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My team’s recent & not so recent work...
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New area of research, since circa 2018...
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New area of research, since circa 2018...

Enhancing ML by
exploiting AR & FM !
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Lecture 01
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Recent & ongoing ML successes
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Can we trust ML models?

• Accuracy in training/test data

• Complex ML models are brittle
• Extensive work on finding adversarial examples
• Extensive work on learning robust ML models

• More recently, complex ML models hallucinate

• One must be able to validate operation of ML model, with rigor
• Explanations; robustness; verification
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ML models are brittle — adversarial examples
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ML models are brittle — adversarial examples

http://g
radien

tscienc
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rial/
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Adversarial examples can be very problematic

Finlayson et al., Nature 2019
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eXplainable AI (XAI)

• Complex ML models are opaque
• Goal of XAI: to help humans understand ML models
• Many questions to address:

• Properties of explanations
• How to be human understandable?
• How to answer Why? questions? I.e. Why the prediction?
• How to answer Why Not? questions? I.e. Why not some other prediction?
• Which guarantees of rigor?

• Other queries: enumeration, membership, preferences, etc.
• Links with robustness, fairness, model learning
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Importance of XAI

©DARPA
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Importance of XAI

©DARPA
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XAI & EU guidelines (AI HLEG)
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XAI & the principle of explicability

& thousands of recent papers!
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XAI for high-risk & safety-critical applications

• High-risk (EU regulations): [EU21b, EU21a]

• Law enforcement
• Management and operation of critical infrastructure
• Biometric identification and categorization of people
• ...

• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
• ...

• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...

MINIMAL RISK

LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS
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XAI for high-risk & safety-critical applications
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• And safety-critical:
• Self-driving cars
• Autonomous vehicles
• Autonomous aereal devices
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• Correctness of explanations is paramount!
• To build trust
• To help debug AI systems
• To prevent (catastrophic) accidents
• ...
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LIMITED RISK

HIGH RISK

UNACCEPTABLE RISK

RISK IN AI SYSTEMS

Main motivation
for our work !
(since 2019)
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Can we trust (non-symbolic) XAI? – some questions

• Many proposed solutions for XAI
• Most, and the better-known, are heuristic
• I.e. no guarantees of rigor

• Many proposed uses of XAI
• Regular complaints about issues with existing (heuristic) methods of XAI

• Q: Can heuristic XAI be trusted in high-risk and/or safety-critical domains?
• Q: Can we validate results of heuristic XAI?
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What have we been up to? 1. Created the field of symbolic (formal) XAI – I

[MI22, Mar22, MS23, Mar24]

• Rigorous, logic-based, definitions of explanations

• Relationship with abduction – abductive explanations (AXps)
• Contrastive explanations (CXps) [Mil19]

• Duality between AXps & CXps

• AXps are MHSes of CXps and vice-versa

• Tractability results

• Devised efficient poly-time algorithms

• Intractability results

• Devised efficient methods
• Links with automated reasoners

• Wealth of computational problems related with AXps/CXps NBCs

Monotonic

d-DNNF
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DTs
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NNs

BNs
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What have we been up to? 1. Created the field of symbolic (formal) XAI – II

[MI22, Mar22, MS23, Mar24]

2019 2020 2021 2022 2023

XP definitions

AXp, CXp, duality

Tractability

DTs, NBCs, etc.

Efficient solutions

RFs, DLs, BTs, etc.

Queries

Member., Enum., etc.

Input distrib.

Inp. constr.

Prob. XPs

DTs, NBCs, etc.

New topics

Distil., etc.
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – I

[RSG16, LL17, RSG18, Rud19]
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What have we been up to? 2. Uncovered key myths of non-symbolic XAI – II

[MSH24, HMS24, HM23]
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Plan for this course

• Lecture 01 – units:
• #01: Foundations

• Lecture 02 – units:
• #02: Principles of symbolic XAI – feature selection
• #03: Tractability in symbolic XAI (& myth of interpretability)

• Lecture 03 – units:
• #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
• #05: Explainability queries

• Lecture 04 – units:
• #06: Advanced topics

• Lecture 05 – units:
• #07: Principles of symbolic XAI – feature attribution (& myth of Shapley values in XAI)
• #08: Conclusions & research directions
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Unit #01

Foundations



Classification problems

• Set of features F = t1, 2, . . . ,mu, each feature i taking values from domain Di
• Features can be categorical, discrete or real-valued
• Feature space: F = Πm

i=1Di

• Set of classes K = tc1, . . . , cKu

• ML modelMC computes a (non-constant) classification function κ : F Ñ K
• MC is a tuple (F ,F,K, κ)

• Instance (v, c) for point v = (v1, . . . , vm) P F, with prediction c = κ(v), c P K
• Goal: to compute explanations for (v, c)
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Regression problems

• For regression problems:
• Codomain: V
• Regression function: ρ : F Ñ V (non-constant)
• ML model: MR is a tuple (F ,F,V, ρ)

• General ML model:
• T: range of possible predictions
• Non-constant function τ : F Ñ T

• ML model: M is a tuple (F ,F,T, τ)

• Instance: (v,q), q P T
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Example ML models – classification – decision trees (DTs)

x1

Y x2

x3

x1

Y N

Y

N

P t4..MxPu P t0..3u

P tMnA..25u

P t0u

P t2, 3u P t0, 1u

P t1u

P t26..MxAu

1

2
3

4

6

8 9

7

5

• Literals in DTs can use = or P
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Example ML models – regression – regression trees (RTs)

x1

x3

x2

9/2 9/4

0

1/2

P t0u

P t1u

P t0u P t1u

P t0, 2u

P t1u
1

2

4

6 7

5

3

• Literals in RTs can use = or P
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Example ML models – classification – rules

• Ordered rules – decision lists (DLs):

IF x1 ^ x2 THEN predict Y
ELSE IF ␣x2 _ x3 THEN predict N
ELSE THEN predict Y
F = t1, 2, 3u;D1 = D2 = D3 = t0, 1u;K = tY,Nu

• Unordered rules – decision sets (DSs):

IF x1 + x2 ě 0 THEN predict ‘

IF x1 + x2 ă 0 THEN predict a

F = t1, 2u;D1 = D2 = R;K = t‘ , au

• Issues of DSs: overlap; incomplete coverage
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Example ML models – classification – random forests (RFs)

x1

x2

0 2

1

P t0, 1u

P t0, 2u P t1u

P t2u
1

2

4 5

3

x1

x2

1 2

x3

1 0

P t0u

P t0, 1u P t2u

P t1, 2u

P t0u P t1, 2u

1

2

4 5

3

6 7

x1

0 x3

2 1

P t1, 2u P t0u

P t0, 1u P t2u

1

2
3

4 5

• For each input, each DT picks a class
• Result uses majority or weighted voting of the DTs
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Example ML models – classification – neural networks (NNs)

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Basics of (non-symbolic) XAI – more detail later

• Feature attribution:
• LIME [RSG16]

• SHAP [LL17]

• ...

• Feature selection:
• Anchors [RSG18]

• ...
• Hybrid approaches:

• Saliency maps [BBM+15]

• ...
• Intrinsic interpretability: [Mol20, Rud19]

• DTs, DLs, ...
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Some examples

• Anchors: [RSG18]

• SHAP: [LL17, LEC+20]

© J. Marques-Silva 25 / 45



Some examples

• Anchors: [RSG18]

• SHAP: [LL17, LEC+20]

© J. Marques-Silva 25 / 45



Outline – Unit #01

ML Models: Classification & Regression Problems
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What explanations do we seek? I.e. how to answer Why? questions?

• How to answer a Why? question? I.e. “ Why (the prediction)? ”

• Our answer to a Why? question is a rule:

IF <COND> THEN κ(x) = c

• Explanation: set of literals (or just features) in <COND>; irreducibility matters !
• <COND> is sufficient for the prediction

• Obs: rules are used in tools like Anchors [RSG16]

• An anchor is a “high-precision rule” [RSG16]

• We seek a rigorous definition of rules for answering Why? questions such that,

• <COND> is sufficient for the prediction
• <COND> is irreducible

• We also seek the algorithms for the rigorous computation of such rules
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A decision list example

IF ␣x1 ^ x2 THEN predict Y
ELSE IF ␣x1 ^ x3 THEN predict Y
ELSE IF x4 ^ x5 THEN predict N
ELSE THEN predict Y

• Explanation for why κ(1, 1, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4, x5),
IF (x1 = 1)^ (x4 = 1)^ (x5 = 1) THEN κ(x) = N

• I.e. tx1 = 1, x4 = 1, x5 = 1u suffice for DL to predict N

• Explanation for why κ(1, 0, 0, 0, 0) = Y?

• Given x = (x1, x2, x3, x4, x5),
IF (x4 = 0) THEN κ(x) = Y

• I.e. tx4 = 0u suffices for DL to predict Y
• Given x = (x1, x2, x3, x4, x5),
IF (x5 = 0) THEN κ(x) = Y

• I.e. tx5 = 0u also suffices for DL to predict Y
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A decision tree example

x1
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• Explanation for why κ(0, 0, 0, 0) = 1?

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x2 = 0u suffice for DT to
predict 1

• Explanation for why κ(1, 1, 1, 1) = 0?

• Given x = (x1, x2, x3, x4),
IF (x1 = 1) THEN κ(x) = 0

• I.e. tx1 = 1u suffices for DT to predict 0

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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A random forest example [IMS21]
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• Explanation for why κ(1, 0, 0, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x2 = 0) THEN κ(x) = N
• I.e. tx2 = 0u suffices for DT to predict N

• Explanation for why κ(1, 1, 1, 1) = Y?

• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?

• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y
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• Explanation for why κ(1, 1, 1, 1) = Y?
• Given x = (x1, x2, x3, x4), IF (x1 = 1)^ (x2 = 1) THEN κ(x) = Y
• I.e. tx1 = 1, x2 = 1u suffice for DT to predict Y

• Explanation for why κ(0, 1, 1, 1) = N?
• Given x = (x1, x2, x3, x4), IF (x1 = 0)^ (x2 = 1)^ (x3 = 1) THEN κ(x) = N
• I.e. tx1 = 0, x2 = 1, x3 = 1u suffices for DT to predict N

x1 x2 x3 x4 T1 T2 T3 κ(x)
0 0 0 0 N N N N
0 0 0 1 N Y N N
0 0 1 0 N N N N
0 0 1 1 N N N N
0 1 0 0 N N Y N
0 1 0 1 N Y Y Y
0 1 1 0 N N N N
0 1 1 1 N N N N
1 0 0 0 N N N N
1 0 0 1 N Y N N
1 0 1 0 N N Y N
1 0 1 1 N N Y N
1 1 0 0 Y N Y Y
1 1 0 1 Y Y Y Y
1 1 1 0 Y N Y Y
1 1 1 1 Y N Y Y
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A neural network example

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 κ(x)
0 0 -0.5 0 0
0 1 0.5 0.5 1
1 0 0.5 0.5 1
1 1 1.5 1.5 1

• Explanation for why κ(1, 1) = 1?

• Given x = (x1, x2), IF (x1 = 1) THEN κ(x) = 1
• I.e. tx1 = 1u suffices for NN to predict 1
• Given x = (x1, x2), IF (x2 = 1) THEN κ(x) = 1
• I.e. tx2 = 1u suffices for NN to predict Y
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An arbitrary classifier

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 0, 0, 0), 1)

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• I.e. tx1 = 0, x3 = 0u suffices for DT to predict 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

© J. Marques-Silva 32 / 45

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/


Standard tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT: [BHvMW09]

• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

Basic knowledge on
SAT & SMT assumed.
See links below.
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SAT/SMT/MILP/CP solvers used as oracles – more detail later

• Deciding satisfiability, entailment

• Computing prime implicants/implicates

• Computing MUSes, MCSes
• Algorithms: Deletion, QuickXplain, Progression, Dichotomic, etc. [MM20]

• Enumeration of MUSes, MCSes
• Algorithms: Marco, Camus, etc. [LS08, LPMM16]

• Solving MaxSAT, MaxSMT
• Algorithms: Core-guided, Minimum hitting sets, branch&bound, etc. [MHL+13]

• Solving quantification problems, e.g. QBF
• Algorithms: Abstraction refinement [JKMC16]
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Basic definitions in propositional logic

• Atoms (tx, x1, . . .u) & literals (x1,␣x1)

• Well-formed formulas using ␣, ^,_, . . .

• Clause: disjunction of literals

• Term: conjunction of literals

• Conjunctive normal form (CNF): conjunction of clauses

• Disjunctive normal form (DNF): disjunction of terms

• Simple to generalize to more expressive domains

• CO(ψ(x)) decides whether ψ(x) is satisfiable (i.e. whether it is consistent), using an oracle
for SAT/SMT/MILP/CP/etc.
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Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ ( φ, if:

@(x P F).[τ(x)Ñφ(x)]

• We say that τ(x) is sufficient for φ(x)

• To decide entailment:
• τ ( φ if τ(x)^␣φ(x) is not consistent, i.e. CO(τ(x)^␣φ(x)) does not hold

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1( φ and ␣x2( φ

• Also, CO(x1 ^ (␣x1 ^ x2)) does not
hold

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ and x1 ^ x3( φ

• Also, CO(x1^ x2^ ((␣x1_␣x2)^ (␣x1_␣x3)))
does not hold
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Entailment & explanations – how do we construct explanations?

• Classification function:

κ(x1, x2, x3, x4) = ␣x1^␣x2_x1^x2^x4_␣x1^x2^␣x3_␣x2^x3^x4

• Instance: ((0, 1, 0, 0), 1)

• Localized explanation: any irreducible conjunction of
literals, consistent with v, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x3 = 0) THEN κ(x) = 1

• Global explanation: any irreducible conjunction of literals,
that is consistent, and that entails the prediction

• Given x = (x1, x2, x3, x4),
IF (x1 = 0)^ (x2 = 0) THEN κ(x) = 1

x1 x2 x3 x4 κ(x)
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
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Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



Decision sets with boolean features

• Example ML model:
Features: x1, x2, x3, x4 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance, i.e. is there overlap?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification) [Tse68, PG86]

Or use PySAT [IMM18]

6 There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]
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x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !
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Example – encoding a simple NN in MILP

x0 = 1

x1

x2

ř

Sum

r1 =
řn
i=0 wixi

-0.5

+1

+1Inputs

ReLU

y1 = max(r1, 0)

r1 y1

y1 = max(x1 + x2 ´ 0.5, 0)

o1 = ITE(y1 ą 0, 1, 0)

x1 x2 r1 y1 o1
0 0 -0.5 0 0
1 0 0.5 0.5 1
0 1 0.5 0.5 1
1 1 1.5 1.5 1

MILP encoding:
x1 + x2 ´ 0.5 = y1 ´ s1
z1 = 1Ñ y1 ď 0

z1 = 0Ñ s1 ď 0

o1 = (y1 ą 0)

x1, x2, z1, o1 P t0, 1u
y1, s1 ě 0

Instance: (x, c) = ((1, 0), 1)

1 + 0´ 0.5 = 0.5´ 0

1_ 0.5 ď 0

0_ 0 ď 0

1 = (0.5 ą 0)

x1 = 1, x2 = 0, z1 = 0, o1 = 1

y1 = 0.5, s1 = 0

Checking: x = (0, 0)

0 + 0´ 0.5 = 0´ 0.5

0_ 0 ď 0

1_ 0.5 ď 0

0 = (0 ą 0)

x1 = 0, x2 = 0, z1 = 1, o1 = 0

y1 = 0, s1 = 0.5
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Outline – Unit #01

ML Models: Classification & Regression Problems

Basics of (non-symbolic) XAI

Motivation for Explanations

Brief Glimpse of Logic

Reasoning About ML Models

Understanding Intrinsic Interpretability



What is intrinsic interpretability?

• Goal is to deploy interpretable ML models [Rud19, Mol20, RCC+22, Rud22]

• E.g. Decision trees, decision lists, decision sets, etc.

• The explanation is the model itself, because it is interpretable

• But: definition of interpretability is rather subjective... [Lip18]

x1

0 x2

1 x3

0 1

1 0

1 0

0 1

• What is an explanation for ((0, 0, 1), 1)?
• Clearly, IF ␣x1 ^␣x2 ^ x3 THEN κ(x) = 1

•

• It is the case that: IF ␣x1 ^ x3 THEN κ(x) = 1

6 t1, 3u is also sufficient for the prediction!

• t1, 3u is easier to grasp; also, it is irreducible
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Are interpretable models really interpretable? – DTs

x1
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x3

0 x4
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0 1
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1
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= 0

= 0 = 1

= 0

= 0 = 1
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= 1

= 0

= 0 = 1

= 1

= 1
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4

6
7

10

14 15

11

5

8

12 13

9

3

• Case of optimal decision tree (DT) [HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

• Clearly, IF ␣x1 ^␣x2 ^ x3 ^␣x4 ^ x5 THEN κ(x) = 1

• But, x1, x2, x4 are irrelevant for the prediction:
x3 x5 x1 x2 x4 κ(x)

1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

6 fixing t3, 5u suffices for the prediction
Compare with t1, 2, 3, 4, 5u...
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Are interpretable models really interpretable? – DLs [MSI23]

R1 : IF (x1 ^ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ^ x4 ^ x6) THEN κ(x) = 0

R3 : ELSE IF (␣x1 ^ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ^ x6) THEN κ(x) = 0

R5 : ELSE IF (␣x1 ^␣x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R2 fires

• What is an explanation for the prediction?
• Fixing t3, 4, 6u suffices for the prediction

• • We need 3 (or 1) so that R1 cannot fire
• With 3, we do not need 2, since with 4 and 6 fixed, then R4 is guaranteed to fire

• Some questions:

• Would average human decision maker be able to understand the irreducible set t3, 4, 6u?
• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?
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• Would he/she be able to compute the set t3, 4, 6u, by manual inspection?
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