMT/MILP) [INM19a]

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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First rigorous approach
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Scales to (a few)
tens of neurons...
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Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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More recent results (from 2024)... [IHM+24a]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons
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Unit #05

Queries in Symbolic XAI



Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy



How to navigate the space of XPs?

• Goal: iteratively list yet unlisted XPs (either AXp’s or CXp’s)

• Complexity results:
• For NBCs: enumeration with polynomial delay [MGC+20]

• For monotonic classifiers: enumeration is computationally hard [MGC+21]

• Recall: for DTs, enumeration of CXp’s is in P [HIIM21, IIM22]

• There are algorithms for direct enumeration of CXp’s
• Akin to enumerating MCSes

• No known algorithms for direct enumeration of AXp’s [MM20]

• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...
• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s
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• Akin to enumerating MUSes
• Enumeration of MCSes + dualization often not realistic [LS08, FK96]

• There can be too many CXp’s...

• Best solution is a MARCO-like algorithm (for enumerating MUSes) [LPMM16]

• On-demand enumeration of AXp’s/CXp’s
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Recall computing one AXp/CXp – oneXP

Input: Predicate P, parameterized by T ,M
Output: One XP S

1: procedure oneXP(P)
2: S Ð F Ź Initialization: P(S) holds
3: for i P F do Ź Loop invariant: P(S) holds
4: if P(Sztiu) then
5: S Ð Sztiu Ź Update S only if P(Sztiu) holds
6: return S Ź Returned set S : P(S) holds
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Generic oracle-based enumeration algorithm

Input: Parameters Paxp , Pcxp , T , F , κ, v

1: HÐH Ź H defined on set U = tu1, . . . , umu; initially no constraints
2: repeat
3: (outc, u)Ð SAT(H) Ź Use SAT oracle to pick assignment s.t. known constraints in H
4: if outc = true then
5: S Ð ti P F | ui = 0u Ź S : fixed features
6: U Ð ti P F | ui = 1u Ź U : universal features; F = S Y U
7: if Pcxp(U ; T ,F , κ, v) then Ź U = FzS Ě some CXp
8: P Ð oneXP(U ;Pcxp, T ,F , κ, v)
9: reportCXp(P)

10: HÐ HY t(_iPP␣ui)u Ź P Ď U : one 1-value variable must be 0 in future iterations
11: else Ź S Ě some AXp
12: P Ð oneXP(S;Paxp, T ,F , κ, v)
13: reportAXp(P)

14: HÐ HY t(_iPPui)u Ź P Ď S : one 0-value variable must be 1 in future iterations
15: until outc = false
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DT classifier – example run of enumerator

x1

x2

x3

0 x4

x5

0 1
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0 1

1

1

P t0u

P t0u

P t0u P t1u
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P t1u

P t1u
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P t0u P t1u

P t1u

P t1u
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14 15

11

5

8

12 13
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• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (1, 1, 1, 1, 1) H 1 – t3u (␣u3) t(␣u3)u

2 (1, 1, 0, 1, 1) t3u 1 – t5u (␣u5) t(␣u3), (␣u5)u

3 (1, 1, 0, 1, 0) t3, 5u 0 t3, 5u – (u3 _ u5) t(␣u3), (␣u5), (u3_u5)u

5 [outc = false] – – – – – t(␣u3), (␣u5), (u3_u5)u
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DT classifier – another example run of enumerator
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• Instance: (v, c) = ((0, 0, 1, 0, 1), 1)

x3 x5 x1 x2 x4 κ2(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

x3 x5 x1 x2 x4 κ2(x)
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 1

Iter. u S Pcxp(¨) AXp CXp Clause Resulting H

1 (0, 0, 0, 0, 0) t1, 2, 3, 4, 5u 0 t3, 5u – (u3 _ u5) t(u3 _ u5)u

2 (0, 0, 1, 0, 0) t1, 2, 4, 5u 1 – t3u (␣u3) t(u3 _ u5), (␣u3)u

3 (0, 0, 1, 0, 1) t1, 2, 4u 1 – t5u (␣u5) t(u3_u5), (␣u3), (␣u5)u

5 [outc = false] – – – – – t(u3_u5), (␣u3), (␣u5)u
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DTs admit more efficient algorithms

• Recall:
• Given instance (v, c), create set I
• For each path Pk with prediction d = c:

• Let Ik denote the features with literals inconsistent with v
• Add Ik to I

• Remove from I the sets that have a proper subset in I ,
and duplicates

• I is the set of CXp’s – algorithm runs in poly-time

• For AXp’s: run std dualization algorithm [FK96]
• Obs: starting hypergraph is poly-size!
• And each MHS is an AXp

• Example:
• I1 = t3u

• I2 = t5u

• I3 = t2, 5u

• 6 keep I1 an I2
• AXp’s: MHSes yield tt3, 5uu
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Outline – Unit #05

Enumeration of Explanations

Feature Necessity & Relevancy



(Conditioned) Classifier Decision Problem ((C)CDP)

[HCM+23]

• Given c P K, CDP is to decide whether the following statement holds:

D(x P F).(κ(x) = c)

• Given S Ď F , instance (v, c), CCDP is to decide whether the following statement holds:

D(x P F).
ľ

iPS
(xi = vi)^ (κ(x) = c)

• Claim: (C)CDP is in polynomial-time for DTs, decision graphs, monotonic classifiers,
among others

• Claim: (C)CDP is in NP-complete for DLs, RFs, BTs, boolean NNs and BNNs
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Feature necessity

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

A: encodes the set of all irreducible rules for prediction c given v

• Features common to all AXps in A and all CXps in C:

NA :=
Ş

XPA X

NC :=
Ş

XPC X
• NA and NC need not be equal

• A = tt1u, t2, 3uu

• A feature i is necessary for abductive explanations (AXp-necessary) if i P NA

• A feature i is necessary for contrastive explanations (CXp-necessary) if i P NC
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More on feature necessity

[HCM+23]

• Claim #01: t P F is AXp-necessary iff ttu is a CXp
• Claim #02: t P F is CXp-necessary iff ttu is a AXp

• Claim #03: CXp-necessity is in P if CCDP is in P
• I.e. this is the case for DTs, DGs, and monotonic classifiers, among others

• Claim #04: AXp-necessity of t P F is in P if t has a domain size which is
polynomially-bounded on instance size

• This holds for any classifier!
• Let u be obtained from v by replacing the constant vt by some variable ut P Dt

• Feature t is AXp-necessary if κ(u) = κ(v) for some value ut P Dt
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An example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Confirmation:

• CXps:
• AXps:
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Feature relevancy

• Consider instance (v, c)
• Sets of all AXp’s & CXp’s:

A := tX Ď F |AXp(X )u

C := tX Ď F | CXp(X )u

• Features occurring in some AXp in A and in some CXp in C:

FA :=
Ť

XPA X

FC :=
Ť

XPC X

• Claim: FA = FC
• I.e. a feature exists in some AXp iff it exists in some CXp

• A feature i P F is relevant if i P FA (and so, if i P FC)
• A feature is relevant if it is included in some AXp (or CXp)

• A feature i P F is irrelevant if i R FA (and so, if i R FC)
• A feature is irrelevant if it is not included in any AXp (or CXp)
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An example

• Consider the classifier:
κ(x1, x2, x3, x4) =

ł4

i=1
xi

• (v, c) = ((0, 0, 0, 1), 1)

• A = tt4uu = C
• Why?

• If 4 fixed, then prediction must be 1
• If 4 is allowed to change, then prediction changes
• Values of 1, 2, 3 not used to fix/change the prediction

• Feature 4 is relevant, since it is included in one (and the only) AXp/CXp

• Features 1, 2, 3 are irrelevant, since there are not included in any AXp/CXp

• Obs: irrelevant features are absolutely unimportant !
We could propose some other explanation by adding features 1, 2 or 3 to AXp t4u, but
prediction would remain unchanged for any value assigned to those features

• And we aim for irreducibility (Occam’s razor is a mainstay of AI/ML)
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Deciding feature relevancy

• Deciding feature relevancy is in ΣP
2 – intuition:

• Pick a set of features P containing t (i.e. existential quantification), such that,

• P is a WAXp (i.e. universal quantification)
• Pzttu is a not a WAXp (i.e. universal quantification again)
• Thus, we can decide feature relevancy with D@ alternation

• For DTs, deciding feature relevancy is in P; Why?

• Obs: We know that FA = FC; thus

• Computing all CXps in polynomial-time decides feature relevancy

• General case: best solution is to exploit abstraction refinement
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Abstraction refinement for feature relevancy

• Claim: X Ď F and t P X . If WAXp(X ) holds and WAXp(X zttu) does not hold, then
any AXp Z Ď X Ď F must contain feature t.

Proof:

• Let Z Ď X Ď F be an AXp such that t R Z .
• Then Z Ď X zttu.
• But then, by monotonicity, WAXp(X zttu) must hold (i.e. any superset of Z is a
weak AXp); hence a contradiction.

• Approach:

• Repeatedly guess weak WAXp candidates X , with t P X [e.g. use SAT oracle]
• Check that WAXp condition holds for X : WAXp(X ) ; and [e.g. use WAXp oracle]
• Check that WAXp condition fails for X zttu: ␣WAXp(X zttu) [e.g. use WAXp oracle]
• Block counterexamples in both cases
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A general abstraction refinement algorithm

Input: Instance v, Target Feature t; Feature Set F , Classifier κ
1: function FRPCGR(v, t;F , κ)
2: HÐH Ź H overapproximates the subsets of F that do not contain an AXp containing t
3: repeat
4: (outc, s)Ð SAT(H, st) Ź Use SAT oracle to pick candidate WAXp containing t
5: if outc = true then
6: P Ð ti P F | si = 1u Ź Set P is the candidate WAXp, and t P P
7: D Ð ti P F | si = 0u Ź Set D contains the features not included in P
8: if ␣WAXp(P) then Ź Is P not a WAXp?
9: HÐ HY newPosCl(D; t, κ) Ź P is not a WAXp; must pick some non-picked feature
10: else Ź P is a WAXp
11: if ␣WAXp(Pzttu) then Ź P without t not a WAXp?
12: reportWeakAXp(P) Ź Feature t is included in any AXp X Ď P
13: return true
14: HÐ HY newNegCl(P; t, κ) Ź WAXp(Pzttu) holds; some feature in P must not be picked
15: until outc = false
16: return false Ź If H becomes inconsistent, then there is no AXp that contains t
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An example: feature relevancy for DT, using abstraction refinement

x1

x2

x3

x4

2 0

0

1

1

P t0u

P t0u

P t0u

P t0u P t1u

P t1u

P t1u

P t1u

1

2

4

6

8 9

7

5

3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 1 relevant?

t = 1

s P WAXp(P) WAXp(Pzttu) Return? Clause

(1, 1, 1, 1) t1, 2, 3, 4u ! ! —— (␣u2 _␣u3 _␣u4)
(1, 1, 0, 1) t1, 2, 4u ! ! —— (␣u2 _␣u4)
(1, 1, 0, 0) t1, 2u ! ! —— (␣u2)
(1, 0, 0, 0) t1u ! % true ——
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Another example
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3 • Instance: (v, c) = ((1, 1, 1, 1), 1)

• Is t = 4 relevant?

t = 4
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(0, 0, 0, 1) t4u % — —— (u1 _ u2 _ u3)
(0, 0, 1, 1) t3, 4u % — —— (u1 _ u2)

[outc = false] —— — — false ——
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Questions?
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Lecture 04

© J. Marques-Silva 134 / 215



Recapitulate third lecture

• Logic encoding for explaining DLs
• And status of (in)tractability in logic-based XAI

• Query: enumeration of explanations

• Query: feature necessity, AXp & CXp

• Query: feature relevancy
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Recap example

• Instance (v, c) = ((0, 0, 0, 0), 0)

• Is feature 1 AXp-necessary?

• Does there exist u1, such that κ(u1, 0, 0, 0) = κ(0, 0, 0, 0)?
• Yes! Thus, feature 1 is AXp-necessary (i.e. singleton CXp)

• Is feature 3 AXp-necessary?

• Does there exist u3, such that κ(0, 0,u3, 0) = κ(0, 0, 0, 0)?
• No! Thus, feature 3 is not AXp-necessary

• Are there CXp-necessary features?

• No! There are no singleton AXps

• Confirmation:

• CXps: (2 is also AXp-necessary)
• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3
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Recap example – a different instance

• Instance (v, c) = ((1, 1, 1, 1), 1)

• Are there CXp-necessary features?

• Yes! Features 1 and 2 (i.e. singleton AXps)

• Are there AXp-necessary features?

• No! There are no singleton CXps

• Confirmation:

• AXps:
• CXps:

x1

x2

x3

x4
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P t0u
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P t1u
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Another example – feature necessity & relevancy

• Classifier: F = t1, 2, 3, 4, 5u; Di = t0, 1u, i = 1, . . . , 5; K = t0, 1u

κ(x1, x2, x3, x4, x5) :=

#

1 IF (10x1 + 5x2 + 5x3 + 2x4 + x5 ě 15)
0 otherwise

• Instance: ((1, 1, 1, 1, 1), 1)

• Obs: If x1 = 0, then κ(x) = 0; i.e. must consider only x1 = 1

• Hint: Can construct restricted truth-table

• All AXps:
• All CXps:
• AXp-necessary:
• CXp-necessary:
• Relevant:
• Irrelevant:
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Some use cases

Q: How to decide whether some protected feature occurs in some explanation?

• Decide feature relevancy

Q: How to decide whether some protected feature occurs in all explanations?

• Decide feature necessity

Q: What can we do if human decision maker finds computed AXp/CXp to be
unsatisfactory?

• Partially enumerate AXps/CXps, exploiting bias in enumeration
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Detour: Monotonic Classification & Voting Power
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Monotonically increasing boolean classifiers

• Monotonic classifierM = (F ,F,K, κ), such that each Di = t0, 1u and K = t0, 1u are
ordered (i.e. 0 ă 1), and

• κ(1) = 1 ;
• Non-constant classifier, i.e. κ(0) = 0 ; and
• κ(x1) ď κ(x2) when x1 ď x2

• Let v1, v2 P F be such that κ(v1) = κ(v2) = 1, and v1 ď v2

Define the explanation problems:
• E1 = (M, (v1, 1))

• E2 = (M, (v2, 1))

• E1 = (M, ((1, . . . , 1), 1)) = (M, (1, 1))

• Then,
• If WAXp(S; E1) holds, then WAXp(S; E2) holds; in particular:
• A(E1) contains all the AXps of any instance of the form (vr, 1)

• Why?
¨ Pick any explanation problem Er with instance (vr, 1)
¨ Start from 1 = (1, 1, . . . , 1)

¨ Remove features that take value 0 in vr ; we still have an WAXp
¨ Then compute any AXp starting from features taking value 1 in vr
6 Suffices to find explanations for E1 (or alternatively, the global explanations for prediction 1)
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An example

• ML modelM = (F ,F,K, κ):
• Boolean classifier: K = t0, 1u
• Defined on 6 boolean features: F = t1, 2, 3, 4, 5, 6u

• I.e. Di = t0, 1u, i = 1, . . . , 6

• With classification function:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• κ is a monotonically increasing boolean function

• We are interested in identifying the AXps ofM, given the instance ((1, 1, 1, 1, 1, 1), 1)

• Or alternatively, the global AXps for prediction 1
• For example, with order x1, 2, 3, 4, 5, 6y:

• Feature 1: can be dropped
• Feature 2: can no longer be dropped; keep
• Feature 3: can no longer be dropped; keep
• Feature 4: can no longer be dropped; keep
• Feature 5: can no longer be dropped; keep
• Feature 6: can be dropped
• AXp: t2, 3, 4, 5u
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All AXps & all CXps...

• Classifier:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

• Instance: (1, 1)

• Computing the AXps:
• Must pick 2 out of features t1, 2, 3u
• If only 2 out of features t1, 2, 3u picked, then we must pick both features 4 and 5
• Feature 6 is never matters, i.e. it is irrelevant...

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3u, t1, 4u, t1, 5u, t2, 4u, t2, 5u, t3, 4u, t3, 5uu
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What is a priori voting power?

• General set-up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counted (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter
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An example – EEC (EU) members voting power in 1958

Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• WVG: [12; 4, 4, 4, 2, 2, 1]
• Q: What should be the voting power of
Luxembourg?

• Can Luxembourg (L) matter for some
winning coalition?

• Perhaps surprisingly, answer is No!
• In 1958, Luxembourg was a dummy
voter/player
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Understanding weighted voting games

• Obs: A WVG is a monotonically increasing boolean classifier
• Each subset-minimal winning coalition is an AXp of the instance (1, 1)

• Recall EEC voting example:
Coutry Acronym # Votes
France F 4
Germany D 4
Italy I 4

Belgium B 2
Netherlands N 2
Luxembourg L 1

Quota: 12

• The corresponding classifier is:

κ(x1, x2, x3, x4, x5, x6) :=

#

1 IF (4x1 + 4x2 + 4x3 + 2x4 + 2x5 + x6 ě 12)
0 otherwise

which we have seen before! E.g. t2, 3, 4, 5u is an AXp & feature 6 (L) is irrelevant
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Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:

A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:

C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:
C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Another example

• WVG: [ 21; 12, 9, 4, 4, 1, 1, 1 ]

• Computing the AXps:
• Must include feature 1; sum of weights of others equals 20...
• Either include feature 2, or features 3 and 4, plus any one of features 5, 6, 7

• AXps:
A = tt1, 2u, t1, 3, 4, 5u, t1, 3, 4, 6u, t1, 3, 4, 7uu

• CXps:
C = tt1u, t2, 3u, t2, 4u, t2, 5, 6, 7uu

• Q: How should features be ranked in terms of importance?

© J. Marques-Silva 149 / 215



Yet another example

• WVG: [ 16; 9, 9, 7, 3, 1, 1 ]

• Computing the AXps:
• Sum of any pair of the first three features (i.e. voters) exceeds/matches the quota
• The other features never matter

• AXps:

A = tt1, 2u, t1, 3u, t2, 3uu

• CXps:

C = tt1, 2u, t1, 3u, t2, 3uu

• Obs: features (resp. voters) 4, 5 and 6 are irrelevant (resp. dummy)
• Q: How should features be ranked in terms of importance?
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Why should we care about voting power?

• SHAP scores, i.e. the use of Shapley values for XAI, exhibit critical theoretical flaws
(more tomorrow) [MSH24, HMS24, HM23c]

• Recently, we have devised ways of correcting SHAP scores [LHMS24]

• In turn, this revealed novel connections between logic-based XAI and a priori voting
power [LHAMS24]

• Homework:
• Create your own weighted voting games;
• Compute the sets of AXps and CXps; and
• Assess the importance of features and how they compare to each other
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General definition of prediction sufficiency

• Instance (v, c)
• Let S Ď F :

• Recall,
Υ(S; v) = tx P F | xS = vSu

• S Ď F suffices for prediction c if:

@(x P F).(x P Υ(S; v))Ñ(σ(x))

• Obs: a WAXp is just one possible example
• But there are other ways to study prediction sufficiency:

• One can envision defining other sets of points Γ, parameterized by E = (M, (v, c));
S Ď F suffices for prediction c if:

@(x P F).(x P Γ(S; E))Ñ(σ(x))

• And one can also envision generalizations of σ!
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Towards more expressive explanations – inflated explanations

[IISM24]

• Recall:
WAXp(X ) := @(x P F).

ľ

jPX
(xj = vj)Ñ(κ(x) = c)

• For non-boolean features, use of =may convey little information, e.g. with real-valued features,
having x1 = 1.157 does not help in understanding what values of feature 1 are also acceptable

• Inflated explanations allow for more expressive literals, i.e. = replaced with P, and
individual values replaced by ranges of values

• Operational definition: Given an AXp, expand set of values of each feature, in some chosen
order, such that the set of picked features remains unchanged
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Inflated explanations – an example

[IIM22]

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Explanation for ((2, 20, 0), Y)? (Obs: MnA = 18;MxP ą 4)

• AXp: t1, 2u
• Default interpretation:

@(x P F).(x1 = 2^ x2 = 20)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 = 2^ x2 = 20) THEN (κ(x) = Y)

• With inflated explanations:

@(x P F).(x1 P t2..MxPu ^ x2 P tMnA..25u)Ñ(κ(x) = Y)

• Corresponding rule:

IF (x1 P t2..MxPu ^ x2 P tMnA..25u) THEN (κ(x) = Y)
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Approach

• Compute AXp X
• For each feature:

• Categorical: iteratively add elements to literal
• Ordinal:

• Expand literal for larger values;
• Expand literal for smaller values

• Obs: More complex alternative is to find AXp and expand domains simultaneously
• This is conjectured to change the complexity class of finding one explanation
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Probabilistic (formal) explanations

[WMHK21, IIN+22, IHI+22, ABOS22, IHI+23, IMM24]

• Explanation size is critical for human understanding [Mil56]

• Probabilistic explanations provide smaller explanations, by trading off rigor of
explanation by explanation size

• Definition of weak probabilistic AXp X Ď F :

WPAXp(X ) := Pr(κ(x) = c) | xX = vX ) ě δ

• Obs: xX = vX requires points x P F to match the values of v for the features dictated by X
• Obs: for δ = 1 we obtain a WAXp
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Definitions

• Weak probabilistic AXp (WPAXp):

WeakPAXp(X ;F, κ, v, c, δ) :=

Prx(κ(x) = c | xX = vX ) ě δ :=
|tx P F : κ(x) = c^ (xX = vX )u|

|tx P F : (xX = vX )u|
ě δ

• Probabilistic AXp (PAXp):

PAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(X 1 Ĺ X ).␣WeakPAXp(X 1;F, κ, v, c, δ)

• Locally-minimal PAXp (LmPAXp):

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X ).␣WeakPAXp(X ztju;F, κ, v, c, δ)
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Definitions

• Weak probabilistic AXp (WPAXp): – definition is non-monotonic

WeakPAXp(X ;F, κ, v, c, δ) :=
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• Locally-minimal PAXp (LmPAXp): – may differ from PAXp due to non-monotonicity

LmPAXp(X ;F, κ, v, c, δ) :=

WeakPAXp(X ;F, κ, v, c, δ)^ @(j P X ).␣WeakPAXp(X ztju;F, κ, v, c, δ)
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What is known about PAXps?

• Obs: Definition of WPAXp is non-monotonic (from previous slide)

• Standard algorithms for finding one AXp cannot be used

• For DTs, finding on PAXp is computationally hard [ABOS22]

• In general, complexity is unwiedly [WMHK21]

• Recent dedicated algorithms for simple ML models [IHI+23]

• Recent approximate algorithms for complex ML models [IMM24]
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Results for decision trees

Dataset
MinPAXp LmPAXp Anchor

DT Path δ Length Prec Time Length Prec mĎ Time D Length Prec Time

N A M m avg M m avg avg avg M m avg avg avg M m avg FRP avg avg
100 11 3 6.8 100 2.34 11 3 6.9 100 100 0.00 d 12 2 7.0 26.8 76.8 0.96

adult 1241 89 14 3 10.7 95 11 3 6.2 98.4 5.36 11 3 6.3 98.6 99.0 0.01 u 12 3 10.0 29.4 93.7 2.20

90 11 2 5.6 94.6 4.64 11 2 5.8 95.2 96.4 0.01

100 12 1 4.4 100 0.35 12 1 4.4 100 100 0.00 d 31 1 4.8 58.1 32.9 3.10

dermatology 71 100 13 1 5.1 95 12 1 4.1 99.7 0.37 12 1 4.1 99.7 99.3 0.00 u 34 1 13.1 43.2 87.2 25.13

90 11 1 4.0 98.8 0.35 11 1 4.0 98.8 100 0.00

100 12 2 4.8 100 0.93 12 2 4.9 100 100 0.00 d 36 2 7.9 44.8 69.4 1.94

kr-vs-kp 231 100 14 3 6.6 95 11 2 3.9 98.1 0.97 11 2 4.0 98.1 100 0.00 u 12 2 3.6 16.6 97.3 1.81

90 10 2 3.2 95.4 0.92 10 2 3.3 95.4 99.0 0.00

100 12 4 8.2 100 16.06 11 4 8.2 100 100 0.00 d 16 3 13.2 43.1 71.3 12.22

letter 3261 93 14 4 11.8 95 12 4 8.0 99.6 18.28 11 4 8.0 99.5 100 0.00 u 16 3 13.7 47.3 66.3 10.15

90 12 4 7.7 97.7 16.35 10 4 7.8 97.8 100 0.00

100 14 3 6.4 100 0.92 14 3 6.5 100 100 0.00 d 35 2 8.6 55.4 33.6 5.43

soybean 219 100 16 3 7.3 95 14 3 6.4 99.8 0.95 14 3 6.4 99.8 100 0.00 u 35 3 19.2 66.0 75.0 38.96

90 14 3 6.1 98.1 0.94 14 3 6.1 98.2 98.5 0.00

0 12 3 7.4 100 1.23 12 3 7.5 100 100 0.01 d 38 2 6.3 65.3 63.3 24.12

spambase 141 99 14 3 8.5 95 9 1 3.7 96.1 2.16 9 1 3.8 96.5 100 0.01 u 57 3 28.0 86.2 65.3 834.70

90 6 1 2.4 92.4 2.15 8 1 2.4 92.2 100 0.01

Table 1: Assessing explanations of MinPAXp, LmPAXp and Anchor for DTs. (For each dataset, we run the explainers on
500 samples randomly picked or all samples if there are less than 500.) In column DT, N and A denote, resp., the
number of nodes and the training accuracy of the DT. Column δ reports (in %) the value of the threshold δ. In column
Path, avg (resp. M and m) denotes the average (resp. max. and min.) depth of paths consistent with the instances. In
column Length, avg (resp. M and m) denotes the average (resp. max. and min.) length of the explanations; and FRP
denotes the avg. % of features in Anchor’s explanations that do not belong to the consistent paths. Prec reports (in
%) the average precision (defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are
subset-minimal, i.e. PAXp’s. Time reports (in seconds) the average runtime to compute an explanation. Finally, D
indicates which distribution is applied on data given to Anchor: either data distribution (denoted by d) or uniform
distribution (denoted by u).
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Results for naive Bayes classifiers

Dataset (#F #I) NBC AXp LmPAXpď9 LmPAXpď7 LmPAXpď4

A% Length δ Length Precision W% Time Length Precision W% Time Length Precision W% Time

adult (13 200) 81.37 6.8˘ 1.2

98 6.8˘ 1.1 100˘ 0.0 100 0.003 6.3˘ 0.9 99.61˘ 0.6 96 0.023 4.8˘ 1.3 98.73˘ 0.5 48 0.059

95 6.8˘ 1.1 99.99˘ 0.2 100 0.074 5.9˘ 1.0 98.87˘ 1.8 99 0.058 3.9˘ 1.0 96.93˘ 1.1 80 0.071

93 6.8˘ 1.1 99.97˘ 0.4 100 0.104 5.7˘ 1.3 98.34˘ 2.6 100 0.086 3.4˘ 0.9 95.21˘ 1.6 90 0.093

90 6.8˘ 1.1 99.95˘ 0.6 100 0.164 5.5˘ 1.4 97.86˘ 3.4 100 0.100 3.0˘ 0.8 93.46˘ 1.5 94 0.103

agaricus (23 200) 95.41 10.3˘ 2.5

98 7.7˘ 2.7 99.12˘ 0.8 92 0.593 6.4˘ 3.0 98.75˘ 0.6 87 0.763 6.0˘ 3.1 98.67˘ 0.5 29 0.870

95 6.9˘ 3.1 97.62˘ 2.1 95 0.954 5.3˘ 3.2 96.59˘ 1.6 92 1.273 4.8˘ 3.3 96.24˘ 1.2 55 1.217

93 6.5˘ 3.1 96.65˘ 2.8 95 1.112 4.8˘ 3.1 95.38˘ 1.9 93 1.309 4.3˘ 3.1 94.92˘ 1.3 64 1.390

90 5.9˘ 3.3 94.95˘ 4.1 96 1.332 4.0˘ 3.0 92.60˘ 2.8 95 1.598 3.6˘ 2.8 92.08˘ 1.7 76 1.830

chess (37 200) 88.34 12.1˘ 3.7

98 8.1˘ 4.1 99.27˘ 0.6 64 0.383 5.9˘ 4.9 98.70˘ 0.4 64 0.454 5.7˘ 5.0 98.65˘ 0.4 46 0.457

95 7.7˘ 3.8 98.51˘ 1.4 68 0.404 5.5˘ 4.4 97.90˘ 0.9 64 0.483 5.3˘ 4.5 97.85˘ 0.8 46 0.478

93 7.3˘ 3.5 97.56˘ 2.4 68 0.419 5.0˘ 4.1 96.26˘ 2.2 64 0.485 4.8˘ 4.1 96.21˘ 2.1 64 0.493

90 7.3˘ 3.5 97.29˘ 2.9 70 0.413 4.9˘ 4.0 95.99˘ 2.6 64 0.483 4.8˘ 4.0 95.93˘ 2.5 64 0.543

vote (17 81) 89.66 5.3˘ 1.4

98 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.95˘ 0.2 100 0.007 4.6˘ 1.1 99.60˘ 0.4 64 0.014

95 5.3˘ 1.4 100˘ 0.0 100 0.000 5.3˘ 1.3 99.93˘ 0.3 100 0.008 4.1˘ 1.0 98.25˘ 1.7 64 0.018

93 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.1˘ 0.9 98.10˘ 1.9 64 0.018

90 5.3˘ 1.4 100˘ 0.0 100 0.000 5.2˘ 1.3 99.78˘ 1.1 100 0.012 4.0˘ 1.2 97.24˘ 3.1 64 0.022

kr-vs-kp (37 200) 88.07 12.2˘ 3.9

98 7.8˘ 4.2 99.19˘ 0.5 64 0.387 6.5˘ 4.7 98.99˘ 0.4 64 0.427 6.1˘ 4.9 98.88˘ 0.3 43 0.457

95 7.3˘ 3.9 98.29˘ 1.4 64 0.416 6.0˘ 4.3 97.89˘ 1.1 64 0.453 5.5˘ 4.5 97.79˘ 0.9 43 0.462

93 6.9˘ 3.5 97.21˘ 2.5 69 0.422 5.6˘ 3.8 96.82˘ 2.2 64 0.448 5.2˘ 4.0 96.71˘ 2.1 43 0.468

90 6.8˘ 3.5 96.65˘ 3.1 69 0.418 5.4˘ 3.8 95.69˘ 3.0 64 0.468 5.0˘ 4.0 95.59˘ 2.8 61 0.487

mushroom (23 200) 95.51 10.7˘ 2.3

98 7.5˘ 2.4 98.99˘ 0.7 90 0.641 6.5˘ 2.6 98.74˘ 0.5 83 0.751 6.3˘ 2.7 98.70˘ 0.4 18 0.828

95 6.5˘ 2.6 97.35˘ 1.8 96 1.011 5.1˘ 2.5 96.52˘ 1.0 90 1.130 5.0˘ 2.5 96.39˘ 0.8 54 1.113

93 5.8˘ 2.8 95.77˘ 2.7 96 1.257 4.4˘ 2.5 94.67˘ 1.6 94 1.297 4.2˘ 2.4 94.48˘ 1.3 65 1.324

90 5.3˘ 3.0 94.01˘ 3.9 97 1.455 3.8˘ 2.3 92.36˘ 2.2 96 1.543 3.6˘ 2.2 92.07˘ 1.6 76 1.650

threeOf9 (10 103) 83.13 4.2˘ 0.4

98 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 78 0.001

95 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 4.0˘ 0.2 99.23˘ 1.4 100 0.002

93 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.9˘ 0.2 99.20˘ 1.5 100 0.002

90 4.2˘ 0.4 100˘ 0.0 100 0.000 4.2˘ 0.4 100˘ 0.0 100 0.000 3.8˘ 0.4 98.29˘ 3.3 100 0.003

xd6 (10 176) 81.36 4.5˘ 0.9

98 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

95 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 73 0.001

93 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.001

90 4.5˘ 0.8 100˘ 0.0 100 0.000 4.5˘ 0.8 100˘ 0.0 100 0.000 4.3˘ 0.4 98.30˘ 2.7 73 0.002

mamo (14 53) 80.21 4.9˘ 0.8

98 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 4.6˘ 0.6 99.66˘ 0.5 53 0.007

95 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.80˘ 1.6 85 0.009

93 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.9˘ 0.6 97.68˘ 1.7 85 0.009

90 4.9˘ 0.7 100˘ 0.0 100 0.000 4.9˘ 0.7 100˘ 0.0 100 0.000 3.6˘ 0.8 96.18˘ 3.2 96 0.011

tumor (16 104) 83.21 5.3˘ 0.9

98 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.7 99.96˘ 0.2 100 0.008 4.1˘ 0.7 99.41˘ 0.5 91 0.012

95 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.83˘ 0.7 100 0.012 3.2˘ 0.6 96.02˘ 1.5 94 0.016

93 5.3˘ 0.8 100˘ 0.0 100 0.000 5.2˘ 0.6 99.74˘ 1.2 100 0.014 3.1˘ 0.7 95.50˘ 1.4 95 0.016

90 5.3˘ 0.8 100˘ 0.0 100 0.000 5.1˘ 0.7 99.67˘ 1.4 100 0.016 3.0˘ 0.6 95.30˘ 1.6 95 0.017

Table 2: Assessing LmPAXp explanations for NBCs. Columns #F and #I show, respectively, number of features and
tested instances in the Dataset. Column A% reports (in %) the training accuracy of the classifier. Column δ reports (in
%) the value of the parameter δ. LmPAXpď9 , LmPAXpď7 and LmPAXpď4 denote, respectively, LmPAXp’s of (target)
length 9, 7 and 4. Columns Length and Precision report, respectively, the average explanation length and the average
explanation precision (˘ denotes the standard deviation). W% shows (in %) the number of success/wins where the
explanation size is less than or equal to the target size. Finally, the average runtime to compute an explanation is
shown (in seconds) in Time. (Note that the reported average time is the mean of runtimes for instances for which we
effectively computed an approximate explanation, namely instances that have AXp’s of length longer than the target
length; whereas for the remaining instances the trimming process is skipped and the runtime is 0 sec, thus we
exclude them when calculating the average.)
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Results for decision diagrams

Dataset #I #F δ

MinPAXp LmPAXp

OMDD Length Prec Time Length Prec mĎ Time

#N A% M m avg avg avg M m avg avg avg
100 9 6 8.0 100 24.24 9 6 7.9 100 100 1.57

lending 100 9 1103 81.7 95 9 5 7.8 99.7 21.48 9 6 7.8 99.8 100 1.49
90 9 4 7.2 96 24.65 9 5 7.4 97.0 100 1.48

100 6 4 5.1 100 0.10 6 4 5.1 100 100 0.03
monk2 100 6 70 79.3 95 6 4 5.1 100 0.09 6 4 5.1 100 100 0.03

90 6 3 4.8 98.1 0.09 6 3 4.8 98.1 100 0.03

100 8 4 6.1 100 0.26 8 4 6.2 100 100 0.04
postoperative 74 8 109 80 95 8 2 6.0 99.3 0.25 8 2 6.0 99.3 100 0.04

90 8 2 5.3 95.9 0.23 8 2 5.4 96.6 94.6 0.04

100 9 5 7.7 100 3.60 9 5 7.8 100 100 0.38
tic_tac_toe 100 9 424 70.3 95 9 5 7.5 99.5 3.24 9 5 7.7 99.6 99.0 0.38

90 9 3 7.3 98.3 4.06 9 3 7.5 98.6 98.0 0.38

100 9 4 4.6 100 0.10 9 4 4.6 100 100 0.03
xd6 100 9 76 83.1 95 9 3 3.8 97 0.09 9 3 3.8 97.0 99.0 0.03

90 9 3 3.3 94.8 0.10 9 3 3.4 94.6 100 0.03

Table 3: Assessing MinPAXp and LmPAXp explanations of OMDDs. Columns #I, #F denote, resp. the number of tested
instances and the number of features. In column OMDD, N and A denote, resp., the number of nodes and the test
accuracy of the OMDD. Column δ reports (in %) the value of the threshold δ. In column Length, avg (resp. M and m)
denotes the average (resp. max. and min.) length of the explanations. Prec reports (in %) the average precision
(defined in (??)) of resulting explanations. mĎ shows the number in (%) of LmPAXp’s that are subset-minimal, i.e.
PAXp’s. Time reports (in seconds) the average runtime to compute an explanation.
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Remarks on LmPAXps

[IHI+23]

• LmPAXps ignore non-monotonicity, and so overapproximate PAXps
• Theoretical guarantees, but may be reducible

• For DTs, computation of LmPAXps is in P

• Experimental results confirm LmPAXps match PAXps in most cases

• Recent results on approximating LmPAXps for RFs [IMM24]
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Not all inputs may be possible – input constraints

[GR22, YIS+23]

• The (implicit) assumption that all inputs are possible is often unrealistic
• I.e. it may be impossible for some points in feature space to be observed

• Infer constraints on the inputs
• Learn simple rules relating inputs
• Represent rules as a constraint set, e.g. C(x)

• Redefine WAXps/WCXps to account for input constraints:

@(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
Ñ(κ(x) = c)

D(x P F).
[
ľ

jPX
(xj = vj)^ C(x)

]
^ (κ(x) = c)

• Compute AXps/CXps given new definitions

• Constrained AXps/CXps find other applications!
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An example

• Instance: ((1, 1, 1, 1), 1)

• Unconstrained AXps:

• AXps:

• Constrained AXps:

• If feature 3 is fixed (with value 1), then feature 4
must be assigned value 1

• If feature 4 is fixed (with value 1), then feature 3
must be assigned value 1

• AXps:

x1

x2

x3

x4

0 1

0

1

1

P t0u

P t0u

P t1u

P t0u P t1u

P t0u

P t1u

P t1u

1

2

4

6

8 9

7

5

3

• Constraint: t(x3Ñ x4), (x4Ñ x3)u
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How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215



How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs

• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215



How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?

• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215



How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215



How to tackle poor performance on NNs?

• For NNs, computation of plain AXps scales to a few tens of neurons [INM19a]

• But, robustness tools scale for much larger NNs
• Q: can we relate AXps with adversarial examples?
• Obs: we already proved some basic (duality) properties for global explanations [INM19b]

• Change definition of WAXp/WCXp to account for lp distance to v:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Norm lp is arbitrary, e.g. Hamming, Manhattan, Euclidean, etc.
• Distance-restricted explanations: dAXp/dCXp

© J. Marques-Silva 165 / 215



An example – DT & instance ((1, 1, 1, 1), 1)

• Plain AXps/CXps:

• AXps?
• CXps?

• Distance-restricted AXps/CXps, dAXp/dCXp, with
Hamming distance (l0) and ϵ = 1:

• Points of interest:
t(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)u

• dAXps?
• dCXps?

• Given ϵ, larger adversarial examples are excluded
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0 x3

0 x4

0 1

x3
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0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1
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Relating explanations with adversarial examples

• Distance-restricted WAXps/WCXps:

@(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
Ñ(σ(x))

D(x P F).
[
ľ

jPX
(xj = vj)^

(
}x´ v}lp ď ϵ

)]
^ (␣σ(x))

• Given norm lp and distance ϵ, there exists a (distance-restricted) WCXp iff there exists an
adversarial example

• Use robustness tool to decide existence of WCXp
• But, WAXp decided given non existence of CXp!

• Efficiency of distance-restricted explanations correlates with efficiency of finding
adversarial examples

• One can use most complete robustness tools, e.g. VNN-COMP [BMB+23]

• Clear scalability improvements for explaining NNs (see next) [HM23b, WWB23, IHM+24a, IHM+24b]
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Basic algorithm [HM23b]

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• Obs: Efficiency of logic-based XAI tracks efficiency of robustness tools
• Limitation: Running time grows with number of features
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Results for NNs in 2023 (using Marabou [KHI+19]) [HM23b]

DNN points |AXp| #Calls Time #TO |AXp| #Calls Time #TO

ϵ = 0.1 ϵ = 0.05

ACASXU_1_5
#1 3 5 185.9 0 2 5 113.8 0
#2 2 5 273.8 0 1 5 33.2 0
#3 0 5 714.2 0 0 5 4.3 0

ACASXU_3_1
#1 0 5 2219.3 0 0 5 14.2 0
#2 2 5 4263.5 1 0 5 1853.1 0
#3 1 5 581.8 0 0 5 355.9 0

ACASXU_3_2
#1 3 5 13739.3 2 1 5 6890.1 1
#2 3 5 226.4 0 2 5 125.1 0
#3 2 5 1740.6 0 2 5 173.6 0

ACASXU_3_5
#1 4 5 43.6 0 2 5 59.4 0
#2 3 5 5039.4 0 2 5 4303.8 1
#3 2 5 5574.9 1 2 5 2660.3 0

ACASXU_3_6
#1 1 5 6225.0 1 0 5 51.0 0
#2 3 5 4957.2 1 2 5 1897.3 0
#3 1 5 196.1 0 1 5 919.2 0

ACASXU_3_7
#1 3 5 6256.2 0 4 5 26.9 0
#2 4 5 311.3 0 1 5 6958.6 1
#3 2 5 7756.5 1 1 5 7807.6 1

ACASXU_4_1
#1 2 5 12413.0 2 1 5 5090.5 1
#2 1 5 5035.1 1 0 5 2335.6 0
#3 4 5 1237.3 0 4 5 1143.4 0

ACASXU_4_2
#1 4 5 15.9 0 4 5 12.1 0
#2 3 5 1507.6 0 1 5 111.3 0
#3 2 5 5641.6 2 0 5 1639.1 0

Scales to a few
hundred neurons
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Recent improvements

Input: Arguments: ϵ; Parameters: E , p
Output: One dAXp S

1: function FindAXpDel(ϵ; E ,p)
2: S Ð F Ź Initially, no feature is allowed to change
3: for i P F do Ź Invariant: dWAXp(S)
4: S Ð Sztiu
5: outcÐ FindAdvEx(ϵ,S; E ,p)
6: if outc then
7: S Ð S Y tiu
8: return S Ź dWAXp(S)^minimal(S)Ñ dAXp(S)

• To drop features from S Ď F , it is open whether paralellization might be applicable
• Algorithm FindAXpDel is mostly sequential (see above)
• Exploit parallelization for other algorithms, e.g. dichotomic search [IHM+24b]

• However, to decide whether S is an AXp, we can exploit parallelization:
• Recall: AXp(X ) := WAXp(X )^ @(t P X ).␣WAXp(X zttu)
• Each ␣WAXp(¨) (and also WAXp(¨)) check can be run in parallel!
• Do this opportunistically, i.e. when set S is expected to be AXp [IHM+24b]
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More recent results (from 2024)... [IHM+24a, IHM+24b]

Model Deletion SwiftXplain

avgC nCalls Len Mn Mx avg TO avgC nCalls Len FD% Mn Mx avg
gtsrb-dense 0.06 1024 448 52.0 76.3 63.1 0 0.23 54 447 77.4 10.8 14.0 12.2

gtsrb-convSmall 0.06 1024 309 59.2 82.6 65.1 0 0.22 74 313 39.7 15.1 19.5 16.2

gtsrb-conv — — — — — — 100 96.49 45 174 33.2 3858.7 6427.7 4449.4

mnist-denseSmall 0.28 784 177 190.9 420.3 220.4 0 0.77 111 180 15.5 77.6 104.4 85.1

mnist-dense 0.19 784 231 138.1 179.9 150.6 0 0.75 183 229 11.5 130.1 145.5 136.8

mnist-convSmall — — — — — — 100 98.56 52 116 21.3 4115.2 6858.3 5132.8

Scales to tens of
thousands of neurons!

Largest for MNIST: 10142 neurons
Largest for GSTRB: 94308 neurons
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Outline – Unit #06

Changing Assumptions

Inflated Explanations

Probabilistic Explanations

Constrained Explanations

Distance-Restricted Explanations

Additional Topics



Surrogate models in logic-based XAI

[BAMT21]

• Motivation:
• Logic-based XAI does not yet scale for highly complex ML models
• Surrogate models find many uses in ML, for approximating complex models

• Approach:
• Train a surrogate model, e.g. DT, RF/TE, small(er) NN, etc.
• Target high accuracy of surrogate model

• Explain the surrogate model
• Compute rigorous explanation: plain AXp, probabilistic AXp,

• Report computed explanation as explanation for the complex ML model
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Certified explainer (for monotonic classification)

[HM23f]

• The implementation of a correct algorithm may not be correct
• Even comprehensive testing of implemented algorithms does not guarantee correctness

• Certification of implementations is one possible alternative

• Formalize algorithm, e.g. explanations for monotonic classifiers, e.g. using Coq
• Prove that formalized algorithm is correct
• Extract certified algorithm from proof of correctness

• Downsides:
• Efficiency of certified algorithm
• Dedicated algorithm for each explainer

• Certification envisioned for any explainability algorithm
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Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Questions?
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Lecture 05
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Recapitulate fourth lecture

• Monotonic classifiers vs. weighted voting games

• Advanced topics:
• Inflated explanations
• Probabilistic explanations
• Constrained explanations
• Distance-restricted explanations
• Explanations using surrogate models
• Certified explainability
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Monotonicity & WCGs

• Every WVG G, described by [q;n1, . . . ,nm], can be represented as a monotonically
increasing boolean classifierM = (F , t0, 1um, t0, 1u, κ), such that:

• Each voter i is mapped to a boolean feature i, such that feature i takes value 1 if voter i votes
Yes; otherwise it takes value 0;

• The classification function κ : F Ñ t0, 1u is defined by:

κ(x) =
#

1 if
řm

i=1 nixi ě q

0 otherwise

• The target instance is (1, 1); and
• Each minimal winning coalition C corresponds to an AXp of E = (M, (1, 1))

6 WVGs can be analyzed by studying the AXps/CXps of monotonically increasing boolean
classifiers
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Another WVG

• WVG: [25; 10, 9, 7, 1, 1, 1, 1, 1, 1]

• Computing the AXps:
• Winning coalitions must include both 1 and 2
• We can pick 3 or, alternatively, all the other ones

• AXps:

A = tt1, 2, 3u, t1, 2, 4, 5, 6, 7, 8, 9uu

• CXps:

C = tt1u, t2u, t3, 4u, t3, 5u, t3, 6u, t3, 7u, t3, 8u, t3, 9u, u

• Q: How should features be ranked in terms of importance?
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Plan for this course – light at the end of the tunnel...

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Unit #07

Principles of Symbolic XAI – Feature Attribution



Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Detour: Standard SHAP Intro (from another course...)
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What are Shapley values?

• First proposed in game theory in the early 50s by L. S. Shapley [Sha53]

• Measures the contribution of each player to a cooperative game

• Application in XAI since the 2000s [LC01, SK10, SK14, DSZ16, LL17, ABBM21, VLSS21, VLSS22, ABBM23]

• Popularized by SHAP [LL17]

• Used for feature attribution, i.e. relative feature importance

• Shapley values are becoming ubiquitous in XAI... – E.g. see slides from other XAI course...

• Q: Do Shapley values for XAI really provide a rigorous measure of feature importance?
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How are Shapley values used in explainability?

• Instance: (v, c)

• Υ: 2F Ñ 2F defined by, [ABBM21, ABBM23]

Υ(S) = tx P F | ^iPS xi = viu

Υ(S) gives points in feature space having the features in S fixed to their values in v
• ϕ: 2F Ñ R defined by,

ϕ(S) = 1/2|FzS|
ÿ

xPΥ(S)
κ(x) = υe(S)

ϕ(S) represents the expected value of the classifier on the points given by Υ(S)
• Sc: F Ñ R defined by,

Sc(i) =
ÿ

SĎ(Fztiu)

|S|!(|F | ´ |S| ´ 1)!

|F |!
ˆ (ϕ(S Y tiu)´ ϕ(S))

For all subsets of features, excluding i, compute the expected value of the classifier, with
and without i fixed, weighted by 1

n
( n

|S|

)´1

• Obs: Uniform distribution assumed; it suffices for our purposes
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Marginal contribution
(in SHAP lingo)!
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How are Shapley values computed in practice?

• Exact evaluation is computationally (very) hard [VLSS21, ABBM21, VLSS22, ABBM23, HMS24]

• SHAP proposes a sample-based approach; with no guarantees of rigor [LL17]

• Recent experiments revealed little to no correlation between Shapley values and SHAP’s
results [HM23c]

• Polynomial-time algorithm for deterministic decomposable boolean circuits [ABBM21]

• Polynomial-time algorithm for boolean functions represented with a truth-table [HM23c]
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What do Shapley values tell in terms of feature importance?

• [SK10] reads:
“According to the 2nd axiom, if two features values have an identical influence on the
prediction they are assigned contributions of equal size. The 3rd axiom says that if a
feature has no influence on the prediction it is assigned a contribution of 0.”
(Obs: the axioms refer to the axiomatic characterization of Shapley values.)

• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp
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• And [SK10] also reads:
“When viewed together, these properties ensure that any effect the features might have
on the classifiers output will be reflected in the generated contributions, which effectively
deals with the issues of previous general explanation methods.”

• Obs: Shapley values are defined axiomatically, i.e. no immediate relationship with
AXp’s/CXp’s or with feature (ir)relevancy

• Qs: can we have irrelevant features with a non-zero Shapley value, and/or relevant features
with a Shapley of zero?

• Recall: relevant features occur in some AXp/CXp; irrelevant features do not occur in any AXp/CXp
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :

• Issue I1 occurs if,
Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]
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Shapley values vs. feature (ir)relevancy – identified issues [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

• Boolean classifier, instance (v, c), and some i, i1, i2 P F :
• Issue I1 occurs if,

Irrelevant(i)^ (Sv(i) = 0)

• Issue I2 occurs if,
Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)

• Issue I3 occurs if,
Relevant(i)^ (Sv(i) = 0)

• Issue I4 occurs if,

[Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

• Issue I5 occurs if,
[Irrelevant(i)^ @1ďjďm,j =i (|Sv(j)| ă |Sv(i)|)]

Any of these issues is a cause
of (serious) concern per se!
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Some stats – all boolean functions with 4 variables [HM23c, HM23d, HM23e, MH23, HMS24, MSH24]

Issue-related metric Value Recap issue

# of functions 65536
# number of instances 1048576

# of I1 issues 781696
# of functions with I1 issues 65320
% I1 issues / function 99.67 [Irrelevant(i)^ (Sv(i) = 0)]

# of I2 issues 105184
# of functions with I2 issues 40448
% I2 issues / function 61.72 [Irrelevant(i1)^ Relevant(i2)^ (|Sv(i1)| ą |Sv(i2)|)]

# of I3 issues 43008
# of functions with I3 issues 7800
% I3 issues / function 11.90 [Relevant(i)^ (Sv(i) = 0)]

# of I4 issues 5728
# of functions with I4 issues 2592
% I4 issues / function 3.96 [Irrelevant(i1)^ (Sv(i1) = 0)]^ [Relevant(i2)^ (Sv(i2) = 0)]

# of I5 issues 1664
# of functions with I5 issues 1248
% I5 issues / function 1.90 [Irrelevant(i)^ @1ďjďm,j=i (|Sv(j)| ă |Sv(i)|)]
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Previous results do matter! Let’s go non-boolean...

x1

x3

x2

4 7

0

1

P t0u

P t1u
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P t0, 2u

P t1u
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DT1

row # x1 x2 x3 κ1(x) κ2(x)
1 0 0 0 0 0
2 0 0 1 4 2
3 0 0 2 0 0
4 0 1 0 0 0
5 0 1 1 7 3
6 0 1 2 0 0
7 1 0 0 1 1
8 1 0 1 1 1
9 1 0 2 1 1
10 1 1 0 1 1
11 1 1 1 1 1
12 1 1 2 1 1

Tabular representations

x1

x3

x2

2 3

0

1

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1
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4

6 7

5
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DT2

XPs: AXps/CXps
DT AXps CXps
DT1 t1u t1u

DT2 t1u t1u

Adversarial Examples
DT l0-minimal AEs
DT1 t1u

DT2 t1u

Shapley values
DT Sc(1) Sc(2) Sc(3)
DT1 0.000 0.083 -0.500

!!!

DT2 0.278 0.028 -0.222

!!

6 Shapley values can mislead
human decision-makers !

Sv issues also occur
in practice [HM23e]
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Instance ((1, 1, 2), 1) – which feature matters the most for prediction 1?
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Computing XPs – make sense...
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Computing XPs, AEs – also make sense...
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Computing XPs, AEs & Svs
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Computing XPs, AEs & Svs – what???
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Another example – arbitrary mistakes!

[LHAMS24]

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α
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• Instance: ((1, 1), 1)
• Obs: α = 1

• Sc(1) = 0

• Sc(2) = α (you can pick the α...)

Example devised by O. Letoffe, PhD student at IRIT
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More detail

row x1 x2 ρ(x) ρa(x)
α = 1/2

ρb(x)
α = 1/4

1 0 0 1´ 6α ´2 ´1/2

2 0 1 1 + 2α 2 3/2

3 1 0 1 1 1
4 1 1 1 1 1

x1

x2

1 ´ 6α 1 + 2α

1

P t0u

P t0u P t1u

P t1u

1

2

4 5

3

S rows(S) υe(S)

H 1, 2, 3, 4 1´ α

tx1u 3, 4 1

tx2u 2, 4 1 + α

tx1, x2u 4 1

i = 1

S υe(S) υe(S Y t1u) ∆1(S) ς(S) ς(S)ˆ∆1(S)

H 1´ α 1 α 1/2 α/2

t2u 1 + α 1 ´α 1/2 ´α/2

ScE(1) = 0
i = 2

S υe(S) υe(S Y t2u) ∆2(S) ς(S) ς(S)ˆ∆2(S)

H 1´ α 1 + α 2α 1/2 α

t1u 1 1 0 1/2 0

ScE(2) = α
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



Corrected SHAP scores & feature importance scores

[LHMS24, LHAMS24]

• Is the theory of Shapley values incorrect?

• What is inadequate is the characteristic function used in XAI [SK10, SK14, LL17]

• In XAI: characteristic function uses the expected value
• This defines the marginal contribution in SHAP lingo...

• Replace characteristic function based on expected values by new characteristic function
based on AXps/WAXps [LHMS24]

• Resulting scores are (still) Shapley values & identified issues no longer observed

• Observed tight connection between feature attribution and power indices from a priori
voting power

• Feature importance scores: [LHAMS24]

• Generalize recent axiomatic aggregations [BIL+24]

• Adapt best known power indices
• Devise new scores for XAI
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An initial compromise

[LHAMS24]

• Replace the characteristic function used for SHAP scores:

υe(S) := E[τ(x) | xS = vS ]

• Recall the similarity predicate:

σ(x) =
#

1 if (κ(x) = κ(v))
0 otherwise

• The new characteristic function becomes:
υs(S) := E[σ(x) | xS = vS ]

• Issues with non-boolean classifiers disappear; issues with boolean classifiers remain

• Developed SSHAP prototype using SHAP’s code base [LHMS24]
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Fixing the known issues of SHAP scores

• New characteristic function (based on WAXps):

υa(S) :=

#

1 if E[σ(x) | xS = vS ] = 1

0 otherwise

• Recall: E[σ(x) | xS = vS ] = 1 holds iff S is a WAXp

• Known issues of SHAP scores guaranteed not to occur

• Corrected SHAP scores reveal tight connection between XAI by feature selection (i.e.
WAXps) and feature attribution
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Recap: weighted voting games

• General set up of weighted voting games:

• Assembly A of voters, with m = |A|
• Each voter i P A votes Yes with ni votes; otherwise no votes are counte (and he/she votes No)

• A coalition is a subset of voters, C Ď A
• Quota q is the sum of votes required for a proposal to be approved

• Coalitions leading to sums not less than q are winning coalitions

• A weighted voting game (WVG) is a tuple [q;n1, . . . ,nm]
• Example: [12; 4, 4, 4, 2, 2, 1]

• Problem: find a measure of importance of each voter !
• I.e. measure the a priori voting power of each voter
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What are power indices?

• Power indices assign a measure of importance to each voter

• Many power indices proposed over the years:
• Penrose [Pen46]

• Shapley-Shubik [SS54]

• Banzhaf [BI65]

• Coleman [Col71]

• Johnston [Joh78]

• Deegan-Packel [DP78]

• Holler-Packel [HP83]

• Andjiga [ACL03]

• Responsability* [CH04, BIL+24]

• ...
• What characterizes power indices?

• Account for the cases when voter is critical for a winning coalition
• E.g. in previous example, Luxembourg is never critical for a winning coalition

• Account for whether coalition is subset-minimal or cardinality-minimal
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Towards defining power indices

• Understanding criticality (used at least since 1954): [SS54]

• Since the work of Shapley-Shubik [SS54], the criticality of a voter has been accounted for:
“Our definition of the power of an individual member depends on the chance he has of being
critical to the success of a winning coalition.”

• This means that a voter i is critical when:
• If the voter votes Yes, then we have a winning coalition; and
• If the voter votes No, then we have a losing coalition.

• Understanding (subset-)minimal winning coalitions:

• A winning coalition is subset-minimal if removing any single voter results in a losing coalition
• A winning coalition is cardinality-minimal if it has the smallest cardinality among
subset-minimal winning coalitions

• Recall that minimal winning coalitions can be obtained by computing the AXps of a
monotonically increasing boolean classifier
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Example power indices I

[LHAMS24]

• Necessary definitions (using formal XAI notation...):
WAi(E) = tS Ď F |WAXp(S; E)^ i P Su
WCi(E) = tS Ď F |WCXp(S; E)^ i P Su

Ai(E) = tS Ď F |AXp(S; E)^ i P Su
Ci(E) = tS Ď F | CXp(S; E)^ i P Su

• Definitions of WA, WC, A, and C mimic the ones above, but without specifying a voter

• Power indices of Holler-Packel and Deegan-Packel: [HP83, DP78]

ScH(i; E) =
ÿ

SPAi(E)
(1/|A(E)|)

ScD(i; E) =
ÿ

SPAi(E)
(1/(|S| ˆ |A(E)|))

• Obs: One only needs the AXps
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Example power indices II

• Additional definitions:
Crit(i,S; E) := WAXp(S; E)^␣WAXp(Sztiu; E)

• Power indices of Shapley-Shubik, Banzhaf and Johnston: [SS54, BI65, Joh78]

ScS(i; E) =
ÿ

SĎF^Crit(i,S;E)

(
1/

(
|F | ˆ

(|F | ´ 1

|S| ´ 1

)))
ScB(i; E) =

ÿ

SĎF^Crit(i,S;E)
(1/2|F|´1)

ScJ(i; E) =
ÿ

SĎF^Crit(i,S;E)
(1/∆(S))

• One needs the WAXps to find critical voters...
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Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215



Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215



Example #01

• WVG: [9; 9, 2, 2, 2, 2, 1, 1]

• AXps:
1
2 3 4 5 6
2 3 4 5 7

• Holler-Packel scores: x0.333, 0.667, 0.667, 0.667, 0.667, 0.333, 0.333y
• Banzhaf scores (normalized): x0.813, 0.040, 0.040, 0.040, 0.040, 0.013, 0.013y
• Shapley-Shubik scores: x0.810, 0.043, 0.043, 0.043, 0.043, 0.010, 0.010y

• Different relative orders of voter importance... which ones seem more realistic?

© J. Marques-Silva 200 / 215



Example #02

• WVG: [16; 10, 6, 4, 2, 2]

• AXps:
1 2

1 3 4

1 3 5

• Deegan-Packel scores: x0.389, 0.167, 0.222, 0.111, 0.111y
• Banzhaf scores (normalized): x0.524, 0.238, 0.143, 0.048, 0.048y
• Shapley-Shubik scores: x0.617, 0.200, 0.117, 0.033, 0.033y

• Different relative orders of voter importance... which ones seem more realistic?
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Example #03

• WVG: [6; 4, 2, 1, 1, 1, 1]

• AXps:
2 3 4 5 6
1 3 4
1 4 5
1 4 6
1 3 6
1 5 6
1 2
1 3 5
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• Shapley-Shubik scores: x0.533, 0.133, 0.083, 0.083, 0.083, 0.083y
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Example #04

• WVG: [21; 12, 9, 4, 4, 1, 1, 1]

• AXps:
1 2
1 3 4 5
1 3 4 6
1 3 4 7

• Deegan-Packel scores: x0.312, 0.125, 0.188, 0.188, 0.062, 0.062, 0.062y
• Banzhaf scores (normalized): x0.481, 0.309, 0.086, 0.086, 0.012, 0.012, 0.012y
• Shapley-Shubik scores: x0.574, 0.257, 0.074, 0.074, 0.007, 0.007, 0.007y

• Different relative orders of voter importance... which ones seem more realistic?
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Outline – Unit #07

Exact Shapley Values for XAI

Myth #03: Shapley Values for XAI

Corrected SHAP Scores

Voting Power & Power Indices

Feature Importance Scores



From power indices to feature importance scores

• A Feature Importance Score (FIS) is a measure of feature importance in XAI,
parameterizable on an explanation problem and a chosen characteristic function

• Explanation problem: (M, (v, q))
• Define characteristic function using explanation problem (more next slide)

• Obs: Can adapt (generalized) power indices as templates for feature importance scores

• Obs: Can devise new templates and/or new FISs
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Some examples (1 of 2)

• More notation:
∆i(S; E , υ) = υ(S; E)´ υ(Sztiu; E)

• Can use any characteristic function, including those presented earlier in this lecture

• Some templates:
• Shapley-Shubik:

TScS(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)
|F | ˆ

(
|F|´1
|S|´1

))
• Banzhaf:

TScB(i; E , υ) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υ)

2|F|´1

)

• Can use other templates

• Can devise FISs without exploiting existing templates
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Some examples (2 of 2)

• Recall WAXp based characteristic function:

υa(S) :=

#

1 if E[σ(x) | xS = vS ] = 1

0 otherwise

• Some FISs:
• Shapley-Shubik:

ScS(i; E) := TScS(i; E , υa) :=
ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)
|F | ˆ

(
|F|´1
|S|´1

))

• Banzhaf:
ScB(i; E) := TScB(i; E , υa) :=

ÿ

SPtT ĎF | iPT u

(
∆i(S; E , υa)

2|F|´1

)
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A concrete example

• AXps: tt1, 3, 4u, t2, 3, 4uu

• Feature attribution:

• SS: x0.083, 0.083, 0.417, 0.417y
• B (norm.): x0.125, 0.125, 0.375, 0.375y
• J (norm.): x0.111, 0.111, 0.389, 0.389y
• HP: x0.167, 0.167, 0.333, 0.333y
• DP: x0.167, 0.167, 0.333, 0.333y

x1

x2

0 x3

0 x4

0 1

x3

0 x4

0 1

= 0

= 0 = 1

= 0 = 1

= 0 = 1

= 1

= 0 = 1

= 0 = 1

1

2

4
5

8
9

12 13

3

6
7

10 11
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Questions?
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Unit #08

Conclusions & Research Directions



Outline – Unit #08

Some Words of Concern

Conclusions & Research Directions



Can heuristic XAI’s myths be stopped?

LIME on 2023/05/31:
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Can heuristic XAI’s myths be stopped?

SHAP on 2023/05/31:
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Can heuristic XAI’s myths be stopped?

SHAP on 2024/07/02:
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What’s the bottom line?

• (Heuristic) XAI research experiences a persistent “Don’t Look Up” moment...

BTW, there are a multitude
of proposed uses of
LIME/SHAP in medicine... "
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Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]
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Some unsettling works...

• For DTs:
• One AXp in polynomial-time [IIM20, HIIM21, IIM22]

• All CXps in polynomial-time [HIIM21, IIM22]

Plenty of redundancy
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Outline – Unit #08

Some Words of Concern

Conclusions & Research Directions



Conclusions

• Covered logic-based (aka symbolic, aka formal) XAI & its recent progress:
• Abductive & contrastive explanations
• Reviewed their computation in practice
• Duality & enumeration
• Other explainability queries – feature necessity & relevancy

• Showed that formal XAI disproves some myths of (heuristic) XAI:
• Explainability using intrinsic interpretability is a myth
• The rigor of model-agnostic explanations is a myth
• The rigor of SHAP scores as a measure of relative feature importance is a myth

• Demonstrated tight connection between (rigorous) feature selection and (rigorous)
feature attribution in XAI

• Symbolic XAI exhibits links with many fields of research:
machine learning, artificial intelligence, formal methods, automated reasoning,
optimization, computational social choice (& game theory), etc.
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Research directions

• Scalabilitty, scalability, and scalability

• Probabilitistic explanations

• Distance-restricted explanations

• Rigorous feature attribution

• Preferred explanations

• Certified XAI tools

• New topics from discussions with participants of ESSAI’24 – Thank you!

• ... And trying to curb the massive momentum of (heuristic) XAI myths!
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What this course covered

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Q & A

Acknowledgment: joint work with X. Huang, Y. Izza, O. Létoffé, A. Ignatiev, N. Narodytska, M.
Cooper, N. Asher, A. Morgado, J. Planes, et al.
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