LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA, Univ. Lleida, Catalunya, Spain

ESSAI, Athens, Greece, July 2024

Lecture 02

• ML models: classification & regression

- ML models: classification & regression
- Glimpse of heuristic XAI

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules
- Logic-based reasoning of ML models
- Apparent difficulties with explaining interpretable models

- Lecture 01 units:
 - #01: Foundations
- Lecture 02 units:
 - #02: Principles of symbolic XAI feature selection
 - #03: Tractability in symbolic XAI (& myth of interpretability)
- Lecture 03 units:
 - #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
 - #05: Explainability queries
- Lecture 04 units:
 - #06: Advanced topics
- Lecture 05 units:
 - #07: Principles of symbolic XAI feature attribution (& myth of Shapley values in XAI)
 - #08: Conclusions & research directions

Unit #02

Principles of Symbolic XAI – Feature Selection

• Notation:

• What is an explanation?

Mapping
$x_1 = 1$ iff Length = Long
$x_2 = 1$ iff Thread = New
$x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$
$\kappa(\cdot)=0$ iff $\kappa'(\cdots)=$ Skips

• Notation:

Rewritten DT 0 1 0

Mapping
$x_1 = 1$ iff Length = Long
$x_2 = 1$ iff Thread = New
$x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$
$\kappa(\cdot) = 0$ iff $\kappa'(\cdots) = Skips$

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN $\kappa(\mathbf{x}) = c$

Notation:

Mapping
$x_1 = 1$ iff Length = Long $x_2 = 1$ iff Thread = New
$x_2 = 1$ in thread = New $x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$ $\kappa(\cdot) = 0$ iff $\kappa'(\cdots) = \text{Skips}$

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN $\kappa(\mathbf{x}) = c$

Explanation: set of literals (or just features) in <COND>; irreducibility matters! .

Notation:

Mapping
$x_1 = 1$ iff Length = Long
$x_2 = 1$ iff Thread = New
$x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$
$\kappa(\cdot)=0$ iff $\kappa'(\cdots)=$ Skips

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN $\kappa(\mathbf{x}) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
- **E.g.**: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?

Notation:

Rewritten DT 0 1 0

Mapping
$x_1 = 1$ iff Length = Long
$x_2 = 1$ iff Thread = New
$x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$
$\kappa(\cdot)=0$ iff $\kappa'(\cdots)=$ Skips

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN $\kappa(\mathbf{x}) = c$
- - Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
 - **E.g.**: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?
 - It is the case that, IF $\neg x_1 \land \neg x_2 \land x_3$ THEN $\kappa(\mathbf{x}) = 1$

Notation:

Mapping
$x_1 = 1$ iff Length = Long
$x_2 = 1$ iff Thread = New
$x_3 = 1$ iff Author = Known
$\kappa(\cdot) = 1$ iff $\kappa'(\cdots) = \text{Reads}$
$\kappa(\cdot)=0$ iff $\kappa'(\cdots)=$ Skips

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF <COND> THEN $\kappa(\mathbf{x}) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters! .
- **E.g.**: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?
 - It is the case that, IF $\neg x_1 \land \neg x_2 \land x_3$ THEN $\kappa(\mathbf{x}) = 1$
 - One possible explanation is $\{\neg x_1, \neg x_2, x_3\}$ or simply $\{1, 2, 3\}$

The similarity predicate

[Mar24]

- Recall ML models for classification & regression:
 - Classification: $\mathcal{M}_{C} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

The similarity predicate

- Recall ML models for classification & regression:
 - Classification: $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - · General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

• Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$

- Classification: $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$
 - + Obs: For boolean classifiers, no need for σ
- Regression: $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \le \delta]$, where δ is user-specified

The similarity predicate

- $\cdot\,$ Recall ML models for classification & regression:
 - Classification: $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_{R} = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - · General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

• Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$

- Classification: $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$
 - + Obs: For boolean classifiers, no need for σ
- Regression: $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \le \delta]$, where δ is user-specified
- Bottom line:

Reason about symbolic explainability by abstracting away type of ML model

• Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) \quad \coloneqq \quad \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (X_j = V_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$

• But, WAXp is monotone; hence,

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \setminus \{t\})$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$\mathsf{WAXp}(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$

• Defining AXp (from weak AXps, WAXps):

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$

• But, WAXp is monotone; hence,

 $\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \setminus \{t\})$

- Finding one AXp (example algorithm; many more exist):
 - Let $\mathcal{X} = \mathcal{F}$, i.e. fix all features
 - Invariant: $WAXp(\mathcal{X})$ must hold. Why?
 - Analyze features in any order, one feature *i* at a time
 - If WAXp($\mathcal{X} \setminus \{i\}$) holds, then remove *i* from \mathcal{X} , i.e. *i* becomes free

[MM20]

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

• Classifier:

$$\kappa(\mathsf{x}_1,\mathsf{x}_2,\mathsf{x}_3,\mathsf{x}_4) = \bigvee_{i=1}^4 \mathsf{x}_i$$

• Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg X_2 \land \neg X_3 \land X_4 \rightarrow \kappa(X_1, X_2, X_3, X_4)$?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes

Recap weak AXp:
$$\forall (\mathbf{x} \in \mathbb{F})$$
. $\bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0, 1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? **Yes**
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$?

Recap weak AXp:
$$\forall (\mathbf{x} \in \mathbb{F})$$
. $\bigwedge_{j \in \mathcal{X}} (X_j = v_j) \rightarrow (\sigma(\mathbf{x}))$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No
- AXp $\mathcal{X} = \{4\}$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- · Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No
- AXp $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4) . \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No
- AXp $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
 - Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: $\forall (\mathbf{x} \in \mathbb{F})$. $\bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of $\Upsilon(\mathcal{S})$:

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{ \mathbf{x} \in \mathbb{F} \, | \, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}} \}$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of $\Upsilon(\mathcal{S})$:

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{ \mathbf{x} \in \mathbb{F} \, | \, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}} \}$$

• Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad \frac{1}{|\Upsilon(\mathcal{S}; \mathbf{v})|} \sum_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of $\Upsilon(S)$:

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{\mathbf{x} \in \mathbb{F} \mid \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}\}$$

• Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad 1/|\Upsilon(\mathcal{S}; \mathbf{v})| \sum_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

• Expected value, real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \mid \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad \frac{1}{|\Upsilon(\mathcal{S}; \mathbf{v})|} \int_{\Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x}) d\mathbf{x}$$

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) \quad := \quad \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$

• Using expected values:

 $\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$

[WMHK21, IHI+22, ABOS22, IHI+23]

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$

• Using expected values:

 $\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$

- Definition of AXp remains unchanged
 - This is true when comparing against 1

• Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (X_j = V_j) \land (\neg \sigma(\mathbf{x}))$$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$\mathsf{WCXp}(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (X_j = V_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$\mathsf{NCXp}(\mathcal{Y}) \quad \coloneqq \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (\mathsf{x}_j = \mathsf{v}_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

• But, WCXp is also monotone; hence,

 $\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \setminus \{t\})$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$\mathsf{NCXp}(\mathcal{Y}) \quad \coloneqq \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

• But, WCXp is also monotone; hence,

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \setminus \{t\})$$

- Finding one CXp:
 - · Let $\mathcal{Y} = \mathcal{F}$, i.e. free all features
 - Invariant: $WCXp(\mathcal{Y})$ must hold. Why?
 - Analyze features in any order, one feature *i* at a time
 - If $WCXp(\mathcal{Y} \setminus \{i\})$ holds, then remove *i* from \mathcal{Y} , i.e. *i* is becomes fixed

[MM20]

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- · Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point $\mathbf{v}=(0,0,0,1)$ with prediction $\kappa(\mathbf{v})=1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$?

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point $\mathbf{v}=(0,0,0,1)$ with prediction $\kappa(\mathbf{v})=1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point $\mathbf{v}=(0,0,0,1)$ with prediction $\kappa(\mathbf{v})=1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$?

Recap weak CXp:
$$\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- + Point $\mathbf{v}=(0,0,0,1)$ with prediction $\kappa(\mathbf{v})=1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes

Recap weak CXp:
$$\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$?

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1,x_2,x_3,x_4)$?

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1, x_2, x_3, x_4)$? No

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}) . \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

• Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1,2,3,4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4) . \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1, x_2, x_3, x_4)$? No
- CXp $\mathcal{Y} = \{4\}$
- Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F})$. $\bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

 $\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$

 $\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$

• Using expected values:

 $\mathsf{WCXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$

 $\mathsf{WCXp}(\mathcal{S}) \quad := \quad \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$

• Using expected values:

 $\mathsf{WCXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$

• Definition of CXp remains unchanged

- \cdot AXps and CXps are defined locally (because of $\mathbf{v})$ but hold globally
 - Localized explanations
 - Can be viewed as attempt at formalizing local explanations
- One can define explanations without picking a given point in feature space
 - Let $q \in \mathbb{T}$, and refefine the similarity predicate:
 - Classification: $\sigma(\mathbf{x}) = [\kappa(\mathbf{x}) = q]$
 - Regression: $\sigma(\mathbf{x}) = [|\kappa(\mathbf{x}) q| \leq \delta]$, δ is user-specified
 - Let $\mathbb{L} = \{ (x_i = v_i) \mid i \in \mathcal{F} \land v_i \in \mathbb{V} \}$
 - $\cdot \,$ Let $\mathcal{S} \subsetneq \mathbb{L}$ be a subset of literals that does not repeat features, i.e. \mathcal{S} is not inconsistent
 - \cdot Then, ${\cal S}$ is a global AXp if,

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{(x_i = v_i) \in \mathcal{S}} (x_i = v_i) \to (\sigma(\mathbf{x}))$$

Counterexamples are minimal hitting sets of global AXps and vice-versa

[RSG16, LL17, RSG18]

[INM19b]

Definitions of Explanations

Duality Properties

Computational Problems

[INAM20, Mar22]

[INAM20, Mar22]

· Claim:

[INAM20, Mar22]

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:

• AXps:

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: {{3,5}}
 - CXps:

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: {{3,5}}
 - CXps: {{3}, {5}}

Duality in explainability - basic results

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: {{3,5}}
 - CXps: {{3}, {5}}
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps

Duality in explainability - basic results

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: {{3,5}}
 - CXps: {{3}, {5}}
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps
 - BTW,
 - + $\{2,5\}$ is not a CXp
 - + $\{1,2,3,4,5\}$, $\{1,2,3,5\}$ and $\{1,3,5\}$ are not AXps

Duality in explainability - basic results

[INAM20, Mar22]

• Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S} \subseteq \mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: {{3,5}}
 - CXps: {{3}, {5}}
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps
 - BTW,
 - + $\{2,5\}$ is not a CXp
 - + $\{1,2,3,4,5\}$, $\{1,2,3,5\}$ and $\{1,3,5\}$ are not AXps
 - · Why?

Definitions of Explanations

Duality Properties

Computational Problems

Computational problems in (formal) explainability

Compute one abductive/contrastive explanation

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations
- · Decide whether feature included in all abductive/contrastive explanations

- Compute one abductive/contrastive explanation
- Enumerate all abductive/contrastive explanations
- · Decide whether feature included in all abductive/contrastive explanations
- · Decide whether feature included in some abductive/contrastive explanation

 \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

• Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i)\right) \land (\neg \sigma(\mathbf{x})\right)\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \backslash \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$

Input: Predicate \mathbb{P} , parameterized by \mathcal{T} , \mathcal{M} Output: One XP \mathcal{S}

- 1: procedure $oneXP(\mathbb{P})$
- 2: $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for $i \in \mathcal{F}$ do
- 4: if $\mathbb{P}(S \setminus \{i\})$ then
- 5: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return \mathcal{S}

 $\succ \text{Initialization: } \mathbb{P}(\mathcal{S}) \text{ holds}$ $\succ \text{Loop invariant: } \mathbb{P}(\mathcal{S}) \text{ holds}$

 $\succ \text{ Update } S \text{ only if } \mathbb{P}(S \setminus \{i\}) \text{ holds}$ $\succ \text{ Returned set } S: \mathbb{P}(S) \text{ holds}$

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

Monotone predicates for WAXp & WCXp:

 $\mathbb{P}_{\exp}(\mathcal{S}) \triangleq \neg \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right) \qquad \mathbb{P}_{\exp}(\mathcal{S}) \triangleq \operatorname{\mathsf{CO}}\left(\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (x_i = v_i)\right) \land (\neg \sigma(\mathbf{x}))\right]\right)$

Input: Predicate \mathbb{P} , parameterized by \mathcal{T} , \mathcal{M} Output: One XP \mathcal{S}

- 1: procedure $oneXP(\mathbb{P})$
- 2: $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for $i \in \mathcal{F}$ do
- 4: if $\mathbb{P}(S \setminus \{i\})$ then
- 5: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return S

Exploiting MSMP, i.e. basic algorithm used for different problems. $\succ \text{Initialization: } \mathbb{P}(\mathcal{S}) \text{ holds}$ $\succ \text{Loop invariant: } \mathbb{P}(\mathcal{S}) \text{ holds}$

 $\succ \text{ Update } S \text{ only if } \mathbb{P}(S \setminus \{i\}) \text{ holds}$ $\succ \text{ Returned set } S: \mathbb{P}(S) \text{ holds}$

Detour: More Connections with Automated Reasoning

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,
 - 1. $\pi \models \varphi$
 - 2. For any $\pi' \subsetneq \pi$, $\pi' \not\models \varphi$

Prime implicants & implicates

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,
 - 1. $\pi \models \varphi$
 - 2. For any $\pi' \subsetneq \pi$, $\pi' \nvDash \varphi$
 - Example:
 - $\cdot \ \mathbb{F} = \{0,1\}^3$
 - $\cdot \varphi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 \wedge \mathbf{x}_2 \vee \mathbf{x}_1 \wedge \mathbf{x}_3$
 - Clearly, $x_1 \land x_2 \models \varphi$
 - Also, $x_1 \not\models \varphi$ and $x_2 \not\models \varphi$

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,
 - 1. $\pi \models \varphi$
 - 2. For any $\pi' \subsetneq \pi$, $\pi' \not\models \varphi$
 - Example:
 - $\cdot \ \mathbb{F} = \{0,1\}^3$
 - $\cdot \varphi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 \wedge \mathbf{x}_2 \vee \mathbf{x}_1 \wedge \mathbf{x}_3$
 - Clearly, $x_1 \wedge x_2 \models \varphi$
 - · Also, $x_1 \not\models \varphi$ and $x_2 \not\models \varphi$
- A disjunction of literals η (also viewed as a set of literals where convenient) is a prime implicate of some function φ if
 - 1. $\varphi \models \eta$
 - 2. For any $\eta' \subsetneq \eta$, $\varphi \not\models \eta'$

Reasoning about inconsistency

- \cdot Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - B: background knowledge (base), i.e. hard constraints
 - \cdot *S*: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \vDash \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$

- + Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - B: background knowledge (base), i.e. hard constraints
 - \cdot *S*: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \vDash \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
 - $\cdot \;$ Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \vDash \bot$
 - E.g. $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$

- \cdot Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - B: background knowledge (base), i.e. hard constraints
 - \cdot *S*: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \vDash \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
 - $\cdot \;$ Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
 - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
 - E.g. $C = \{(\neg x_1)\}$

- \cdot Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - B: background knowledge (base), i.e. hard constraints
 - \cdot *S*: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \vDash \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
 - $\cdot \;$ Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $U = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
 - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
 - E.g. $\mathcal{C} = \{(\neg x_1)\}$
- Duality:
 - MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- + Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \cdot *B*: background knowledge (base), i.e. hard constraints
 - \cdot *S*: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \vDash \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
 - $\cdot \;$ Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \vDash \bot$
 - E.g. $\mathcal{U} = \{(\neg x_1), (\neg x_2)\}$
- Minimal correction subset (MCS):
 - $\cdot \ \, \text{Subset-minimal set} \ \, \mathcal{C} \subseteq \mathcal{S} \text{, s.t.} \ \, \mathcal{B} \cup (\mathcal{S} \backslash \mathcal{C}) \not \models \bot$
 - E.g. $\mathcal{C} = \{(\neg x_1)\}$
- Duality:
 - $\cdot\,$ MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- Variants:
 - Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
 - Smallest(-cost) MUS

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- Let,
 - Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} (S_i \to (X_i = V_i)) \land \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Let,

 \cdot Hard constraints, \mathcal{B} :

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} (s_i \to (x_i = v_i)) \land \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

• Soft constraints: $S = \{s_i \mid i \in F\}$

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= \quad \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Let,

• Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left(\mathsf{S}_i \rightarrow (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

- Soft constraints: $S = \{s_i \mid i \in F\}$
- + Claim: Each MUS of $(\mathcal{B}, \mathcal{S})$ is an AXp & each MCS of $(\mathcal{B}, \mathcal{S})$ is a CXp

• Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= \quad \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= \quad \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

• Let,

• Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left(\mathsf{S}_i \rightarrow (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \mathsf{Encode}_{\mathcal{T}}(\neg \sigma(\mathbf{x}))$$

- Soft constraints: $S = \{s_i \mid i \in F\}$
- + Claim: Each MUS of $(\mathcal{B}, \mathcal{S})$ is an AXp & each MCS of $(\mathcal{B}, \mathcal{S})$ is a CXp
 - Can use MUS/MCS algorithms for AXps/CXps

Unit #03

Tractability in Symbolic XAI

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

[IIM20]

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent

DT explanations in polynomial time

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent
 - I.e. find a subset-minimal hitting set of all 0 paths; these are the features to keep
 - E.g. BR and TR suffice for prediction
 - Well-known to be solvable in polynomial time

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

• Finding one AXp in polynomial-time – covered
- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

- Finding one AXp in polynomial-time covered
- Finding one CXp in polynomial-time
- Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time
- Practically efficient enumeration of AXps later

• Basic algorithm:

$$\cdot \ \mathcal{L} = \varnothing$$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\mathcal I}:$ features with literals inconsistent with v

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting q:
 - + ${\cal I}:$ features with literals inconsistent with v
 - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - $\cdot \, \, \mathcal{L}$ contains all the CXps of the DT

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting q:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to ${\cal L}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to $\mathcal L$
 - + Add $\{1,4\}$ to $\mathcal L$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to ${\cal L}$
 - + Add $\{1,4\}$ to ${\cal L}$
 - $\cdot \,$ Add {3} to ${\cal L}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to ${\cal L}$
 - + Add $\{1,4\}$ to ${\cal L}$
 - \cdot Add $\{3\}$ to $\mathcal L$
 - $\cdot \, \, \operatorname{\mathsf{Add}} \, \{4\} \ \operatorname{\mathsf{to}} \, \mathcal{L}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to ${\cal L}$
 - + Add $\{1,4\}$ to ${\cal L}$
 - $\cdot \,$ Add {3} to ${\cal L}$
 - \cdot Add $\{4\}$ to $\mathcal L$
 - Remove from $\mathcal{L}\!\!:\{1,3\}$ and $\{1,4\}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - $\cdot \;\; \mathsf{Add} \; \mathcal{I} \; \mathsf{to} \; \mathcal{L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - + Add $\{1,2\}$ to ${\cal L}$
 - + Add $\{1,3\}$ to ${\cal L}$
 - + Add $\{1,4\}$ to ${\cal L}$
 - \cdot Add {3} to $\mathcal L$
 - \cdot Add $\{4\}$ to $\mathcal L$
 - + Remove from $\mathcal{L}\!\!:\{1,3\}$ and $\{1,4\}$
 - CXps: $\{\{1,2\},\{3\},\{4\}\}$

- Basic algorithm:
 - $\cdot \ \mathcal{L} = \varnothing$
 - For each leaf node not predicting *q*:
 - + ${\cal I}:$ features with literals inconsistent with v
 - + Add ${\mathcal I}$ to ${\mathcal L}$
 - $\cdot\,$ Remove from ${\cal L}$ non-minimal sets
 - + ${\mathcal L}$ contains all the CXps of the DT
- Example: instance is ((1, 1, 1, 1), 1)
 - $\cdot \mbox{ Add } \{1,2\} \mbox{ to } \mathcal{L}$
 - + Add $\{1,3\}$ to ${\cal L}$
 - + Add $\{1,4\}$ to $\mathcal L$
 - \cdot Add {3} to $\mathcal L$
 - \cdot Add $\{4\}$ to $\mathcal L$
 - + Remove from $\mathcal{L}\!\!:\{1,3\}$ and $\{1,4\}$
 - CXps: $\{\{1,2\},\{3\},\{4\}\}$
 - + AXps: {{1,3,4}, {2,3,4}}, by computing all MHSes

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Case of optimal decision tree (DT)

[HRS19]

• Explanation for (0, 0, 1, 0, 1), with prediction 1?

- Case of optimal decision tree (DT)
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
 - Clearly, IF $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$ THEN $\kappa(\mathbf{x}) = 1$

• Case of **optimal** decision tree (DT)

- [HRS19]
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
 - + Clearly, IF $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$ THEN $\kappa(\mathbf{x}) = 1$
 - But, x_1 , x_2 , x_4 are irrelevant for the prediction:

X ₃	X_5	X_1	X_2	x_4	$\kappa(\mathbf{x})$		
1	1	0	0	0	1		
1	1	0	0	1	1		
1	1	0	1	0	1		
1	1	0	1	1	1		
1	1	1	0	0	1		
1	1	1	0	1	1		
1	1	1	1	0	1		
1	1	1	1	1	1		

• Case of **optimal** decision tree (DT)

- [HRS19]
- Explanation for (0, 0, 1, 0, 1), with prediction 1?
 - + Clearly, IF $\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4 \land x_5$ THEN $\kappa(\mathbf{x}) = 1$
 - But, x_1 , x_2 , x_4 are irrelevant for the prediction:

X ₃	X_5	X_1	X_2	x_4	$\kappa(\mathbf{x})$
1	1	0	0	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

... one AXp is $\{3, 5\}$ Compare with $\{1, 2, 3, 4, 5\}$...

© J. Marques-Silva

Path with 19 internal nodes. By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) • J. Marques-Silva

Path with 19 internal nodes. By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) • J. Marques-Silva

And the cognitive limits of human decision makers are well-known [Mil56]

By manual inspection, at least 10 literals are redundant! (And at least 9 features dropped) © J. Margues-Silva

And the cognitive limits of human decision makers are well-known [Mil56]

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \dots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

• Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \ldots, i_m\}$, i.e.

 $(x_{i_1}=0) \land (x_{i_2}=0) \land \ldots \land (x_{i_{m-1}}=0) \land (x_{i_m}=1) \rightarrow \kappa(x_1,\ldots,x_m)$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \ldots, i_m\}$, i.e.

 $(\mathbf{X}_{i_1} = 0) \land (\mathbf{X}_{i_2} = 0) \land \ldots \land (\mathbf{X}_{i_{m-1}} = 0) \land (\mathbf{X}_{i_m} = 1) \rightarrow \kappa(\mathbf{X}_1, \ldots, \mathbf{X}_m)$

• But $\{i_m\}$ suffices for prediction, i.e. $\forall (\mathbf{x} \in \{0, 1\}^m) . (x_{i_m}) \rightarrow \kappa(\mathbf{x})$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \ldots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \ldots, i_m\}$, i.e.

 $(\mathbf{X}_{i_1} = 0) \land (\mathbf{X}_{i_2} = 0) \land \ldots \land (\mathbf{X}_{i_{m-1}} = 0) \land (\mathbf{X}_{i_m} = 1) \rightarrow \kappa(\mathbf{X}_1, \ldots, \mathbf{X}_m)$

- But $\{i_m\}$ suffices for prediction, i.e. $\forall (\mathbf{x} \in \{0, 1\}^m) . (X_{i_m}) \rightarrow \kappa(\mathbf{x})$
- AXp's can be arbitrarily smaller than paths in (optimal) DTs!

[IIM20, IIM22]

Explanation redundancy in DTs is ubiquitous – published DT examples

1111122	
1111/122	

DT Ref	D	#N	#P	% R	%C	%m	%M	%avg
[Alp14, Ch. 09, Fig. 9.1]	2	5	3	33	25	50	50	50
[Alp16, Ch. 03, Fig. 3.2]	2	5	3	33	25	50	50	50
[Bra20, Ch. 01, Fig. 1.3]	4	9	5	60	25	25	50	36
[BA97, Figure 1]	3	12	7	14	8	33	33	33
[BBHK10, Ch. 08, Fig. 8.2]	3	7	4	25	12	50	50	50
[BFOS84, Ch. 01, Fig. 1.1]	3	7	4	50	25	33	33	33
[DL01, Ch. 01, Fig. 1.2a]	2	5	3	33	25	33	33	33
[DL01, Ch. 01, Fig. 1.2b]	2	5	3	33	25	33	33	33
[KMND20, Ch. 04, Fig. 4.14]	3	7	4	25	12	50	50	50
[KMND20, Sec. 4.7, Ex. 4]	2	5	3	33	25	50	50	50
[Qui93, Ch. 01, Fig. 1.3]	3	12	7	28	17	33	50	41
[RM08, Ch. 01, Fig. 1.5]	3	9	5	20	12	33	33	33
[RM08, Ch. 01, Fig. 1.4]	3	7	4	50	25	33	33	33
[WFHP17, Ch. 01, Fig. 1.2]	3	7	4	25	12	50	50	50
[VLE ⁺ 16, Figure 4]	6	39	20	65	63	20	40	33
[Fla12, Ch. 02, Fig. 2.1(right)]	2	5	3	33	25	50	50	50
[Kot13, Figure 1]	3	10	6	33	11	33	33	33
[Mor82, Figure 1]	3	9	5	80	75	33	50	41
[PM17, Ch. 07, Fig. 7.4]	3	7	4	50	25	33	33	33
[RN10, Ch. 18, Fig. 18.6]	4	12	8	25	6	25	33	29
[SB14, Ch. 18, Page 212]	2	5	3	33	25	50	50	50
[Zho12, Ch. 01, Fig. 1.3]	2	5	3	33	25	33	33	33
[BHO09, Figure 1b]	4	13	7	71	50	33	50	36
[Zho21, Ch. 04, Fig. 4.3]	4	14	9	11	2	25	25	25

Many DTs have paths that are not minimal XPs – Russell&Norvig's book

• Explanation for (P, H, T, W) = (Full, Yes, Thai, No)?

[RN10]
Many DTs have paths that are not minimal XPs – Zhou's book

[Zho12

• Explanation for (x, y) = (1.25, -1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features !

Many DTs have paths that are not minimal XPs – Alpaydin's book

 $x_1 > w_{10}?$ y $x_2 > w_{20}?$ N Y O

• Explanation for $(x_1, x_2) = (\alpha, \beta)$, with $\alpha > w_{10}$ and $\beta \leq w_{20}$?

Obs: True explanations can be computed for categorical, integer or real-valued features !

© J. Marques-Silva

Many DTs have paths that are not minimal XPs – S.-S.&B.-D.'s book

• Explanation for (color, softness) = (Pale Grade, Other)?

Many DTs have paths that are not minimal XPs - Poole&Mackworth's book

- Explanation for (L, T, A) = (Short, Follow-Up, Unknown)?
- Explanation for (L, T, A) = (Short, Follow-Up, Known)?

[PM17]

Explanation redundancy in DTs is ubiquitous – DTs from datasets

Dataset	(#F	(#F	(#F	#S)					L.	AI								ITI				
butubet		110)	D	#N	%A	#P	%R	%C	%m	%M	%avg	D	#N	%A	#P	%R	%C	%m	%M	%avg		
adult	(12	6061)	6	83	78	42	33	25	20	40	25	17	509	73	255	75	91	10	66	22		
anneal	(38	886)	6	29	99	15	26	16	16	33	21	9	31	100	16	25	4	12	20	16		
backache	(32	180)	4	17	72	9	33	39	25	33	30	3	9	91	5	80	87	50	66	54		
bank	(19	36293)	6	113	88	57	5	12	16	20	18	19	1467	86	734	69	64	7	63	27		
biodegradation	(41	1052)	5	19	65	10	30	1	25	50	33	8	71	76	36	50	8	14	40	21		
cancer	(9	449)	6	37	87	19	36	9	20	25	21	5	21	84	11	54	10	25	50	37		
car	(6	1728)	6	43	96	22	86	89	20	80	45	11	57	98	29	65	41	16	50	30		
colic	(22	357)	6	55	81	28	46	6	16	33	20	4	17	80	9	33	27	25	25	25		
compas	(11	1155)	6	77	34	39	17	8	16	20	17	15	183	37	92	66	43	12	60	27		
contraceptive	(9	1425)	6	99	49	50	8	2	20	60	37	17	385	48	193	27	32	12	66	21		
dermatology	(34	366)	6	- 33	90	17	23	3	16	33	21	7	17	95	9	22	0	14	20	17		
divorce	(54	150)	5	15	90	8	50	19	20	33	24	2	5	96	3	33	16	50	50	50		
german	(21	1000)	6	25	61	13	38	10	20	40	29	10	99	72	50	46	13	12	40	22		
heart-c	(13	302)	6	43	65	22	36	18	20	33	22	4	15	75	8	87	81	25	50	34		
heart-h	(13	293)	6	37	59	19	31	4	20	40	24	8	25	77	13	61	60	20	50	32		
kr-vs-kp	(36	3196)	6	49	96	25	80	75	16	60	33	13	67	99	34	79	43	7	70	35		
lending	(9	5082)	6	45	73	23	73	80	16	50	25	14	507	65	254	69	80	12	75	25		
letter	(16	18668)	6	127	58	64	1	0	20	20	20	46	4857	68	2429	6	7	6	25	9		
lymphography	(18	148)	6	61	76	31	35	25	16	33	21	6	21	86	11	9	0	16	16	16		
mortality	(118	13442)	6	111	74	56	8	14	16	20	17	26	865	76	433	61	61	7	54	19		
mushroom	(22	8124)	6	39	100	20	80	44	16	33	24	5	23	100	12	50	31	20	40	25		
pendigits	(16	10992)	6	121	88	61	0	0	-	-	-	38	937	85	469	25	86	6	25	11		
promoters	(58	106)	1	3	90	2	0	0	-	-	-	3	9	81	5	20	14	33	33	33		
recidivism	(15	3998)	6	105	61	53	28	22	16	33	18	15	611	51	306	53	38	9	44	16		
seismic_bumps	(18	2578)	6	37	89	19	42	19	20	33	24	8	39	93	20	60	79	20	60	42		
shuttle	(9	58000)	6	63	99	32	28	7	20	33	23	23	159	99	80	33	9	14	50	30		
soybean	(35	623)	6	63	88	32	9	5	25	25	25	16	71	89	36	22	1	9	12	10		
spambase	(57	4210)	6	63	75	32	37	12	16	33	19	15	143	91	72	76	98	7	58	25		
spect	(22	228)	6	45	82	23	60	51	20	50	35	6	15	86	8	87	98	50	83	65		
splice	(2	3178)	3	7	50	4	0	0	-	-	-	88	177	55	89	0	0	_	-	_		

Are interpretable models really interpretable? - DLs

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_2 :	ELSE IF	$(X_2 \land X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(\neg x_1 \land x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_1 \land \neg x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	(x_6)	THEN	$\kappa(\mathbf{x}) = 0$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 1$

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R₂ fires

Are interpretable models really interpretable? - DLs

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_2 :	ELSE IF	$(X_2 \land X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(\neg x_1 \land x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_1 \land \neg x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	(x_6)	THEN	$\kappa(\mathbf{x}) = 0$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 1$

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?

Are interpretable models really interpretable? - DLs

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_2 :	ELSE IF	$(X_2 \wedge X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(\neg x_1 \land x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_1 \land \neg x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	(x_6)	THEN	$\kappa(\mathbf{x}) = 0$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 1$

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?
- Recall: one AXp is $\{3, 4, 6\}$

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_2 :	ELSE IF	$(X_2 \wedge X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(\neg x_1 \land x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_1 \land \neg x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	(x_6)	THEN	$\kappa(\mathbf{x}) = 0$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 1$

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R₂ fires
- What is the abductive explanation?
- Recall: one AXp is $\{3, 4, 6\}$
 - · Why?
 - $\cdot\,$ We need 3 (or 1) so that R1 cannot fire
 - $\cdot\,$ With 3, we do not need 2, since with 4 and 6 fixed, then R_4 is guaranteed to fire
 - Some questions:
 - Would average human decision maker be able to understand the AXp?
 - Would he/she be able to compute one AXp, by manual inspection?

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_2 :	ELSE IF	$(X_2 \land X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(\neg x_1 \land x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_4 \wedge X_6)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_1 \land \neg x_3)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	(x_6)	THEN	$\kappa(\mathbf{x}) = 0$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 1$

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?
- Recall: one AXp is $\{3, 4, 6\}$
 - · Why?
 - $\cdot\,$ We need 3 (or 1) so that R1 cannot fire
 - \cdot With 3, we do not need 2, since with 4 and 6 fixed, then R₄ is guaranteed to fire
 - Some questions:
 - Would average human decision maker be able to understand the AXp?
 - Would he/she be able to compute one AXp, by manual inspection?
 (BTW, we have proved that computing one AXp for DLs is computationally hard...)

[IM21, MSI23]

[MSI23]

DTs learned with Interpretable AI, max depth 6

DLs learned with CN2

32 / 47

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

[HM23]

- Decision sets raise a number of issues:
 - Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - $\cdot\,$ A default rule defeats the purpose of unordered rules

- Decision sets raise a number of issues:
 - Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - $\cdot\,$ A default rule defeats the purpose of unordered rules
 - A DS without overlap and complete coverage computes a classification function

- Decision sets raise a number of issues:
 - Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - $\cdot\,$ A default rule defeats the purpose of unordered rules
 - \cdot A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

- Decision sets raise a number of issues:
 - Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - $\cdot\,$ A default rule defeats the purpose of unordered rules
 - \cdot A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

 $\cdot\,$ One can extract explained DSs from DTs $\,$

- Decision sets raise a number of issues:
 - Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - $\cdot\,$ A default rule defeats the purpose of unordered rules
 - A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

- One can extract explained DSs from DTs
 - Extract one AXp (viewed as a logic rule) from each path in DT
 - Resulting rules are non-overlapping, and cover feature space

Example

Example

 R_{01} : IF [P] THEN $\kappa(\cdot) = \mathbf{Y}$ R_{02} : IF $[\overline{A} \land \overline{P}]$ THEN $\kappa(\cdot) = \mathbf{N}$ R_{03} : IF $[\overline{P} \land \overline{N} \land V \land Z = 1]$ THEN $\kappa(\cdot) = \mathbf{N}$ R_{04} : IF $[\overline{P} \land \overline{N} \land V \land Z = 2 \land S \land \overline{G}]$ THEN $\kappa(\cdot) = \mathbf{N}$ R_{05} : IF $[\mathsf{A} \land \mathsf{Z} = 2 \land \mathsf{S} \land \mathsf{G}]$ THEN $\kappa(\cdot) = \mathbf{Y}$ R_{06} : IF $[\overline{P} \land \overline{N} \land V \land Z = 2 \land \overline{S} \land H]$ THEN $\kappa(\cdot) = \mathbf{N}$ R_{07} : IF $[\mathsf{A} \land \mathsf{Z} = 2 \land \overline{\mathsf{S}} \land \overline{\mathsf{H}} \land \mathsf{C}]$ THEN $\kappa(\cdot) = \mathbf{Y}$ R_{08} : IF $[A \land Z = 2 \land \overline{H} \land G]$ THEN $\kappa(\cdot) = \mathbf{Y}$ R_{09} : IF $[\overline{P} \land \overline{N} \land V \land Z = 2 \land \overline{C} \land \overline{G}]$ THEN $\kappa(\cdot) = \mathbf{N}$ R_{10} : IF $[A \land Z = 0]$ THEN $\kappa(\cdot) = \mathbf{Y}$ R_{11} : IF $[A \land \overline{V}]$ THEN $\kappa(\cdot) = \mathbf{Y}$ R_{12} : IF $[A \land N]$ THEN $\kappa(\cdot) = \mathbf{Y}$

34 / 47

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

- Concept of explanation graph (XpG)
- Explanations of decision trees reducible to XpG's
- Explanations of decision graphs reducible to XpG's
- Explanations of OBDDs reducible to XpG's
- Explanations of OMDDs reducible to XpG's
- Explanations (AXp's and CXp's) of XpG's computed in polynomial time

Example of XpG – DTs

Example of XpG – OMDDs

• OMBBD; point: (0, 1, 2); prediction R:

· XpG:

• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$ For each feature *i* in \mathcal{F}

• Algorithm (with no inconsistent paths):

 $S \leftarrow F$ For each feature *i* in FDrop feature *i* from S, i.e. *i* is free

• Algorithm (with no inconsistent paths):

 $S \leftarrow \mathcal{F}$ For each feature *i* in \mathcal{F} Drop feature *i* from S, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to ${\cal S}$

• Algorithm (with no inconsistent paths):

 $S \leftarrow F$ For each feature *i* in FDrop feature *i* from S, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then Add feature *i* back to S

 $\mathsf{Return}\ \mathcal{S}$

• Algorithm (with no inconsistent paths):

 $S \leftarrow \mathcal{F}$ For each feature *i* in \mathcal{F} Drop feature *i* from S, i.e. *i* is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to ${\cal S}$

 $\operatorname{Return} \mathcal{S}$

• Example:

· $S = \{1, 2, 3\}$

• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to ${\cal S}$

 $\mathsf{Return}\ \mathcal{S}$

- Example:
 - $S = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g.

 $\mathsf{S}_3 \mathop{\rightarrow} \mathsf{S}_2 \mathop{\rightarrow} \mathsf{S}_1 \mathop{\rightarrow} 0$

• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to ${\cal S}$

 $\operatorname{Return} \mathcal{S}$

- Example:
 - $\cdot \ S = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g. $s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow 0$
 - + Both features 2 and 3 dropped from ${\cal S}$

· XpG:

• Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some **0** not blocked by 0-valued literals, then

Add feature i back to ${\cal S}$

Return ${\cal S}$

- Example:
 - $\cdot \ S = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g.
 - $S_3 \rightarrow S_2 \rightarrow S_1 \rightarrow 0$
 - + Both features 2 and 3 dropped from ${\cal S}$
 - Return $\mathcal{S} = \{1\}$

· XpG:

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

[MGC+21]

Variable	Me	aning	Range			
$\kappa(\cdot) \triangleq M$	Stude	nt grade	$\in \{A, B, C, D, E, F\}$			
S	Fina	l score	$\in \{0, \dots, 10\}$			
Feat. id	Feat. var.	Feat. name	Domain			
1	Q	Quiz	$\{0, \dots, 10\}$			
2	Х	Exam	$\{0,\ldots,10\}$			
3	Н	Homework	$\{0,\ldots,10\}$			
4	R	Project	$\{0,\ldots,10\}$			

 $M = \mathsf{ITE}(\mathsf{S} \ge 9, \mathsf{A}, \mathsf{ITE}(\mathsf{S} \ge 7, \mathsf{B}, \mathsf{ITE}(\mathsf{S} \ge 5, \mathsf{C}, \mathsf{ITE}(\mathsf{S} \ge 4, \mathsf{D}, \mathsf{ite}(\mathsf{S} \ge 2, \mathsf{E}, \mathsf{F})))))$

$$S = \max\left[0.3 \times Q + 0.6 \times X + 0.1 \times H, R\right]$$

Also, $F \leq E \leq D \leq C \leq B \leq A$

And,
$$\kappa(\mathbf{x_1}) \leqslant \kappa(\mathbf{x_2})$$
 if $\mathbf{x_1} \leqslant \mathbf{x_2}$

Explaining monotonic classifiers

- Instance (\mathbf{v}, c)
- Domain for $i \in \mathcal{F}$: $\lambda(i) \leq x_i \leq \mu(i)$
- Idea: refine lower and upper bounds on the prediction
 - + \mathbf{v}_{L} and \mathbf{v}_{U}
- Utilities:
 - FixAttr(*i*):

$$\begin{aligned} \mathbf{v}_{L} \leftarrow (\mathsf{V}_{L_{1}}, \dots, \mathsf{V}_{i}, \dots, \mathsf{V}_{L_{N}}) \\ \mathbf{v}_{U} \leftarrow (\mathsf{V}_{U_{1}}, \dots, \mathsf{V}_{i}, \dots, \mathsf{V}_{U_{N}}) \\ (\mathcal{A}, \mathcal{B}) \leftarrow (\mathcal{A} \backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \text{return} (\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{A}, \mathcal{B}) \end{aligned}$$

• FreeAttr(*i*):

$$\begin{split} \mathbf{v}_{L} \leftarrow (v_{L_{1}}, \dots, \lambda(i), \dots, v_{L_{N}}) \\ \mathbf{v}_{U} \leftarrow (v_{U_{1}}, \dots, \mu(i), \dots, v_{U_{N}}) \\ (\mathcal{A}, \mathcal{B}) \leftarrow (\mathcal{A} \backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \text{return } (\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{A}, \mathcal{B}) \end{split}$$

1: $\mathbf{v}_{L} \leftarrow (V_{1}, \dots, V_{N})$ 2: $\mathbf{v}_{U} \leftarrow (V_{1}, \dots, V_{N})$ 3: $(\mathcal{C}, \mathcal{D}, \mathcal{P}) \leftarrow (\mathcal{F}, \emptyset, \emptyset)$ 4: for all $i \in S$ do 5: $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D}) \leftarrow \text{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D})$ 6: for all $i \in \mathcal{F} \setminus S$ do 7: $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D}) \leftarrow \text{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{C}, \mathcal{D})$ 8: if $\kappa(\mathbf{v}_{L}) \neq \kappa(\mathbf{v}_{U})$ then 9: $(\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{D}, \mathcal{P}) \leftarrow \text{FixAttr}(i, \mathbf{v}, \mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{D}, \mathcal{P})$ 10: return \mathcal{P}

 \succ Ensures: $\kappa(\mathbf{v}_{L}) = \kappa(\mathbf{v}_{U})$ $\succ \mathcal{S}$: Some possible seed

▷ Require: $\kappa(\mathbf{v}_{L}) = \kappa(\mathbf{v}_{U})$, given S▷ Loop inv.: $\kappa(\mathbf{v}_{L}) = \kappa(\mathbf{v}_{U})$

⊳ If invariant broken, fix it

+ Obs: $\mathcal{S} = \varnothing$ for computing a single AXp/CXp

Computing one AXp - example

- $\lambda(i) = 0$ and $\mu(i) = 10$
- + $\mathbf{v}=(10,10,5,0)$, with $\kappa(\mathbf{v})=\mathbf{A}$
- **Q**: find one AXp (CXp is similar)

Foat	Initial	values	Change	Predictions		Doc	Resulting values		
Teat.	\mathbf{v}_{L}	\mathbf{v}_{\cup}	\mathbf{v}_{L}	\mathbf{v}_{\cup}	$\kappa(\mathbf{v}_{L})$	$\kappa(\mathbf{v}_{U})$	Dec.	\mathbf{v}_{L}	\mathbf{v}_{\cup}
1	(10,10,5,0)	(10, 10, 5, 0)	(0,10,5,0)	(10, 10, 5, 0)	С	А	\checkmark	(10, 10, 5, 0)	(10, 10, 5, 0)
2	(10,10,5,0)	(10, 10, 5, 0)	(10,0,5,0)	(10, 10, 5, 0)	Е	А	\checkmark	(10, 10, 5, 0)	(10, 10, 5, 0)
3	(10, 10, 5, 0)	(10, 10, 5, 0)	(10,10,0,0)	(10, 10, 10, 0)	А	А	×	(10,10,0,0)	(10, 10, 10, 0)
4	(10,10,0,0)	(10, 10, 10, 0)	(10,10,0,0)	(10, 10, 10, 10)	А	А	×	(10,10,0,0)	(10,10,10,10)
Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Recap computation of (W)AXps/(W)CXps

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$
$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

Recap computation of (W)AXps/(W)CXps

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \to (\sigma(\mathbf{x}))$$
$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

Input: Predicate $\mathbb P$, parameterized by $\mathcal T, \, \mathcal M$ Output: One XP $\mathcal S$

- 1: procedure oneXP(ℙ)
- 2: $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for $i \in \mathcal{F}$ do
- 4: if $\mathbb{P}(S \setminus \{i\})$ then
- 5: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$
- 6: return \mathcal{S}

 \succ Initialization: $\mathbb{P}(\mathcal{S})$ holds \succ Loop invariant: $\mathbb{P}(\mathcal{S})$ holds

 $\succ \text{ Update } S \text{ only if } \mathbb{P}(S \setminus \{i\}) \text{ holds}$ $\succ \text{ Returned set } S: \mathbb{P}(S) \text{ holds}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Finding on AXp:

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$
 - 4th path inconsistent: $H_4 = \{1\}$

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$
 - 4th path inconsistent: $H_4 = \{1\}$
- AXp is MHS of H_j sets: $\{1, 2, 3\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Finding CXps:

- Finding CXps:
 - 1st path: $I_1 = \{3\}$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$
 - 4th path: $I_4 = \{1\}$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$
 - 4th path: $I_4 = \{1\}$
 - $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$
 - 4th path: $I_4 = \{1\}$
 - · $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$
- Finding AXps:
 (i.e. all MHSes of sets in C

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$
 - 4th path: $I_4 = \{1\}$
 - · $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$
- Finding AXps: (i.e. all MHSes of sets in \mathbb{C} • $\mathbb{A} = \{\{1, 2, 3\}\}$

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 0$
R_2 :	ELSE IF	$(X_1 \wedge X_5)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(X_2 \wedge X_4)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_1 \wedge X_7)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	$(\neg X_4 \land \neg X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R ₇ :	ELSE IF	$(\neg x_2 \land x_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R _{DEF} :	ELSE			$\kappa(\mathbf{x}) = 0$

• DL:

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 0$
R_2 :	ELSE IF	$(X_1 \wedge X_5)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(X_2 \wedge X_4)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_1 \wedge X_7)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	$(\neg X_4 \land \neg X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R ₇ :	ELSE IF	$(\neg x_2 \land x_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_{DEF} :	ELSE			$\kappa(\mathbf{x}) = 0$

• Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$

 $\cdot\,$ The prediction is 1, due to R_3

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 0$
R_2 :	ELSE IF	$(X_1 \wedge X_5)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(X_2 \wedge X_4)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_1 \wedge X_7)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	$(\neg X_4 \land \neg X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R ₇ :	ELSE IF	$(\neg X_2 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_{DEF} :	ELSE			$\kappa(\mathbf{x}) = 0$

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - $\cdot\,$ The prediction is 1, due to ${\sf R}_3$
- AXp:

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 0$
R_2 :	ELSE IF	$(X_1 \wedge X_5)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(X_2 \wedge X_4)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_1 \wedge X_7)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg X_4 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	$(\neg X_4 \land \neg X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R ₇ :	ELSE IF	$(\neg X_2 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_{DEF} :	ELSE			$\kappa(\mathbf{x}) = 0$

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - $\cdot\,$ The prediction is 1, due to ${\sf R}_3$
- AXp: {1,2}

R_1 :	IF	$(X_1 \wedge X_3)$	THEN	$\kappa(\mathbf{x}) = 0$
R_2 :	ELSE IF	$(X_1 \wedge X_5)$	THEN	$\kappa(\mathbf{x}) = 0$
R_3 :	ELSE IF	$(X_2 \wedge X_4)$	THEN	$\kappa(\mathbf{x}) = 1$
R_4 :	ELSE IF	$(X_1 \wedge X_7)$	THEN	$\kappa(\mathbf{x}) = 0$
R_5 :	ELSE IF	$(\neg x_4 \land x_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_6 :	ELSE IF	$(\neg X_4 \land \neg X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R ₇ :	ELSE IF	$(\neg X_2 \land X_6)$	THEN	$\kappa(\mathbf{x}) = 1$
R_{DEF} :	ELSE			$\kappa(\mathbf{x}) = 0$

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - $\cdot\,$ The prediction is 1, due to ${\sf R}_3$
- AXp: {1,2}
- $\cdot\,$ Quiz: write down the constraints and confirm AXp with SAT solver

Questions?

References i

- [ABOS22] Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Subercaseaux. On computing probabilistic explanations for decision trees. In NeurIPS, 2022.
- [Alp14] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.
- [Alp16] Ethem Alpaydin. Machine Learning: The New AI. MIT Press, 2016.
- [BA97] Leonard A Breslow and David W Aha Simplifying decision trees: A survey. Knowledge Eng. Review, 12(1):1–40, 1997.
- [BBHK10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn. Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in Computer Science.

Springer, 2010.

References ii

[BFOS84]	Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. <i>Classification and Regression Trees.</i> Wadsworth, 1984.
[BHO09]	Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan. Minimising decision tree size as combinatorial optimisation. In <i>CP</i> , pages 173–187, 2009.
[Bra20]	Max Bramer. <i>Principles of Data Mining, 4th Edition.</i> Undergraduate Topics in Computer Science. Springer, 2020.
[DL01]	Sašo Džeroski and Nada Lavrač, editors. <i>Relational data mining.</i> Springer, 2001.
[EG95]	Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput., 24(6):1278–1304, 1995.
[Fla12]	Peter A. Flach. Machine Learning - The Art and Science of Algorithms that Make Sense of Data.

Cambridge University Press, 2012.

References iii

[GZM20] Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour. Decision tree-based diagnosis of coronary artery disease: CART model. Comput. Methods Programs Biomed., 192:105400, 2020.

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On efficiently explaining graph-based classifiers. In KR, November 2021. Preprint available from https://arxiv.org/abs/2106.01350.

- [HM23] Xuanxiang Huang and João Marques-Silva. From decision trees to explained decision sets. In ECAI, pages 1100–1108, 2023.
- [HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In NeurIPS, pages 7265–7273, 2019.
- [IHI+22] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.
 On computing probabilistic abductive explanations.
 CoRR, abs/2212.05990, 2022.

References iv

[IHI⁺23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva. On computing probabilistic abductive explanations.

Int. J. Approx. Reason., 159:108939, 2023.

- [IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On explaining decision trees. CoRR, abs/2010.11034, 2020.
- [IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling explanation redundancy in decision trees. J. Artif. Intell. Res., 75:261–321, 2022.
- [IM21] Alexey Ignatiev and Joao Marques-Silva.
 SAT-based rigorous explanations for decision lists. In SAT, pages 251–269, July 2021.
- [INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva. From contrastive to abductive explanations and back again. In AlxIA, pages 335–355, 2020.
- [INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for machine learning models. In AAAI, pages 1511–1519, 2019.

References v

- [INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On relating explanations and adversarial examples. In NeurIPS, pages 15857–15867, 2019.
- [KMND20] John D Kelleher, Brian Mac Namee, and Aoife D'arcy. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies.

MIT Press, 2020.

- [Kot13] Sotiris B. Kotsiantis. Decision trees: a recent overview. Artif. Intell. Rev., 39(4):261–283, 2013.
- [LL17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NIPS, pages 4765–4774, 2017.
- [Mar22] João Marques-Silva.
 Logic-based explainability in machine learning.
 In Reasoning Web, pages 24–104, 2022.

References vi

- [Mar24] Joao Marques-Silva. Logic-based explainability: Past, present & future. CoRR, abs/2406.11873, 2024.
- [MGC⁺21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska. Explanations for monotonic classifiers.

In *ICML*, pages 7469–7479, July 2021.

 [Mil56] George A Miller.
 The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2):81–97, 1956.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267:1–38, 2019.

- [MM20] João Marques-Silva and Carlos Mencía. Reasoning about inconsistent formulas. In IJCAI, pages 4899–4906, 2020.
- [Mor82] Bernard M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623, 1982.

References vii

- [MSI23] Joao Marques-Silva and Alexey Ignatiev. No silver bullet: interpretable ml models must be explained. Frontiers in Artificial Intelligence, 6, 2023.
- [PM17] David Poole and Alan K. Mackworth. Artificial Intelligence - Foundations of Computational Agents. CUP, 2017.
- [Qui93] J Ross Quinlan. **C4.5: programs for machine learning.** Morgan-Kaufmann, 1993.
- [Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.
- [RM08] Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and applications. World scientific, 2008.
- [RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach. Pearson Education, 2010.

References viii

- [RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In KDD, pages 1135–1144, 2016.
- [RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In AAAI, pages 1527–1535. AAAI Press, 2018.
- [SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, 2014.
- [SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian network classifiers. In IJCAI, pages 5103–5111, 2018.
- [VLE+16] Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.

Scientific reports, 6(1):1–8, 2016.

References ix

[WFHP17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining. Morgan Kaufmann, 2017.

[WMHK21] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok. The computational complexity of understanding binary classifier decisions. J. Artif. Intell. Res., 70:351–387, 2021.

[Zho12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[Zho21] Zhi-Hua Zhou. Machine Learning. Springer, 2021.