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We study teams of agents that play against Nature towards achieving a common objective. 
The agents are assumed to have imperfect information due to partial observability, and 
have no communication during the play of the game. We propose a natural notion of 
higher-order knowledge of agents. Based on this notion, we define a class of knowledge-
based strategies, and consider the problem of synthesis of strategies of this class. We 
introduce a multi-agent extension, MKBSC, of the well-known knowledge-based subset 
construction applied to such games. Its iterative applications turn out to compute higher-
order knowledge of the agents. We show how the MKBSC can be used for the design 
of knowledge-based strategy profiles, and investigate the transfer of existence of such 
strategies between the original game and in the iterated applications of the MKBSC, 
under some natural assumptions. We also relate and compare the “intensional” view on 
knowledge-based strategies based on explicit knowledge representation and update, with 
the “extensional” view on finite memory strategies based on finite transducers and show 
that, in a certain sense, these are equivalent.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this work we explore the strategy synthesis problem for teams (or coalitions) of agents that have to accomplish a given 
common objective, while acting under imperfect information and under various other natural assumptions. In particular, we 
are interested in the notion of knowledge of agents in that context and how it affects the strategic abilities of a team.

When attempting to achieve an objective, intelligent agents act upon their knowledge: about the structure of the game 
itself, the history of the play so far, the other agents’ strategies, observations, and actions. Knowledge has various aspects, 
but in the context of the present study the term refers to information that is structured and represented in a suitable way 
to be used by an agent for deciding on its actions towards achieving an objective. This knowledge can be “static”, i.e., about 
the game structure, or “dynamic”, i.e., about the play of the game. While the static knowledge can be assumed as “built” 
into the agents’ brain or design, the dynamic knowledge is re-computed and, if necessary, stored on-the-fly during the play.
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Motivation Strategy3 synthesis for teams of agents is a complex problem. In general, if no bound is put on the size of the 
memory of the agents, the strategy synthesis problem is undecidable for coalitions of two or more agents in the presence 
of imperfect information, even for some basic classes of objectives (see, e.g., [1]).

When information is imperfect, agents typically need to maintain and use a finite abstraction of the history in order to 
be able to achieve the objective. We refer to this information, suitably structured for use, as “(dynamic) knowledge”. By 
“knowledge states” for an agent, in our context we mean sets of locations which the agent considers currently possible to 
be the actual location. We call strategies that are directly based on knowledge, i.e., strategies that map knowledge states to 
actions and update the knowledge state during play, “knowledge-based strategies”. Such strategies can be attractive, since 
they are convenient for play, and are natural to explain to humans.

To achieve certain objectives, agents may even have to maintain “higher-order” knowledge (i.e., knowledge about each 
other’s knowledge). Intuitively, the higher the order (or nesting depth) of knowledge, the higher the strategic abilities of the 
coalition.

For a bounded order of knowledge, the space of potential knowledge states is finite and the synthesis problem of 
knowledge-based strategies becomes decidable. It is this class of strategies and their synthesis that we investigate here.

Approach We study the above problem in the context of multi-agent games with imperfect information against Nature (or 
MAGIIAN for short). We make the following assumptions on the games and assume that they are common knowledge 
amongst all agents:

1. the game arena is discrete, finite, and known to the agents,
2. certain game states are indistinguishable for certain agents, thus modelling the “imperfect information”,
3. the agents cooperate, i.e., they are all in one team playing against Nature,
4. the agents may or may not see each others’ actions,
5. the agents cannot explicitly communicate with each other,
6. the agents may or may not know each others’ strategies.

We argue that the less the agents know or observe, i.e., the higher their uncertainty is about the current state-of-affairs, 
the higher the impact is of maintaining higher-order knowledge. Thus, the case where agents cannot observe each others’ 
actions and do not know each others’ strategies is a natural starting point for studying also the less restricted cases, which 
we will discuss below.

As explained above, we only consider knowledge representations with bounded memory (since the unbounded case gives 
rise to undecidability results). However, within that class there is no a priori best choice of knowledge representation. One 
may choose, for instance, to use the memory to remember the last n observed game locations; but most generally, the 
memory is used to compute and maintain some abstraction over the observed history of locations.

Inspired by a subset construction on single-agent games against Nature, namely the Knowledge-Based Subset Construc-
tion (or KBSC for short), which reduces games with imperfect information in a strategy-preserving fashion to “expanded” 
games of perfect information (see, e.g., [2,3]), we choose a representation based on sets of game locations. The semantic 
interpretation of such a set is “the best estimate the agent can make about the current state-of-affairs”. In the single-agent 
case this representation turns out to be sufficient for the class of parity objectives, as shown in [3]. Then, we represent 
higher-order knowledge by nesting recursively such sets of locations in a suitable fashion.

Also inspired by the KBSC, we investigate the correspondence between knowledge-based strategies and memoryless, 
observation-based strategies in expanded games resulting from applying a generalised, multi-agent version of the KBSC, 
which we introduce here and call the MKBSC. The locations of the expanded games are conceptually joint knowledge 
states of the agents. We call these two views on strategies the “intensional” and the “extensional” view, respectively. The 
MKBSC can be iterated, essentially computing higher-order knowledge (i.e., incrementing the order of knowledge with each 
iteration).

The correspondence between the two views is useful in several ways. First, one can reduce the synthesis problem of 
knowledge-based strategies to the synthesis problem of memoryless, observation-based strategies. Furthermore, by virtue of 
the MKBSC construction, the individual observation-based memoryless strategies in the expanded games are simultaneously 
memoryless strategies in single-agent games of perfect information that are intermediate games produced while comput-
ing the expansions. This can serve as the basis for the design of efficient knowledge-based strategy synthesis algorithms, 
since algorithmic strategy synthesis for the latter class is well-studied (see e.g. [4]). Second, while strategy synthesis is 
more conveniently performed on the expanded games, once synthesised, the strategies can be presented to the agents as 
knowledge-based strategies, without the need for storing the expanded games, but by recomputing the knowledge in the 
course of the play (i.e., on-the-fly). And third, there is a phenomenon that manifests itself much more explicitly in the 
extensional view: for some games, the iterated MKBSC “stabilises”, producing isomorphic games from some iteration on. 
In the intensional view, stabilisation corresponds to the existence of a finite knowledge representation that contains the 
higher-order knowledge of the agents of any order.

3 Also called “policy” in the literature on planning and Dec-POMDP.
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Contributions In this work we offer the following results and contributions. First, we propose a formal notion of higher-
order knowledge with a representation and semantic interpretation, and a notion of knowledge update. Based on this, we 
provide a formal notion of knowledge-based strategies. Next, we develop a generalisation of the KBSC to the case of multi-
ple agents, as a scheme that can be reused for other similar “expansions”. The construction in effect computes knowledge, 
and its iteration computes higher-order knowledge. For this construction, we show a strategy preservation result for perfect 
recall strategies with respect to reachability and safety objectives. The proof of this result is constructive, and also reveals 
how to preserve finite-memory strategies. We then establish a formal relationship between memoryless observation-based 
strategies in the expanded games, knowledge-based strategies in the original games, and the corresponding finite-memory 
strategies in the original games, and the equivalence of the latter two. With this we also exhibit formally the duality be-
tween the intensional and the extensional views. From this correspondence, we obtain a reduction of the synthesis problem 
of knowledge-based strategies to that of memoryless observation-based strategies in expanded games. Then, we sketch a 
heuristic for strategy synthesis, exploiting that the individual observation-based memoryless strategies in the expanded 
multi-agent games of imperfect information are simultaneously strategies in single-agent games of perfect information, 
which are intermediate games produced while computing the expansions. Further, we give a formal meaning to the state-
ment that the higher the order of knowledge, the higher the strategic abilities of the team, and argue that this indeed is 
the case here. (However, this increase is not strict, as will be explained further.) Finally, we establish that for some games 
the iterated MKBSC stabilises, in the sense that from some iteration on it results in isomorphic games. One implication of 
this is that for stabilising games, the problem of existence of a winning knowledge-based strategy without a given bound 
on the knowledge nesting depth, is decidable.

Related work The present work is in the intersection of several major research areas, including decentralised cooperative 
decision making (often modelled by decentralised POMDPs), multi-agent planning, knowledge-based programs, games with 
imperfect information and strategy synthesis in them, etc. There is a huge body of more or less related literature, which we 
cannot possibly survey in any reasonable degree of detail here. So we only mention and briefly discuss some of the concep-
tually and technically closest works to ours and provide extensive, yet inevitably incomplete, lists of relevant references for 
these in Section 7.

Structure The paper is organised as follows. Section 2 presents the strategy synthesis problem studied here. In particular, 
we show a motivating example where one needs knowledge of at least second-order in order to achieve the given objective. 
In Section 3 we define formally MAGIIAN, the formal object of our study, and recall some standard notions from the theory 
of games over finite graphs. Section 4 is the central section of this paper, in which we define the MKBSC expansion, study 
its properties with respect to the preservation of certain classes of objectives, and describe how the construction can be 
used for the synthesis of first-order knowledge-based strategies (the intensional view), or alternatively, of finite-memory 
strategies in the form of transducers (the dual, extensional view). In Section 5 we study the iterated MKBSC construction and 
how it can be used for the synthesis of higher-order knowledge-based strategies. In Section 6 we discuss the phenomenon 
of possible stabilisation in the iterated MKBSC construction, its implications on the strategy synthesis problem, and some 
limitations of the construction. Section 7 discusses in some detail related work, while in Section 8 we summarise our 
conclusions from the current work and provide directions for future work.

2. Synthesis of knowledge-based strategies

In this section, we offer an informal discussion on knowledge-based strategies and their synthesis. We then describe the 
concrete strategy profile synthesis problems studied in the paper.

2.1. Knowledge-based strategies

By a knowledge-based strategy we mean a strategy that uses suitably structured knowledge to determine the agent’s 
course of action. That notion is conceptually very close to knowledge-based programs, cf. [5,6], but here it is used in the 
context of multi-agent games against Nature, defined in Section 4. More precisely, a knowledge-based strategy consists of:

1. a knowledge representation (especially, for the dynamic knowledge) by a suitable data structure;
2. a knowledge update function that computes, after every transition in the game, the new knowledge state of the agent, 

from the old one, the action taken, and the observation made during and upon the transition;
3. an action mapping, from knowledge states to prescribed actions of the agent.

The simplest knowledge-based strategies are the memoryless observation-based strategies, cf. Section 3.2, where the only 
knowledge used is the immediate observation of the agent on the current location. Most generally, however, the agen-
t’s knowledge is represented by its full observation history, or by some finite abstraction of it. Thus, the most general 
and abstract case of knowledge-based strategies are the memory-based strategies, where the used knowledge is not explic-
itly represented and structured but implicitly processed in the course of the play, by the strategy-computing device (e.g., 
3
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Fig. 1. The two-robot cup-lifting game.

the transducer,4 in the case of finite-memory strategies). We call this approach to knowledge-based strategies “extension-
al”. Alternatively, there is an “intensional” view, where the knowledge states do have structure, representing the dynamic 
knowledge of the agents during the course of a play. Several structures for knowledge representation, suitable for strategy 
design (though, some of them developed for the purpose of epistemic model checking, not strategy synthesis), have been 
studied, including: multi-agent epistemic models [6], knowledge structures [7,6], k-trees [8], and epistemic unfolding [9,10]. Some 
of the important questions arising here are: what knowledge is sufficient to achieve a given objective, and what is the minimal 
knowledge needed for the purpose? We note two further related issues.

First, structured knowledge in general requires memory to be stored and processed. Our idea of using structures for 
knowledge representation for strategy synthesis is to encode that knowledge in the states of the suitably expanded multi-
agent games studied here, where memory-based strategies can be replaced by memoryless ones. The implication of this is 
that one can use as “knowledge” a data structure that is simply a set of game locations, with the predefined interpretation 
that it designates “the most precise estimate an agent can make about the current location, based on its initial knowledge 
about the game and the history of all actions and observations made hitherto” (and this is in effect what the expansion 
computes as locations of the expanded game). Such knowledge can be updated after each action and observation. Thus, we 
can interpret memoryless strategies in the expanded games as knowledge-based strategies in the original games, with this 
particular representation and interpretation of knowledge.

Second, when designing joint strategies of a team of agents acting towards a common goal, it can be essential to take into 
account their higher-order knowledge about the other agents’ knowledge. Intuitively, the reason for this is that a given agent 
from the coalition is not trying to achieve the objective on its own (in which case it would have made sense for the agent 
to model the other agents as “nature”), but is collaborating with the rest. Therefore, a representation – within an agent’s 
knowledge – of the estimates about the current location, possibly made by the other agents, can offer higher strategic 
ability for achieving joint objectives. The depth of such (nested) knowledge can increase without bound, and that generates 
a hierarchy of knowledge-representing structures and a respective hierarchy of knowledge-based strategies. Because that 
hierarchy may grow strictly, the search for a knowledge-based strategy for a given objective may never terminate, especially 
if such does not exist. This suggests that the strategy synthesis problem may generally be undecidable, and that is, indeed, 
the case [11–13].

Example 1. Here is a running example, adapted from [14] and used further in the paper. Consider a scenario where two 
robots, henceforth referred to as robot 0 and robot 1, must cooperate to lift a cup of acid. Both robots must first grab the 
cup. Grabbing the cup may non-deterministically result in a good overall grip or a bad one; the grip, however, can always be 
improved by simultaneously squeezing the cup. Then, both robots must simultaneously lift the cup; otherwise the cup will 
spill (and the game will be lost). In our scenario, robot 0 has a sensor that detects whether the overall grip is good or not, 
while robot 1 does not have such a sensor (still, robot 1 can in some situations deduce from its actions and observations 
that the grip can only be a good one at this point).

The scenario is modelled as the game depicted on Fig. 1. While the formal notion of game will only be defined later, 
in Section 3, the concrete game model should be intuitively clear. The game is always in some location (i.e., node of the 
graph), which changes as the result of the joint actions of the robots, represented as action-pairs labelling the edges. Only 

4 Also called “(local) controller” in the literature on planning and Dec-POMDP.
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the available actions (at the respective location) and transitions that they enable are given in the figure. The uncertainty 
of robot 1 about the grip is modelled as a so-called observation; the corresponding indistinguishability equivalence ∼1 is 
depicted with a dotted line. In terms of the game graph, the objective of the two robots is to coordinate their actions so as 
to reach location win.

It should be easy to see that there cannot be an observation-based memoryless5 strategy that is winning. For a strategy 
to be observation-based, it has to respect the indistinguishability equivalences (i.e., observations) of the agents. Thus, robot 1 
has to perform the same action in locations bad and good. But for the team of robots to win, robot 1 needs to squeeze in 
location bad and lift in location good.

The situation is similar when we consider first-order knowledge and the corresponding class of strategies. First-order 
knowledge of an agent is represented as a set of locations. The first-order knowledge of robot 0 will always be a singleton 
set, representing the current location. The first-order knowledge of robot 1 will be, after the initialisation, represented as 
the set {bad,good}. Then, if after squeezing robot 1 makes the same observation (i.e., {bad,good}), it can now deduce that it 
only can be in {good}. (Thus, knowledge is a refinement of what robots observe, using the power of deduction.) However, no 
first-order knowledge-based strategy can win the game, since knowing {good} is insufficient for robot 0 to decide whether 
to squeeze or to lift; to win the game, this must depend on whether robot 1 knows {bad,good} or {good}. But robot 0 has 
no knowledge of this when using first-order knowledge.

This is remedied when using second-order knowledge: if robot 0 not only knows {good}, but also knows whether the 
first-order knowledge of robot 1 is {bad,good} or {good}, it can make the correct decision whether to squeeze or to lift. As 
to robot 1, it will squeeze when knowing {bad,good}, and will lift when knowing {good}.

We will use the above scenario as a running example and will elaborate on it throughout the paper.
Now that we have seen that higher-order knowledge can be necessary for achieving objectives, the question arises of 

how such knowledge can be computed and used for strategy synthesis. As already indicated, our approach is to apply 
suitable expansions that compute the higher-order knowledge of the agents, and then to search for memoryless strategies 
in the expanded games.

2.2. Synthesis of knowledge-based strategies

We study the problem of synthesis of knowledge-based strategies in the context of multi-agent games with imperfect 
information against Nature (MAGIIAN, defined in Section 3): given such a game G and an objective � (most generally, a given 
set of “winning plays”), the task of a central authority – the team supervisor – is to design a “winning” knowledge-based 
strategy profile (consisting of an individual knowledge-based strategy for each agent) for the team Agt that guarantees the 
achievement of � regardless of the behaviour of the environment (Nature). We assume that the game structure is known 
by the supervisor, hereafter also called the (strategy) designer, and is also common knowledge amongst all agents.

Once the strategy profile is designed, each agent is assigned its strategy from the profile and the play begins. It is 
assumed that there is no explicit communication between the agents during the play, that is, the only possible communication 
is by means of signalling through the agents actions in the model, but not by explicit communicative actions, such as public 
or private announcements.

Then, four natural cases arise regarding the agents’ knowledge and mutual observability during the play, that should be 
taken into account by the strategy designer in advance and used for the design of their strategies:

1. Case (NN): no strategy knowledge and no action observability. The agents do not know the others’ strategies6 and cannot 
observe each others’ actions during the play, but only their own. This will be our basic case of consideration, as we 
regard it as the most interesting one.

2. Case (NY): no strategy knowledge but action observability. The agents do not know the others’ strategies, but can observe 
each others’ actions executed during the play.

3. Case (YN): strategy knowledge but no action observability. The agents know each others’ strategies, i.e., the full strategy 
profile, but cannot observe the others’ actions during the play. Note that, because of the partial observability, the agents 
generally do not know the other agents’ observations, hence do not know exactly what actions they execute, so the case 
remains a priori non-trivial.

4. Case (YY): strategy knowledge and action observability. The agents know each others’ strategies and can observe each 
others’ actions during the play. For deterministic systems, this case is essentially reducible to a single-agent’s play in 
a suitably modified model, as formally proved in [15]. However, such reduction does not work explicitly in the case 
of non-deterministic games against Nature of the type we consider. Intuitively, this is because after the first transition 
neither of the agents may know the current state in the game, so even when knowing each others’ strategies and 

5 Note that all memoryless strategies are also stationary.
6 It is not trivial to formalise such knowledge, but what we intuitively mean by “agent a knowing the strategy of agent b” is that at every observation 

history for a, that agent would only consider as possible those actions of b that are prescribed by the strategy of b known by a on some observation 
history that a considers possible for b to have observed.
5
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observing each others’ actions, they would not be able to fully coordinate their actions so as to be mergeable into a 
single agent. However, that can still be done in a suitably expanded model constructed as the product of the individual 
views by the different agents, by applying the general construction presented in Section 4.

Each of these cases has its own justification. For example, the supervisor may inform all agents about the full strategy 
profile, or may decide not to do that, for reasons of security or privacy. It is important to emphasize that the designer keeps 
in mind the specific case when designing the strategy profile, because these assumptions may make a difference for the 
existence of a winning strategy profile. It is generally clear that the more knowledge and observability the agents will have 
during the play, the greater the chance for existence of a winning strategy profile. What is not obvious, is whether all four 
cases are strictly different in that respect. To begin with, note that the actions observation ability generally helps agents to 
obtain more precise knowledge of the current location, and that can be used by the designer to construct a synchronised 
strategy profile. An illustrating example is given below.

Example 2. The figure below describes a simple turn-based MAGIIAN game with 2 agents a1 and a2, whose collective 
objective is to reach one of the W -states.

The game goes as follows. First, at s0 each agent has only one idling action, ∗, and Nature decides to go left, to s1l , or 
right, to s1r . These successor states are only distinguishable by a1 but not by a2 (indicated by a dotted line in the diagram), 
who has only one action, ∗, at each of these, whereas agent a1 gets to choose to go left or right. If he does not match 
Nature’s choice the game ends in a bad state, denoted by X , from which no W -state is reachable. Otherwise, the game goes 
respectively in state s2l or in s2r . These are, again, indistinguishable by a2, who is to make a left-right choice at each of 
them there, whereas a1 has no choice (only one action, ∗).

The choice of a2 will be successful if and only if a2 matches the choice of a1. Clearly, if a2 could observe that action, she 
would easily succeed. However, if a2 cannot observe a1’s action, there is no way that a synchronised action profile can be 
pre-designed, because the correct action of a1 cannot be decided in advance but only after Nature has moved. This analysis 
applies regardless of whether the agents will know each other’s strategy at play time.

On the other hand, while knowing the other agents’ strategies can be of importance for the knowledge update function of 
a knowledge-based strategy, it appears that it does not affect the existence of a knowledge-based strategy profile achieving 
the team objective.7 We consider this claim not intuitively obvious, but the reason, informally, is that the designer can 
use all the benefit from a common knowledge of the strategy profile at design time in order to synchronise all strategies, 
without having to provide the individual agents with that knowledge, as noted e.g. in [16].

Likewise, in the (YY) case the designer has an apparently stronger power to synthesise a winning strategy profile than 
in each of the preceding cases. Still, the presumed common knowledge of the strategy profile at the play time is inessential 
for the existence and design of such a strategy profile, while the observability of the other agents’ actions is (the above 
example also distinguishes the cases (YN) and (YY)); see also [16].

We are interested in synthesising knowledge-based strategies for each of the cases described above, but in this work we 
hereafter will focus mainly on the most challenging case (NN).

3. Preliminaries on multi-agent games with imperfect information against Nature

We consider a fixed team of n agents (players), Agt = {a1, ..., an}, which aims to achieve a common goal.

7 This observation was first made to us by Dietmar Berwanger in a private communication.
6
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Definition 3. A multi-agent game with imperfect information against Nature (MAGIIAN) is a tuple G = (Agt, Loc, linit,Act,
�, Obs), where:

(i) Loc is a set of locations, usually assumed finite.
(ii) linit ∈ Loc is the initial location.

(iii) For each i ∈ Agt, Acti is a finite set of possible actions of agent i (see remark 3 below).
(iv) Act = Acta1 × . . . × Actan are the possible action profiles (or joint actions) of the team (see remark 3 below).
(v) � ⊆ Loc × Act × Loc is a transition relation between locations, with transitions labelled by action profiles.

(vi) For each i ∈ Agt, Obsi is a partition of Loc, the blocks of which are the possible observations of agent i. Given any 
location l, the unique observation for i containing l is denoted by obsi(l). We denote with ∼i the equivalence relation 
on locations induced by the partition.

(vii) Obs = Obsa1 × . . . × Obsan is the set of all observation profiles (or joint observations) of the team Agt. An observation 
profile o ∈ Obs is possible iff ∩i∈Agt o(i) �=∅. We denote by Obsp the set of possible observation profiles.

We already saw an example of a MAGIIAN in Example 1 in Section 2.1 above. Some essential remarks are due here:

1. The transition relation is assumed non-deterministic, in general, because the game is played against an unpredictable 
(and possibly stochastic) environment, or Nature, the possible behaviours of which are modelled through that non-
determinism.

2. We study games of imperfect information, where, in general, the agents can only partly observe the current location. This 
is modelled by observational equivalence relations between locations for each agent. Each such relation partitions the set 
of locations into blocks of indistinguishable locations, which are the possible observations of that agent. The particular 
case of perfect information is when all observations are singletons.

3. We implicitly assume that all actions of any given agent are available at every location. That is generally not justified, 
and we only assume it for the sake of technical convenience. Instead, we capture action availability via �: if an action 
profile act contains an action that is not available for the respective agent at the given location l, then no transition 
is enabled8 by that action profile from l, i.e., there is no l′ such that (l, act, l′) ∈ �. Furthermore, we assume that non-
available actions will never be included in the designed strategy profiles.

4. Lastly, a terminological remark: a MAGIIAN model is a variant of a “factored model for a Qualitative Decentralised
Partially Observable Markov Decision Problem (QDec-POMDP)”, as defined in [17], which is itself a variation of the 
“QDec-POMDP model” defined in [18] (see further comments on these in Section 7). The (not very essential) differences 
of our models and QDec-POMDP models are that:
(a) we assume the agents’ observations to be determined by the locations, rather than given by non-deterministic 

observation functions;
(b) the goal is not fixed in the model (e.g., as a reachability goal, as in the QDec-POMDP models) but is exogenously 

specified and can be reachability, safety, or more general, e.g., an LTL-definable objective;
(c) no horizon is explicitly specified in our models, and we implicitly assume it to be unbounded.
For a more detailed discussion on the relevant works on QDec-POMDPs and the relation of this study to them, see 
Section 7.3.
To avoid possible confusion, not to clutter further the terminology, and to emphasize the importance of MAGIIAN models 
on their own, we will not use the Dec-POMDP-based terminology but will adopt the acronym MAGIIAN throughout the 
paper.

3.1. Plays and objectives

The game on G is played by the agents for infinitely many rounds (in general), starting from the initial location linit . 
In each round, given the current location l ∈ Loc, each agent i chooses an action ai ∈ Acti that is available to i at l, giving 
rise to an action profile act ∈ Act. Then, Nature resolves the non-determinism by choosing the next location l′ ∈ Loc so that 
(l, act, l′) ∈ �.

A full play in a MAGIIAN G is an infinite sequence π = l0σ1l1σ2l2 . . . of alternating locations and action profiles such 
that l0 = linit and σ j ∈ Act and (l j, σ j+1, l j+1) ∈ � for all j ≥ 0. A full history is a finite prefix π( j) = l0σ1l1σ2 . . . l j of a full 
play π . A play is the reduction of a full play to the subsequence of locations, π = l0l1l2 . . .. Respectively, a history is the 
reduction of a full history to the subsequence of locations, π( j) = l0l1 . . . l j . The last location on a history h is denoted by 
l(h).

From the perspective of any given agent, a play, resp. history, is a sequence of observations, not of locations. Thus, 
for every agent i, a play π = l0l1l2 . . . generates an observation trace of that play, which is the sequence of respective 

8 In general, this design choice can be problematic when there are adversarial agents, as they can deliberately block a transition from a given state and 
“sabotage” the evolution of the system by applying an unavailable action at that stage. However, this is not the case in our framework.
7
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observations obsi(l0) obsi(l1) obsi(l2) . . . for that agent. Likewise, for any history h we define the observation history for the 
given agent, being the respective finite prefix of the observation trace generated by the play containing the history.

An objective for the team Agt in the MAGIIAN G is, most generally, a set of plays, declared as winning plays for Agt. 
Often, an objective is expressed by a linear-time temporal logic formula �, in the sense that the winning plays are precisely 
those satisfying that formula, where the atomic propositions in � are assumed to have fixed interpretations in G. Here are 
the most common types of objectives that we consider in this work:

• A reachability objective can be defined by a non-empty set of locations R ⊆ Loc. A play π = l0l1l2 . . . is winning if it 
visits some location in R, i.e., if li ∈ R for some i ≥ 0.
A reachability objective is observable for an agent i, if it is a union of observations for i, and can therefore be defined 
alternatively as a set R ⊆ Obsi of observations for i; the objective is observable (for the team) if it is observable, at 
some point in time, for at least one agent in the team, and thus R ⊆ ∪i∈Agt Obsi . The latter notion of observability for 
the team may not always be justified, and indeed alternative formulations are also possible. However, our results on 
strategy preservation (see Section 4.2 below) are for the notion stated here.

• A safety objective is defined by a non-empty set of locations S ⊆ Loc. A play π = l0l1l2 . . . is winning if it only visits 
locations in S, i.e., if li ∈ S for all i ≥ 0.
Observable safety objectives are defined similarly to observable reachability objectives. Thus, an observable (for the 
team) safety objective is a set S ⊆ ∪i∈Agt Obsi , and to win, at every point in time at least one agent must observe the 
objective. Again, alternative formulations are possible, but our results are for the given one.

In this work we will be concerned with reachability and safety objectives that are observable for the team.

3.2. Observation-based strategies

In games with imperfect information the simplest type of agents’ strategies are based on agents’ observations. These are 
also the simplest type of knowledge-based strategies, more generally discussed in Section 2.1.

Given a MAGIIAN G, a (deterministic) perfect-recall observation-based strategy for an agent i is a mapping αi : Obs+
i →

Acti prescribing for every observation history h for the agent i an action αi(h) that is available for i at every state in l(h).
An observation-based strategy for i is called memoryless (or positional) if it only takes into account the current observa-

tion (the last one of the observation history). Such a strategy can be simply presented as a mapping of the type Obsi → Acti .
A finite-memory observation-based strategy is commonly modelled as a finite-state transducer, or Moore machine, 

reading game histories and mapping them to actions by using memory states, and is formally defined as follows.

Definition 4 (Finite-memory strategy). A finite-memory observation-based strategy for agent i in a MAGIIAN G = (Agt, Loc,
linit,Act, �, Obs) is a structure Mi = (M, m0, Obsi, Acti, τ , γ ), where:

(i) M is a finite set of memory states;
(ii) m0 ∈ M is the initial memory state;

(iii) Obsi and Acti are as in G;
(iv) τ : M × Obsi ⇀ M is a (partial) transition function;
(v) γ : M → Acti is a mapping from memory states to actions for i.

Agent i follows the strategy encoded by Mi as follows. In each round, i selects as its next action γ (m), where m is the 
current memory state of Mi (initially m0). After the team has applied its action profile and Nature has chosen the next 
location l, agent i makes the corresponding observation obsi(l) and updates its memory state to τ (m, obsi(l)).

Note that τ can be partial, since, in the context of a given MAGIIAN G, some combinations of memory states and 
observations might never occur during play.

A perfect-recall (resp., positional, or finite-memory) observation-based strategy profile is a strategy profile consisting 
of perfect-recall (resp., positional, or finite-memory) observation-based strategies.

An outcome of an agent’s (observation-based) strategy is any play in which the agent chooses its actions according to 
that strategy. Likewise we define an outcome of a strategy profile. Note that, because of potential non-determinism, such 
outcomes are generally not unique. A strategy profile is winning for an objective � if all of its outcomes belong to �.

It should be noted that the restriction to observable objectives can be partly overcome by using the following technical 
trick.9 Given a MAGIIAN G, one can transform G to another game G′ by adding to the set of agents a new, “dummy” agent 
whose observations are singletons, and who has in all its locations a single idling action at its disposal that is appended to 
all existing action profiles. Clearly, G and G′ have the same strategies; furthermore, according to our definition, all objectives 
in G′ are observable, even the ones that correspond to objectives in G that are not observable in G. Then, if there is no 

9 This was suggested to us by a reviewer.
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winning strategy in G′ for a given objective, there is no winning strategy in G either. On the other hand, if there is a 
winning strategy in G′ , it may not be directly usable if the objective is only observed by the dummy agent (recall that we 
assume that an objective is observable for the team if it is observable for at least one agent in the team), since the latter 
does not really exist in the actual game G. That is why, the trick with the dummy agent only works partly here, but the 
latter situation can be easily detected, so no essential problem arises.

3.3. Knowledge-based strategies

We now present a framework for defining knowledge-based strategies of an agent in a MAGIIAN game. It consists of two 
parts:

I. An information update module for the agent i in the game G, where:

• Kn(i) represents the a priori knowledge (information) of the agent i about the game, the other agents, their strategies, 
etc. (to be specified).

• KS(i) is the set of possible knowledge states of the agent i.
• Acti is the set of actions that i can take.
• Obsi is the set of observations that i can make (about locations and actions).

The information update module is defined as a mapping:

update(G, i,Kn(i)) : KS(i) × Acti × Obsi → KS(i)

II. An information (or, knowledge) based strategy for i: a mapping:

str(i) : KS(i) → Acti

Observe that finite-memory observation-based strategies as defined in Definition 4 are an instance of the above framework, 
with M for KS(i), γ for str(i), and τ for update(G, i, Kn(i)), where the latter is restricted to actions as prescribed by str(i).

The rationale behind the above formulation is the following. The possible knowledge states are abstractions over the 
sequences of actions and observations of the agents, and are updated upon each action and observation. In a knowledge-
based strategy, the next action of an agent is completely determined by its current knowledge state.

4. A multi-agent knowledge-based subset construction

Here we introduce and study a new construction, which generalises to the multi-agent case the well-known knowledge-
based subset construction (KBSC) [2]. The KBSC transforms single-agent games with imperfect information to (expanded) 
single-agent games with perfect information. The transformation is strategy-preserving for the large class of parity objec-
tives, cf. [3]. We do not present here the KBSC on its own, but as a component of the generalised construction.

Note that the results of this section concern first-order knowledge only, whereas higher-order knowledge will be studied 
in the following section, in the context of the iterated construction.

4.1. Generalising the KBSC

To connect knowledge-based strategies in multi-agent games to observation-based memoryless strategies in expanded 
games, we propose a generic scheme for expansion, which is independent of the concrete knowledge representation and 
the concrete assumptions on what the agents can know and observe.

Our generic scheme for extending the KBSC to the multi-agent setting consists of four stages:

1. Projection: for each agent i ∈ Agt, compute the individual views of the input game G, based on what the agent knows, 
does and sees. This stage results in n single-agent games with imperfect information.

2. Expansion: expand each of the individual views with the KBSC. The results are n single-agent games with perfect 
information.

3. Composition: combine the individual expansions by using a product construction, resulting in a single multi-agent 
game with perfect information.

4. Partition: define each agent’s observations as induced by the composition product, reflecting their local knowledge. The 
final result is a multi-agent game with imperfect information.

A concrete instantiation of that scheme is the Multi-Agent Knowledge-Based Subset Construction (MKBSC) for the case
(NN), defined below. An implementation of the MKBSC as a tool10 is described in [19]. The game graphs in the rest of the 
paper have been produced and visualised with this tool.

10 Available from github.com/helmernylen/mkbsc.
9
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Fig. 2. The individual projections G|0 and G|1.

Definition 5 (MKBSC). Let G = (Agt, Loc, linit, Act, �, Obs) be a MAGIIAN.

1. Projection: Given an agent i ∈ Agt, we define the projection of G onto i as the single-agent game with imperfect 
information:

G|i def= (Loc, linit,Acti,�i,Obsi),

where (l, acti, l′) ∈ �i iff there exists act ∈ Act such that act(i) = acti and (l, act, l′) ∈ �.
2. Expansion: Given G|i as above, we define its KBSC expansion, following [3], as the single-agent game with perfect 

information:

(G|i)K def= (S i, sI,i,Acti,�
K
i ),

where S i
def= {

s ∈ 2Loc\ {∅} ∣∣ ∃oi ∈ Obsi. s ⊆ oi
}

is the set of possible knowledge states of agent i, sI,i
def= {linit} is its initial 

knowledge state, and �K
i

def= {
(s, acti, s′) ∈ S i × Acti × S i | ∃oi ∈ Obsi. s′ = {

l′ ∈ oi

∣∣ ∃l ∈ s. (l,acti, l′) ∈ �i
}}

.
3. Composition: Given (G|i)K as above, for all i ∈ Agt, we construct their synchronous product, with joint knowledge states

S
def= ×i∈Agt S i and transitions �K labelled by joint actions Act. The initial knowledge state sI ∈ S is the tuple (sI,i)i∈Agt . 

We prune the product by removing inconsistent knowledge states s, i.e., tuples of sets of locations, the intersection 
∩i∈Agt s(i) of which is empty, and unrealisable transitions, i.e., transitions s act−→ s′ for which there is no transition l act−→ l′
in � such that l ∈ ∩i∈Agt s(i) and l′ ∈ ∩i∈Agt s′(i).

4. Partition: We define observations ObsK
i of every agent i ∈ Agt by means of the epistemic relations inducing ObsK

i in 
terms of the agent’s local knowledge:

s1 ∼K
i s2

def⇐⇒ s1(i) = s2(i).

The observations thus represent indistinguishability with respect to knowledge rather than locations.

The result is the MKBSC expansion:

GK = (Agt, S, sI ,Act,�K,ObsK)

of G, which is a MAGIIAN. Since only the part reachable from sI is of interest, the rest is disregarded.
A different, but equivalent formulation was originally proposed in [14] by the third co-author. The formulation given here 

makes explicit how the resulting game is composed of individual expansions, which is the basis for several of our results 
below.

Example 6. We illustrate the MKBSC construction on our running Example 1, here to be denoted as G. The individual 
projections G|0 and G|1 are shown in Fig. 2, while the individual expansions (G|0)K and (G|1)K of G|0 and G|1, respectively, 
are shown in Fig. 3. And finally, the pruned product GK of (G|0)K and (G|1)K is shown in Fig. 4.

Due to the pruning, there only are consistent knowledge states in GK . There is an edge labelled (squeeze, squeeze)

from vertex ({bad} , {bad,good}) to vertex ({good} , {good}) in GK because there is an edge labelled squeeze from vertex 
10
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Fig. 3. The individual expansions (G|0)K and (G|1)K .

Fig. 4. The pruned product GK .

{bad} to vertex {good} in (G|0)K , an edge labelled squeeze from {bad,good} to {good} in (G|1)K , and an edge labelled 
(squeeze, squeeze) from location bad to location good in G. Note that if the latter edge had not been present in G, the 
discussed edge in GK would have been unrealisable, and would have been pruned out.

While in this paper we do not focus on the algorithmic aspects of the MKBSC construction, a naive analysis of its space 
complexity reveals that: (a) projection preserves the locations of G, (b) expansion (being a subset construction) is worst-case 
exponential in the number of locations of G, and (c) composition results in the product of the numbers of locations of the 
individual expansions. The space complexity of the construction can thus be upper-bounded by O (2|Loc|·|Agt|).

For the (NY) case, the MKBSC construction can be adapted as follows:

1. The projections do not filter out the complementary actions of the other agents, but keep the full joint actions, and 
only abstract from the observations of the other agents; this results in the games G|i def= (Loc, linit, Act, �, Obsi).

2. The individual expansion stage remains unchanged.
3. The synchronous product has now to synchronise on common action profiles.
4. The partition stage remains unchanged.
11
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Fig. 5. A game G and its expansion GK .

For example, consider the game G shown in Fig. 5 left. In the (NY) case, its expansion GK is isomorphic to the original 
game G, but has knowledge states ({l} , {l}) for the corresponding locations l in G.

In the sequel, unless otherwise specified, we only refer to the (NN) case.

4.2. Strategy preservation

In this section we present results on the preservation of observation-based perfect recall strategies for observable reacha-
bility objectives. Note that every observable reachability objective R ⊆ ∪i∈Agt Obsi in a MAGIIAN G with observations Obs
translates uniformly to an observable reachability objective RK in GK , as follows:

RK def= {s ∈ S | ∃i ∈ Agt. ∃o ∈ R ∩ Obsi. s(i) ⊆ o}
Likewise, every observable safety objective S in G translates uniformly to an observable safety objective SK in GK .

The synchronous product of the MKBSC construction is a form of existential abstraction, and can give rise to “spurious” 
plays in GK that are not present in G. Such spurious plays can give rise to spurious outcomes of a given strategy, and can 
thus prevent a strategy from achieving a given objective.

Example 7. Consider the two-agent game G and its expansion GK , shown in Fig. 5 (where the symbol “(-)” is used to denote 
any joint action), and let R def= {{3}} be our observable reachability objective. The game is easily won in G with the profile of 
observation-based memoryless strategies, where the first agent always does action a, while the second agent always does b. 
In the game GK , however, the (corresponding) strategy is thwarted by the outcome ({0} , {0}) ({1,2} , {1,2}) ({0} , {0}), which 
is spurious: there is no corresponding outcome 0 1 0 or 0 2 0 in G.

Thus, it is not possible to preserve arbitrary winning strategies from G to GK . However, under the additional condition 
that for every joint knowledge state s that is reachable from the initial one in GK , ∩i∈Agt s(i) is a singleton set, no spurious 
plays exist. This condition can be stated as perfect distributed knowledge (or PDK for short).11

For instance, the game GK from Fig. 4 satisfies the PDK, while GK from Fig. 5 does not. An obvious sufficient condition 
on G to guarantee that GK fulfills the PDK condition is that no two distinct locations of G are indistinguishable by all agents 
(or equivalently, that any two distinct locations of G are distinguishable by at least one agent).12

When game GK satisfies the PDK, one can view GK as a refinement of the original game G, in the sense that the locations 
in GK are obtained from “splitting” locations of G. Since any two locations of GK that derive from the same location in G will 
always be distinguishable by at least one agent, one can say that, while the MKBSC does not necessarily eliminate imperfect 
information (as it does in the single-agent case), it in some sense decreases the degree of imperfectness.

The following result generalises Lemma 3.1 from [3].

Lemma 8. Let G = (Agt, Loc, linit, Act, �, Obs) be a MAGIIAN for a set of agents Agt, and let GK = (Agt, S, sI , Act, �K, ObsK) be its 
MKBSC expansion. Further, let s ∈ S, act ∈ Act and o ∈ Obsp . Define the set:

X
def= {

l′ ∈ ∩i∈Agt o(i)
∣∣ ∃l ∈ ∩i∈Agt s(i). (l,act, l′) ∈ �

}

11 In the literature on Dec-POMDP this condition is also called “joint observability” [20], “collective observability” [21] and “decentralised full observability” 
[22], and the models satisfying it are called “decentralised Markov decision processes (Dec-MDP)”.
12 Therefore, the technical trick of adding a dummy agent described at the end of Section 3.2 enforces the PDK condition.
12
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Then, X is non-empty if and only if there is s′ ∈ S such that (s, act, s′) ∈ �K and for all i ∈ Agt, s′(i) ⊆ o(i). This s′ ∈ S is then unique 
and we have X ⊆ ∩i∈Agt s′(i), and if GK fulfills the PDK condition, we have X = ∩i∈Agt s′(i).

Proof. Let s ∈ S , act ∈ Act and o ∈ Obsp . The stated equivalence is a direct consequence of the expansion and composition 
steps of Definition 5; in particular, when there is s′ ∈ S with the stated properties, the set X cannot be empty since 
otherwise the transition (s, act, s′) would be pruned out (as being unrealisable) in the composition step. Furthermore, if GK

fulfills the PDK condition, the set ∩i∈Agt s′(i) must be a singleton, and the two sets must therefore be equal. �
Analogues of this result can be proved likewise for stochastic, rather than non-deterministic models, of the type studied 

in the literature on Dec-POMDP.
The result lifts naturally to observation histories: every sequence π of joint actions and joint observations of G (where π

is not necessarily a path in G) gives rise to at most one path in GK such that at each corresponding step of the two 
sequences, s(i) ⊆ o(i) holds for all i ∈ Agt. Furthermore, every full play π in G gives rise to exactly one full play in GK that is 
consistent with the actions and the observations of the agents.

We obtain the following result on strategy preservation under the PDK condition.

Theorem 9 (Strategy preservation). Let G be a MAGIIAN, and let GK be its MKBSC expansion. Assume that GK fulfills the PDK condition. 
Let R be an observable reachability objective in G, and RK be its translation for GK . If there is a winning profile of observation-based 
perfect recall strategies in G for R, then there is also one in GK for RK .

Proof. Informally, given a profile {αi}i∈Agt of observation-based perfect recall strategies in G, every agent i ∈ Agt plays in GK

by:

1. recording the history of individual observations in GK it has made so far during the play,
2. converting this sequence to the corresponding sequence of observations of the agent in G, and
3. taking the action prescribed by αi for that sequence of observations.

Formally, let {αi}i∈Agt , where αi : Obs+
i → Acti for all i ∈ Agt, be a winning profile of observation-based perfect recall 

strategies in G for the observable reachability objective R. For all i ∈ Agt, define the functions αK
i : (ObsK

i )+ → Acti as the 
function compositions αK

i
def= αi ◦ obi , where for every oK

i ∈ ObsK
i , obi(oK

i ) denotes the unique observation oi ∈ Obsi in G such 
that A ⊆ oi holds for the common i’th component A of the tuples comprising oK

i , and where obi is then lifted to sequences. 
Thus the functions define a profile 

{
αK

i

}
i∈Agt of observation-based perfect recall strategies in GK . We show that this profile 

is winning in GK for the objective RK whenever GK satisfies the PDK condition.
Let πK = s0σ0s1σ1 . . . be an arbitrary outcome of 

{
αK

i

}
i∈Agt in GK . Then, by Lemma 8 and since GK satisfies the PDK 

condition, the sequence π = l0σ0l1σ1 . . . such that {lk} = ∩i∈Agt sk(i) for all k ≥ 0, must be a full play in G. But then sk(i) ⊆
obsi(lk) for all i ∈ Agt and k ≥ 0, and thus, by the definitions of αK

i , π must be an outcome of {αi}i∈Agt in G, and must be 
winning for R, i.e., there is an agent i ∈ Agt and an index k ≥ 0 such that obsi(lk) ∈ R. But then there is also an agent i ∈ Agt, 
an index k ≥ 0 and an observation o ∈ R ∩ Obsi such that sk(i) ⊆ o, and hence πK is winning for RK . Since πK is arbitrary, 
the profile 

{
αK

i

}
i∈Agt must be winning in GK for the objective RK . �

It is easy to see from the proof that winning profiles of observation-based perfect recall strategies for observable safety 
objectives S ⊆ ∪i∈Agt Obsi are also preserved, by a slightly modified argument: in the proof, simply replace “there is an index 
k ≥ 0” with “for all indices k ≥ 0”.

It is important to observe that the above proof is constructive and shows how observation-based memoryless strategies 
αi : Obsi → Acti in G are mapped to observation-based memoryless strategies αK

i
def= αi ◦ obi in GK .

The following result establishes an important property of expanded games. Let G2K denote (GK)K .

Lemma 10. Let G be a MAGIIAN, GK be its MKBSC expansion, and G2K be the MKBSC expansion of GK . Then, G2K fulfills the PDK 
condition.

Proof. As pointed out above, a sufficient condition on a game to guarantee that its MKBSC expansion fulfills the PDK 
condition is that no two distinct locations of the game are indistinguishable by all agents. This sufficient condition is 
enforced by the partition step of Definition 5, since two knowledge states of the expansion can only be indistinguishable by 
all agents if they are equal.

Formally, the proof proceeds by contradiction. Assume that G2K does not fulfill the PDK condition. By the definition of 
the PDK condition, there must then be a knowledge state s of G2K such that ∩i∈Agt s(i) is not a singleton set. And since the 
latter set, due to the pruning in the composition step of Definition 5, also cannot be empty, there must be (at least) two 
distinct knowledge states s1 and s2 in GK such that {s1, s2} ⊆ s(i) for all i ∈ Agt. Hence, by the expansion step of Definition 5, 
13
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s1 and s2 must be indistinguishable in GK for all i ∈ Agt, and therefore, by the partition step of Definition 5, s1(i) = s2(i) for 
all i ∈ Agt. But then s1 = s2, and we arrive at a contradiction. �

This result will be important for the properties of the iterated construction studied in Section 5.
Strategy preservation in the reverse direction, from GK to G, does not depend on the PDK condition.

Theorem 11 (Reverse strategy preservation). Let G be a MAGIIAN, and let GK be its MKBSC expansion. Let R be an observable reach-
ability objective in G, and RK be its translation for GK . If there is a winning profile of observation-based perfect recall strategies in GK

for RK , then there is also one in G for R.

Proof. Informally, given a strategy profile
{
αK

i

}
in GK , every agent i ∈ Agt plays in G by:

1. recording the sequence of actions it has taken and observations it has made so far during the play,
2. following the unique path in GK that corresponds to this sequence, and
3. for the corresponding sequence of observations in GK , taking the action as prescribed by αK

i for that sequence.

Formally, let 
{
αK

i

}
i∈Agt , where αK

i : (ObsK
i )+ → Acti for all i ∈ Agt, be a winning profile of observation-based perfect recall 

strategies in GK for the observable reachability objective RK . For all i ∈ Agt, we define the functions αi : Obs+
i → Acti by 

induction on the length of observation sequences. In the base case, define αi({linit}) def= αK
i ({sI }). Let μ = o0o1 . . .om ∈ Obs+

i
be an observation sequence, where o0 = {linit}, and assume that α is defined for all its prefixes (induction hypothesis). Then, 
the actions σk

def= αi(μ(k)) are also defined for all k : 0 ≤ k ≤ m. Let om+1 ∈ Obsi . By Lemma 8, the observation history 
o0σ0o1σ1 . . .omσmom+1 defines at most one path s0σ0s1σ1 . . . smσmsm+1 in GK . Define αi(μ · om+1) 

def= αK
i (s0s1 . . . sm+1) if 

such a path exists (and otherwise its choice is immaterial). Thus the functions define a profile {αi}i∈Agt of observation-based 
perfect recall strategies in G. We show that this profile is winning in G for the objective R.

Let π = l0σ0l1σ1 . . . be an arbitrary outcome of {αi}i∈Agt in G. Then, by Lemma 8, there is a play πK = s0σ0s1σ1 . . . in GK

such that lk ∈ ∩i∈Agt sk(i) for all k ≥ 0. By the definitions of αi , πK must be an outcome of
{
αK

i

}
in GK , and must thus be 

winning for RK , i.e., there is an agent i ∈ Agt, an index k ≥ 0 and an observation o ∈ R ∩ Obsi such that sk(i) ⊆ o. But then 
there is also an agent i ∈ Agt and an index k ≥ 0 such that obsi(lk) ∈ R, and hence π is winning for R. Since π is arbitrary, 
the profile {αi}i∈Agt must be winning in G for the objective R. �

Again, it is easy to see from the proof that winning profiles of observation-based perfect recall strategies for observable 
safety objectives are also preserved, by replacing in the proof “there is an index k ≥ 0” with “for all indices k ≥ 0”.

Further, note that the proof is constructive and reveals how observation-based memoryless strategies in GK can be 
mapped to observation-based finite-memory strategies (i.e., transducers) in G (which may, in some cases, “degenerate” to 
memoryless strategies in G). We will make use of this in Section 4.3.1.

4.3. Strategy translation

While the results of the preceding subsection concern profiles of observation-based perfect recall strategies, in this work 
we focus on searching for profiles of observation-based memoryless strategies in the game GK . For this class of strategies the 
synthesis problem has already been studied (see e.g. [23]). If such a strategy profile can be found, it needs to be converted 
to an observation-based strategy profile for play in the original game structure G. For this, we will offer here two solutions:

(i) the extensional solution, where we convert each individual strategy to an individual observation-based finite-memory 
strategy (i.e., transducer), and

(ii) the intensional solution, where we interpret the individual strategies as knowledge-based strategies, based on a (com-
mon) knowledge representation and individual update functions.

The two solutions will be shown to be equivalent, i.e., to give rise to the same sets of outcomes.

4.3.1. Translation to transducers
We start with the important observation that, by virtue of how the observations in GK are defined in Definition 5, every 

observation-based memoryless strategy for agent i in GK is simultaneously a memoryless strategy in the game with perfect 
information (G|i)K . This observation motivates the following construction, which essentially combines each game (G|i)K and 
individual memoryless strategy αK

i into a transducer A i(α
K
i ) for agent i for play in G.

Definition 12 (Induced transducer). Let G = (Agt, Loc, linit, Act, �, Obs) and for any i ∈ Agt, let (G|i)K = (S i, sI,i, Acti, �K
i ). Let 

also αK : S i → Acti be a memoryless strategy in (G|i)K . We define the following αK-induced transducer:
i i

14



D. Gurov, V. Goranko and E. Lundberg Artificial Intelligence 309 (2022) 103728
A i(α
K
i )

def= (S i, sI,i,Obsi,Acti, τi,α
K
i )

where τi(s, oi) is defined for s ∈ S i and oi ∈ Obsi as the unique s′ ∈ S i such that s′ ⊆ oi and (s, αK
i (s), s′) ∈ �K

i , if such an s′
exists, and is undefined otherwise.

Uniqueness of s′ in the definition is guaranteed by Lemma 8.
The transducer A i(α

K
i ) is, by Definition 4, an observation-based finite-memory strategy for agent i in G. The transducer 

can be pruned by removing, from each memory state s, the outgoing edges for actions other than αK
i (s), then by removing 

the unreachable memory states, and finally by abstracting away the structure of s (since only the identity of the memory 
states is relevant).

Theorem 13 (Strategy correspondence). Let G be a MAGIIAN for a set of agents Agt, and let GK be its MKBSC expansion. Let R be 
an observable reachability objective in G, and RK be its translation in GK . Finally, let 

{
αK

i

}
i∈Agt be a profile of observation-based 

memoryless strategies in GK , and
{

A i(α
K
i )

}
i∈Agt be the corresponding profile of induced transducers for G.

(i) If 
{

A i(α
K
i )

}
i∈Agt is winning for R in G, and GK fulfills the PDK condition, then 

{
αK

i

}
i∈Agt is winning for RK in GK .

(ii) If 
{
αK

i

}
i∈Agt is winning for RK in GK , then 

{
A i(α

K
i )

}
i∈Agt is winning for R in G.

Proof. (i) The proof adapts the strategy construction used in the proof of Theorem 9. Let 
{

A i(α
K
i )

}
i∈Agt be winning for R

in G, and let GK fulfill the PDK condition. Let πK = s0σ0s1σ1 . . . be an arbitrary outcome of 
{
αK

i

}
i∈Agt in GK . Then, by 

Lemma 8 and since GK fulfills the PDK condition, the sequence π = l0σ0l1σ1 . . . such that {lk} = ∩i∈Agt sk(i) for all k ≥ 0, 
must be a full play in G. Now, by Definition 12, π must be an outcome of 

{
A i(α

K
i )

}
i∈Agt in G. Since 

{
A i(α

K
i )

}
i∈Agt is winning 

for R in G, π must be winning for R in G, and hence, by the definition of RK , πK must be winning for RK in GK . But πK is 
arbitrary, and therefore 

{
αK

i

}
i∈Agt must be winning for RK in GK .

(ii) The proof adapts the strategy construction used in the proof of Theorem 11, using the observation that observation-
based memoryless strategies for agent i in GK correspond to memoryless strategies in (G|i)K .

Let 
{
αK

i

}
i∈Agt be winning for RK in GK . Let π = l0l1l2 . . . be an arbitrary outcome of 

{
A i(α

K
i )

}
i∈Agt in G. This outcome 

induces a corresponding sequence of joint observations, from which, using 
{

A i(α
K
i )

}
i∈Agt , one can recover the corresponding 

sequence of joint actions. By Lemma 8, these two sequences (of joint actions and joint observations) give rise to a unique 
play πK in GK , the individual knowledge states of which are subsets of the corresponding individual observations. Now, 
by Definition 12, πK must be an outcome of 

{
αK

i

}
i∈Agt in GK . Since 

{
αK

i

}
i∈Agt is winning for RK in GK , πK must be win-

ning for RK in GK , and hence, by the definition of RK , π must be winning for R in G. But π is arbitrary, and therefore {
A i(α

K
i )

}
i∈Agt must be winning for R in G. �

The above results suggest a method to synthesise observation-based finite-memory strategies for reachability objectives R in 
a MAGIIAN G, based on:

(i) computing the MKBSC expansion GK of the game,
(ii) searching for a winning profile of observation-based memoryless strategies (for the translated objective RK) there, and 

if such a profile 
{
αK

i

}
i∈Agt is found,

(iii) translating the latter back in the form of the transducers 
{

A i(α
K
i )

}
i∈Agt .

4.3.2. Translation to knowledge-based strategies
To be able to interpret the individual strategies αK

i of the agents in GK as individual knowledge-based strategies in G, 
following the framework outlined in Section 3.3, we need to define a knowledge representation and individual knowledge 
update functions. As a first-order knowledge representation structure we will use non-empty sets A ⊆ Loc of locations 
in G. For a given agent, the intended interpretation of such a set is as the agent’s most precise estimate of the actual loca-
tion of the game and, thus, represents the agent’s exact uncertainty about the actual state-of-affairs. Given this knowledge 
representation, each memoryless strategy αK

i : S i → Acti in (G|i)K can simultaneously be viewed as an individual first-order 
knowledge-based strategy for agent i in G.

Definition 14 (Knowledge update). For s ∈ 2Loc \ {∅}, acti ∈ Acti and oi ∈ Obsi , the knowledge update function of agent i ∈ Agt
is defined as follows:

δi(s,acti,oi)
def= {

l′ ∈ oi

∣∣ ∃act ∈ Act. (act(i) = acti ∧ ∃l ∈ s. ((l,act, l′) ∈ �))
}

if the set is non-empty, and is undefined otherwise.
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The set is the most precise estimate of agent i of the new actual location upon taking the action acti and making the 
new observation oi . Note that the update functions δi do not depend on αK

i (which may be the case in the (YN) and (YY)
cases discussed in Section 2.2). The initial knowledge of each agent i is {linit}.

As the following result states, the first-order knowledge-based strategies defined in this way agree with the finite-
memory ones from Definition 12.

Theorem 15 (Strategy equivalence). Let G be a MAGIIAN, GK be its MKBSC expansion, 
{
αK

i

}
i∈Agt be a profile of observation-based 

memoryless strategies in GK , and 
{

A i(α
K
i )

}
i∈Agt be the corresponding profile of induced transducers for G. Then, the strategy profile {

A i(α
K
i )

}
i∈Agt , and the profile of first-order knowledge-based strategies based on 

{
αK

i

}
i∈Agt and {δi}i∈Agt , give rise to the same set of 

outcomes in G.

Proof. We show that τi(s, oi) = δi(s, αK
i (s), oi) for all s ∈ 2Loc \ {∅} and oi ∈ Obsi . The result then follows from Definition 12, 

Definition 4, and the definition of first-order knowledge-based strategies.
Let s ∈ 2Loc \ {∅} and oi ∈ Obsi . We have:

τi(s,oi)

= the unique s′ ∈ S i such that s′ ⊆ oi and (s,αK
i (s), s′) ∈ �K

i {Definition 12}
= {

l′ ∈ oi

∣∣ ∃l ∈ s. (l,αK
i (s), l′) ∈ �i

} {Definition 5.2}
= {

l′ ∈ oi

∣∣ ∃act ∈ Act. (act(i) = αK
i (s) ∧ ∃l ∈ s. (l,act, l′) ∈ �)

} {Definition 5.1}
= δi(s,αK

i (s),oi) {Definition 14}
if such an s′ exists; otherwise, by Lemma 8, also δi(s, αK

i (s), oi) is undefined. �
As a corollary of Theorems 13 and 15, we have that:

(i) if 
{
αK

i

}
i∈Agt with {δi}i∈Agt is winning for R in G, and GK fulfills the PDK condition, then 

{
αK

i

}
i∈Agt is winning for RK

in GK , and
(ii) if 

{
αK

i

}
i∈Agt is winning for RK in GK , then 

{
αK

i

}
i∈Agt with {δi}i∈Agt is winning for R in G.

Every profile of first-order knowledge-based strategies in G is at the same time a profile of observation-based memoryless 
strategies in GK , and vice versa. Then, for a given MAGIIAN G and observable reachability objective R, if GK fulfills the PDK 
condition, a winning profile of first-order knowledge-based strategies exists if and only if a winning profile of observation-
based memoryless strategies exists in GK for RK .

Our strategy synthesis method is therefore complete, under the PDK condition, for the class of first-order knowledge-
based strategies with respect to observable reachability objectives: if a winning profile of first-order knowledge-based 
strategies exists, it will be found with our method.

Example 16. Consider again our running Example 1, and note that the PDK condition holds for the MKBSC expansion of this 
game. Let the joint observable objective (in G) be to reach location good (and recall that it suffices for just one of the robots 
to observe this). Here is a winning profile of first-order knowledge-based strategies for play in G, where robot 0 follows the 
strategy defined in the left two columns of the table below, and updates its knowledge according to δ0, partially shown in 
the right two columns:

Knowledge state Action On observing {bad} On observing {good}
{start} grab {bad} {good}
{bad} squeeze NA {good}
{good} squeeze NA {good}

while robot 1 follows the strategy defined in the left two columns of the table below, and updates its knowledge according 
to δ1, partially shown in the right column:

Knowledge state Action On observing {good,bad}
{start} grab {good,bad}
{good,bad} squeeze {good}

If, however, the objective is to reach location win, then there is no winning profile of first-order knowledge-based strategies. 
Intuitively, the reason for this is that robot 0 is obliged to take the same action in both locations of GK where it knows 
{good}, but win can only be reached by taking different actions. This problem will be resolved below with the help of 
second-order knowledge-based strategies.
16
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The duality between the intensional and the extensional views exhibited above is not surprising. Having a knowledge-
based strategy in the form of αK

i and δi , agent i can reconstruct the transducer A i(α
K
i ), as evidenced by the proof of 

Theorem 15 (and one can thus view the execution of an individual knowledge-based strategy by an agent as constructing 
the corresponding pruned transducer on-the-fly). On the other hand, the reverse direction is far less obvious, and we see 
our approach as a way to provide an explanation for the otherwise uninterpreted strategies represented by transducers.

4.4. Strategy synthesis

In the beginning of Section 4.3.1 we noted that every observation-based memoryless strategy αK
i for agent i in GK is also 

a memoryless strategy in the single-agent game with perfect information (G|i)K . This fact can also be useful for the synthesis
of profiles of observation-based memoryless strategies in GK , since the synthesis of memoryless strategies in single-agent 
games of perfect information is well-studied. For instance, in the context of reachability objectives the standard synthesis 
technique is based on the notion of controllable predecessors (see e.g. [4]).

Another useful fact is that if a profile 
{
αK

i

}
i∈Agt of observation-based memoryless strategies in GK is winning for a 

(translated) reachability objective RK , then, due to the consistency of the joint knowledge states of GK , every individual 
memoryless strategy αK

i has an outcome πi = s0s1s2 . . . in (G|i)K such that ∃r ≥ 0. ∃o ∈ R. sr ∩ o �= ∅. This suggests the 
following simple heuristic for synthesis of profiles of observation-based memoryless strategies in GK:

1. For each agent i ∈ Agt, find a memoryless strategy αK
i in (G|i)K that has a winning outcome for the reachability objective 

RK
i = {s ∈ S i | ∃o ∈ R. s ∩ o �=∅}.

2. Check whether the profile 
{
αK

i

}
i∈Agt is winning for RK . If it is not, backtrack to step 1.

To implement the first step of the heuristic, one can adapt the notion of controllable predecessors to finding strategies 
where some outcome is winning (rather than all outcomes, as the standard formulation achieves). For the second step, it 
suffices to simulate the profile 

{
αK

i

}
i∈Agt on the game GK , following each outcome up to the first knowledge state which 

either belongs to RK , or else has already been visited by the outcome. In the latter case, the profile is not winning. Since 
the set of knowledge states is finite, this check terminates.

5. The iterated MKBSC construction

Applying the MKBSC to a MAGIIAN G does not necessarily result in a game with perfect information, but in general 
produces another MAGIIAN. Thus, as it was first observed in [14] by the third co-author, the construction can always be 
applied again, iteratively, producing an infinite (but possibly collapsing) hierarchy of expansions GK , G2K , G3K , . . . . We show 
here that such repeated application produces a hierarchy of higher-order knowledge representation structures for the agents 
in the team, and using these can increase its strategic abilities.

Example 17. We apply below the MKBSC construction on the game GK from Fig. 4 to produce G2K . The individual projections 
GK|0 and GK|1 are shown in Fig. 6, with corresponding expansions (GK|0)K and (GK|1)K , as shown in Fig. 7. The pruned 
product G2K is shown in Fig. 8.

Now, for the robot team to reach location win in G, robot 0 can follow the second-order knowledge-based strategy 
(extracted from the above games as described below):

Knowledge state Action
{({start} , {start})} grab
{({good} , {bad,good})} squeeze
{({bad} , {bad,good})} squeeze
{({good} , {good})} lift

while the strategy of robot 1 follows the table:

Knowledge state Action
{({start} , {start})} grab
{({bad} , {bad,good}), ({good} , {bad,good})} squeeze
{({good} , {good})} lift

This means, for instance, that robot 0 will squeeze whenever it knows that robot 1 (the one without a grip sensor) is 
uncertain about whether the grip is good or not.

It is well-known that coordinated action in multi-agent games requires common knowledge (see, e.g., [26]). In the context 
of the above example, it is worth noting that the knowledge state:
17
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Fig. 6. The individual projections GK|0 and GK|1.

Fig. 7. The individual expansions (GK|0)K and (GK|1)K .

({({good} , {good})} , {({good} , {good})})
of Fig. 8, while representing second-order knowledge of the two robots, can also be seen as representing the common 
knowledge of the robots that they both have a good grip. This, in fact, is what justifies that they can simultaneously lift at 
this point. The notion of common knowledge in the context of MAGIIAN games shall not be explored further in this paper.

5.1. Generalised induced transducers

Now, we discuss the general case of iterating the MKBSC construction j times, for any j ≥ 1, resulting in the expanded 
game structure G jK , and generalise our results from the preceding section. Let G0K denote the original game G.

Intuitively, the single-agent game with perfect information (G jK|i)K represents the possible “dynamics” of agent i’s ( j +1)-
order knowledge. Similarly to the construction presented in Definition 12, one can combine each (G jK|i)K and individual 
memoryless strategy α

( j+1)K
i into a transducer A i(α

( j+1)K
i ) for agent i for play in G. To achieve this, however, we first need 

to formally connect, for every agent i ∈ Agt, the knowledge states of (G jK|i)K to the observations Obsi of that agent in G. 
This can be achieved by observing that each knowledge state si ∈ S i of (G jK|i)K is a set of locations in G jK , which, when 
j > 0, are tuples that agree on their i-th component, where this i-th component is in turn a knowledge state in (G( j−1)K|i)K . 
We can thus repeat this process until reaching a set of locations in G. Let us denote this set by ŝi ⊆ Loc. By virtue of the 
MKBSC construction, ŝi will be non-empty, and will be a subset of some observation oi ∈ Obsi in the original game G.
18
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Fig. 8. The pruned product G2K .

For the expanded game structures G jK , the connection between the joint knowledge states s in the latter and the lo-
cations in G is established via iterated intersection of the sets comprising the tuples in s until obtaining a set of locations 
in G. Let us denote this set by �s ⊆ Loc. Iterated intersection is well-defined by virtue of Lemma 10.

The following result generalises Lemma 8.

Lemma 18. Let G = (Agt, Loc, linit, Act, �, Obs) be a MAGIIAN for a set of agents Agt, let j ≥ 1, and let G jK = (Agt, S jK, sI , Act,� jK,

Obs jK) be the j-iterated MKBSC expansion of G. Further, let s ∈ S jK , act ∈ Act and o ∈ Obsp . Define the set:

X ( j) def= {
l′ ∈ ∩i∈Agt o(i)

∣∣ ∃l ∈ �s. (l,act, l′) ∈ �
}

Then, X ( j) is non-empty if and only if there is s′ ∈ S jK such that (s, act, s′) ∈ � jK and such that for all i ∈ Agt, ̂s′(i) ⊆ o(i). This s′ ∈ S jK

is then unique and we have X ( j) ⊆ �s′ , and if GK fulfills the PDK condition, we have X ( j) = �s′ .

Proof. By mathematical induction on j. The base case of j = 1 is established by Lemma 8. Assume (as the induction 
hypothesis) that the result holds for j. We show that the result then follows for j + 1.

Let s ∈ S( j+1)K , act ∈ Act and o ∈ Obsp . Further, let X ( j+1) be defined as above. Consider the case when X ( j+1) is non-
empty. (The case when X ( j+1) is empty is analogous.) Then, there must be locations l, l′ ∈ Loc in G such that l ∈ �s, l′ ∈
∩i∈Agt o(i) and (l, act, l′) ∈ �. Let s1 denote the sole element of the (simple) intersection of the sets comprising the tuple s
(by Lemma 10, this intersection must be a singleton set). Then s1 ∈ S jK and l ∈ �s1 must be the case. Let X ( j) be defined 
as above (but w.r.t. s1 ∈ S jK). By the induction hypothesis, X ( j) must also be non-empty, and hence, there is exactly one 
s′

1 ∈ S jK such that (s1, act, s′
1) ∈ � jK and for all i ∈ Agt, ŝ1

′
(i) ⊆ o(i). Then, l′ ∈ �s′

1 must be the case.
Now, let o1 ∈ Obs jK be the unique observation profile in G jK that the agents make in s′

1. By Lemma 8, there is exactly 
one s′ ∈ S( j+1)K such that (s, act, s′) ∈ �( j+1)K and for all i ∈ Agt, s′(i) ⊆ o1(i). Then, for all i ∈ Agt, ŝ′(i) ⊆ o(i) must be the 
case. Furthermore, by Lemma 8 and Lemma 10, s′

1 must be the sole element of the intersection of the sets comprising the 
tuple s′ , and thus, since l′ ∈ �s′

1, also l′ ∈ �s′ must be the case. This establishes X ( j+1) ⊆ �s′ .
Finally, if GK fulfills the PDK condition, because of Lemma 10 all iterated intersections used in the proof must be single-

tons, and thus X ( j+1) = �s′ . �
As before, this result lifts naturally to observation histories: every sequence π of joint actions and joint observations of G

(where π is not necessarily a path in G) gives rise to at most one path in G jK such that at each corresponding step of the 
two sequences, ŝ(i) ⊆ o(i) holds for all i ∈ Agt. Furthermore, every full play π in G gives rise to exactly one full play in G jK

that is consistent with the actions and the observations of the agents.
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Definition 19 (Generalised induced transducer). Let G = (Agt, Loc, linit, Act, �, Obs) and for any i ∈ Agt and j ≥ 0, let (G jK|i)K =
(S i, sI,i, Acti, �

( j+1)K
i ). Let also α

( j+1)K
i : S i → Acti be a memoryless strategy in (G jK|i)K . We define the α( j+1)K

i -induced 
transducer as:

A i(α
( j+1)K
i )

def= (S i, sI,i,Obsi,Acti, τ
j+1

i ,α
( j+1)K
i )

where τ j+1
i (s, oi) is defined for s ∈ S i and oi ∈ Obsi as the unique s′ ∈ S i such that ŝ′ ⊆ oi and (s, α( j+1)K

i (s), s′) ∈ �
( j+1)K
i , if 

such an s′ exists, and is undefined otherwise.

The transducer A i(α
( j+1)K
i ) is, by Definition 4, an observation-based finite-memory strategy for agent i in G. The trans-

ducer can be pruned by removing, from each memory state s, the outgoing edges for actions other than α
( j+1)K
i (s), then by 

removing the unreachable memory states, and finally by abstracting away the structure of s (since only the identity of the 
memory states is relevant).

The following result generalises Theorem 13 to the iterated MKBSC.

Theorem 20 (Generalised strategy correspondence). Let G be a MAGIIAN for a set of agents Agt, let j ≥ 1, and let G jK be the j-
iterated MKBSC expansion of G. Let R be an observable reachability objective in G, and R jK be its j-iterated translation in G jK . Finally, 
let 

{
α

jK
i

}
i∈Agt

be a profile of observation-based memoryless strategies in G jK , and
{

A i(α
jK
i )

}
i∈Agt

be the corresponding profile of 

generalised induced transducers for G.

(i) If 
{

A i(α
jK
i )

}
i∈Agt

is winning for R in G, and GK fulfills the PDK condition, then 
{
α

jK
i

}
i∈Agt

is winning for R jK in G jK .

(ii) If 
{
α

jK
i

}
i∈Agt

is winning for R jK in G jK , then 
{

A i(α
jK
i )

}
i∈Agt

is winning for R in G.

Proof. The proof adapts the one of Theorem 13, but refers now to Lemma 18 to relate the plays in G with those in G jK .

(i) Let 
{

A i(α
jK
i )

}
i∈Agt

be winning for R in G, and let GK fulfill the PDK condition. Let π jK = s0σ0s1σ1 . . . be an arbitrary 

outcome of 
{
α

jK
i

}
i∈Agt

in G jK . Then, by Lemma 18 and Lemma 10, and since GK fulfills the PDK condition, the sequence 

π = l0σ0l1σ1 . . . such that {lk} = �sk for all k ≥ 0, must be a full play in G. Now, by Definition 19, π must be an outcome of {
A i(α

jK
i )

}
i∈Agt

in G. Since 
{

A i(α
jK
i )

}
i∈Agt

is winning for R in G, π must be winning for R in G, and hence, by the definition 

of R jK , π jK must be winning for R jK in G jK . But π jK is arbitrary, and therefore 
{
α

jK
i

}
i∈Agt

must be winning for R jK in G jK .

(ii) Let 
{
α

jK
i

}
i∈Agt

be winning for R jK in G jK . Let π = l0l1l2 . . . be an arbitrary outcome of 
{

A i(α
jK
i )

}
i∈Agt

in G. This 

outcome induces a corresponding sequence of joint observations, from which, using 
{

A i(α
jK
i )

}
i∈Agt

, one can recover the 

corresponding sequence of joint actions. By Lemma 18, these two sequences (of joint actions and joint observations) give 
rise to a unique play π jK = s0σ0s1σ1 . . . in G jK such that {lk} = �sk for all k ≥ 0. Now, by Definition 19, π jK must be an 
outcome of 

{
α

jK
i

}
i∈Agt

in G jK . Since 
{
α

jK
i

}
i∈Agt

is winning for R jK in G jK , π jK must be winning for R jK in G jK , and hence, 

by the definition of R jK , π must be winning for R in G. But π is arbitrary, and therefore 
{

A i(α
jK
i )

}
i∈Agt

must be winning 

for R in G. �
5.2. Generalised knowledge representation

Let us denote by A( j+1) the domain of knowledge states that can arise in the game structures (G jK|i)K , and by B( j) the 
ones that can arise in G jK . The elements of A( j+1) are non-empty sets of elements from B( j) , and the sets A( j) can thus be 
defined formally, for j > 0, by:

A( j+1) def= 2B( j)

The elements of B( j) are tuples of elements of A( j) , one for each agent i ∈ Agt, and thus, the sets B( j) can be defined 
inductively as follows:

B(0) def= L

B( j) def= (A( j))Agt for j > 0

So, as a structure for representing the j-order knowledge of agents we will use elements of A( j) .
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As already mentioned, the elements of A( j+1) that can actually arise from the iterated MKBSC have the property that 
they are sets of tuples from (A( j))Agt that agree on their i-th component. This observation suggests that there are more 
compact and meaningful representations of the knowledge structures, as we will now show.

Knowledge trees For teams of two agents, the knowledge states in the MKBSC-iterated games can be represented as pairs 
of knowledge trees, one for each agent, of depth being the iteration index. For example, consider the following knowledge 
state in G2K from our running example:

({({good} , {bad,good})} , {({bad} , {bad,good}), ({good} , {bad,good})})
By factoring out the common i’th component for each agent i, this structure can be equivalently represented as a pair of 
trees:

These trees represent the second-order knowledge of the two robots: robot 0 knows that the grip is good, but that robot 1
is uncertain about whether the grip is good or bad, while robot 1 is uncertain about whether the grip is good or bad, but 
knows that robot 0 knows which of the two is the case.

A visualisation of G2K for our running example, with states represented by the respective pairs of knowledge trees is 
shown on Fig. 9. It has been obtained by a modified version of our tool.13 Knowledge trees can have any finite depth. For 
instance, a knowledge tree of robot 1 from G5K is depicted on Fig. 10.

Representing knowledge in the form of trees, rather than as recursive tuples of sets of locations, can play an important 
role in explaining to humans knowledge-based strategies that have been synthesised algorithmically with our method.14

Our notion of knowledge trees is akin to the notion of k-trees of [8]. The latter notion is finer than ours in that, in a 
k-tree, every node (i.e., set) is connected to a particular element of the parent node (set) rather than with the whole set (as 
it is the case in our representation). Some details on k-trees can be found in Appendix A, where we have slightly modified 
the original presentation, adapting it to the current set-up. Technically and conceptually similar (yet, not equivalent) are the 
k-worlds in [7].

Lastly, analogous structures have also been used in decision and game theory, in the context of multi-player decision 
making, to represent the knowledge of players who use mental models of the other players when deciding how to act, see 
e.g. the “level-k types” in [25].

5.3. Generalised knowledge update

For j ≥ 0, taking A( j+1) as the ( j + 1)-order knowledge representation, every individual memoryless strategy α( j+1)K
i in 

(G jK|i)K can be seen as an individual ( j + 1)-order knowledge-based strategy for agent i in G.

Definition 21 (Generalised knowledge update). For j > 0, s ∈ A( j+1) , acti ∈ Acti and oi ∈ Obsi , the generalised knowledge 
update function of agent i ∈ Agt is defined inductively as follows:

δ
j+1
i (s,acti,oi)

def=
{
δ

j
i′ (t(i

′),act(i′),o(i′)))i′∈Agt

∣∣∣ t ∈ s,act ∈ Act,o ∈ Obsp,act(i) = acti,o(i) = oi

}

from which the inconsistent tuples are pruned out (as in the Composition step of Definition 5), and where the base case 
δ1

i
def= δi is as given in Definition 14.

As the following result shows, generalised knowledge update δ
j+1
i is essentially knowledge update δi applied on G jK

(instead of on G). To formalise this, one has to realise that agent observations in the original game G relate to observations 
in the expanded games much in the same way as the locations relate to knowledge states (see page 18). For an observation 
oi ∈ Obsi , let o j

i denote the set 
{

s ∈ B( j)
∣∣ ŝ(i) ⊆ oi

}
.

Lemma 22. Let j ≥ 1, s ∈ A( j+1) , acti ∈ Acti and oi ∈ Obsi . Then:

δ
j+1
i (s,acti,oi) =

{
l′ ∈ o j

i

∣∣∣ ∃act ∈ Act. (act(i) = acti ∧ ∃l ∈ s. (l,act, l′) ∈ � jK)
}

13 Described in [24] and available from github.com/larasik/mkbsc.
14 At the same time it should be noted that such trees are more efficiently represented by DAGs.
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Fig. 9. The game G2K with explicit knowledge trees.

Fig. 10. A knowledge tree from G5K .
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Proof. By mathematical induction on j. The base case of j = 1 is established in the proof of Theorem 15. Assume (as the 
induction hypothesis) that the result holds for j. We show that the result then follows for j + 1.

Let s ∈ A( j+1) , acti ∈ Acti , oi ∈ Obsi , and let o j
i be as defined above. Then:

δ
j+1
i (s,acti,oi)

=
{
(δ

j
i′ (t(i

′),act(i′),o(i′)))i′∈Agt

∣∣∣ t ∈ s,act ∈ Act,o ∈ Obsp,act(i) = acti,o(i) = oi

}
{Definition 21}

=
{
({l′ ∈ o j−1

i′ | ∃act ∈ Act. (act(i′) = acti′ ∧ ∃l ∈ t(i′). (l,act, l′) ∈ �( j−1)K)})i′∈Agt∣∣ t ∈ s,act ∈ Act,o ∈ Obsp,act(i) = acti,o(i) = oi
} {Ind.hyp.}

=
{

l′ ∈ o j
i

∣∣∣ ∃act ∈ Act. (act(i) = acti ∧ ∃l ∈ s. (l,act, l′) ∈ � jK)
}

{Definition 5} �
The following result generalises Theorem 15 to the iterated MKBSC: the strategy profiles resulting from the translation 

to transducers and to knowledge-based strategies are equivalent, i.e., give rise to the same sets of outcomes.

Theorem 23 (Generalised strategy equivalence). Let G be a MAGIIAN for a set of agents Agt, let j ≥ 1, and let G jK be the j-iterated 
MKBSC expansion of G. Let 

{
α

jK
i

}
i∈Agt

be a profile of observation-based memoryless strategies in G jK , and 
{

A i(α
jK
i )

}
i∈Agt

be the 

corresponding profile of induced transducers for G. Then, the strategy profile 
{

A i(α
jK
i )

}
i∈Agt

, and the profile of j-order knowledge-

based strategies based on 
{
α

jK
i

}
i∈Agt

and 
{
δ

j
i

}
i∈Agt

, give rise to the same set of outcomes in G.

Proof. We show that τ j
i (s, oi) = δ

j
i (s, α jK

i (s), oi) for all j ≥ 1, s ∈ A( j+1) and oi ∈ Obsi . The result then follows from Defini-
tion 19, Definition 4, and the definition of j-order knowledge-based strategies.

The case when j = 1 is established by Theorem 15. Let j ≥ 1, s ∈ A( j+1) , acti ∈ Acti , oi ∈ Obsi , and let o j
i be as defined 

above. Then:

τ
j+1

i (s,oi)

= the unique s′ ∈ S i such that ŝ′ ⊆ oi and (s,α( j+1)K
i (s), s′) ∈ �

( j+1)K
i {Definition 19}

=
{

l′ ∈ o j
i

∣∣∣ ∃l ∈ s. (l,α( j+1)K
i (s), l′) ∈ �

jK
i

}
{Definition 5.2}

=
{

l′ ∈ o j
i

∣∣∣ ∃act ∈ Act. (act(i) = α
( j+1)K
i (s) ∧ ∃l ∈ s. (l,act, l′) ∈ � jK)

}
{Definition 5.1}

= δ
j+1
i (s,α( j+1)K

i (s),oi) {Lemma 22}
if such an s′ exists; otherwise, by Lemma 18, δ j+1

i (s, α( j+1)K
i (s), oi) is undefined. �

As we showed in Lemma 10, for all j > 1, the expansions G jK satisfy the PDK condition. By composing our results we 
obtain that, for all j > 1, our strategy synthesis method is complete for the class of j-order knowledge-based strategies 
with respect to observable reachability objectives whenever GK satisfies the PDK condition: if a winning profile of j-order 
knowledge-based strategies exists, it will be found with our method.

Further, since the observation-based memoryless strategies are preserved by the MKBSC (see second paragraph following 
the proof of Theorem 9), the sets of strategies produced by the iterative approaches above grow monotonically: the class 
of j-order knowledge-based strategies subsumes any lower-order class. In other words, increasing the order of knowledge 
increases the strategic ability of the team.

6. Follow-up discussion

In this section we discuss some aspects of the MKBSC that we consider of importance, and which will be explored in 
follow-up work.

6.1. Utilising the iterated MKBSC

There are two dual approaches to using the constructions presented here for synthesising knowledge-based strategies:

• Global: Keep applying iteratively the MKBSC on the game graph, and then search for an observation-based memoryless 
strategy profile in the resulting expanded game until – if ever – such strategy profile is found. Then convert it to a 
knowledge-based strategy profile.
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Fig. 11. A stable game.

• Local: Keep incrementing the epistemic depth, and then explore the reachable part of the game graph produced (at 
the current depth) by means of the knowledge update functions. Then, search for a memoryless strategy in that graph 
(which, if found, will by construction be a knowledge-based one).

As indicated earlier, these two approaches are equivalent.

6.2. Stabilisation of the iterated MKBSC

For some MAGIIAN games the iterated construction eventually stabilises, in the sense that it starts producing isomorphic 
games, even though the internal structure of the locations (the tuples of knowledge trees) grows unboundedly. For instance, 
for the game graph of our running example, G3K is isomorphic to G2K . We then say that game graph G2K is stable.

Thus, the global approach outlined above can be augmented with a check for stabilisation. Furthermore, as explained in 
the end of Section 5, if we know that the construction will stabilise, we may directly iterate until that point and only search 
for memoryless strategies in the stable game (since we are guaranteed to not miss any such strategy that would have been 
found in some of the intermediate games).

This leads to a number of interesting questions about stabilisation and the properties of stable game graphs:

• To begin with, what does stabilisation mean in terms of the knowledge encoded in the states of stabilised games, and 
in terms of existence of knowledge-based strategies in them?
We only note here that stabilisation corresponds to the existence of a finite knowledge representation that contains 
the higher-order knowledge of the agents of any order. The knowledge encoded in the locations of stable game graphs 
could thus be “folded” into a cyclic representation.

• What structural conditions on a game are necessary, or sufficient, for its iterated MKBSC to eventually stabilise?
• For which classes of objectives does it suffice to search for memoryless strategies in their stable expansions?
• What are the implications of non-stabilisation?

These questions will be explored in follow-up work.

6.3. Limitations of the MKBSC

As stated in the Introduction, our knowledge representation is just one possible choice, albeit one with a good intuitive 
justification. As the following example illustrates, however, it is not the case that whenever there is a profile of observation-
based finite-memory strategies that is winning for a given reachability objective, then there is also a winning profile of 
j-order knowledge-based strategies (of the type studied here) for some j.

Example 24. Consider the game shown in Fig. 11. It models a similar scenario as our cup-lifting game, but now the cup 
needs to be oriented suitably before it can be lifted. The game is stable, meaning that whatever can be achieved by a profile 
of j-order knowledge-based strategies for any j ≥ 1, it can also be achieved by a profile of observation-based memoryless 
strategies. However, for this game, there is no winning profile of observation-based memoryless strategies, while there 
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clearly is a winning profile of observation-based finite-memory ones: after the initial wait, robot 1 waits once more, while 
robot 0 spins the cup if needed; then the two robots lift the cup.

7. Related work

As pointed out in the introduction, the present work relates in more, or less, essential ways with several major research 
areas, including decentralised cooperative decision making, multi-agent planning, knowledge-based programs, games with 
imperfect information and strategy synthesis in them, etc., where variations of the general problem in focus of this paper 
have been explored, some of them quite extensively. Here we provide a reasonably detailed, yet inevitably incomplete list of 
the conceptually and technically closest to our work research areas and topics, with some relevant key references on them.

7.1. Games with imperfect information and knowledge-based strategies

Most of the basic notions and components (including terminology and notation) of our framework are adopted from 
general studies of games with imperfect information, such as [11,2,1,4].

In particular, the knowledge-based subset construction (KBSC) for single-agent games against Nature has been introduced 
and studied in [2,3]. The generalisation MKBSC for MAGIIAN explored here was first proposed in [14] by the third co-author. 
Our presentation of the MKBSC is equivalent to that one, but makes explicit the different stages of the construction (the 
original proposal defines directly the expanded game). This “deconstruction” of the original definition has allowed us to 
define a translation of strategies to transducers (Definition 12), and to propose a heuristic for strategy synthesis based on 
single-agent games with perfect information (Section 4.4). Furthermore, [14] did not provide any formal characterisation of 
the construction, but discovered the phenomenon of stabilisation and made the observation that iterating the MKBSC in 
effect computes higher-order knowledge, illustrating this on the cup-lifting game. Finally, [14] made the observation of the 
limitation of the construction discussed here in Section 6.3.

The notion of knowledge-based strategies proposed and explored here is closely related to the notion of knowledge-based 
programs, introduced and studied, e.g., in [7,5,6]. Our presentation is more abstract and less algorithmic, but our results can 
easily be adapted to the latter notion. These may be useful for the synthesis of protocols and for programming intelligent 
agents.

Constructions representing and using agents’ higher-order knowledge have been proposed in [7–10]. All these are es-
sentially related to our MKBSC construction. The notion of k-trees proposed in [8] was already discussed in Section 5.2. 
Among the constructions, special mention deserves the epistemic unfolding introduced and studied in [10]. The construction 
essentially translates a MAGIIAN, in a strategy-preserving fashion, to a single-agent game with perfect information. The re-
sulting (expanded) game, however, is generally infinite (even when collapsed to so-called “homomorphic cores”), and the 
construction is thus not guaranteed to terminate. In contrast, our MKBSC construction always results in a finite game, but 
does not necessarily remove the imperfect information. Another difference is that the unfolding is based on an “epistemic 
model” common to all agents, and thus addresses the (YN) case discussed in Section 2.2.

7.2. Logics for multi-agent knowledge and strategic reasoning

While we have not involved formal logical languages and systems in this study, we note that it is essentially related to 
various logics and models of multi-agent knowledge and strategic reasoning.

First, there is a clear link of our work with multi-agent epistemic logic. Every agent in our framework is implicitly assumed 
to be a perfect (ideal) reasoner and its knowledge satisfies the standard S5 principles. Thus, the knowledge, both factual 
and higher-order, of all agents is modelled in multi-agent epistemic frames by epistemic indistinguishability relations [27], 
which are equivalence relations that partition the state space into families of information/knowledge states (see e.g. [6]). 
These are mutually inter-definable with Aumann structures, and higher-order knowledge of the agents can be computed in 
either of them in a standard way (see again [6]). These epistemic structures naturally arise in the MAGIIAN models, but we 
do not define and deal with them explicitly, since we do not need to involve explicitly epistemic logic, or any other formal 
logical system in the present work.

Furthermore, there are 2 hierarchies of epistemic structures naturally arising in MAGIIAN models and the problems we 
study. The first one is the hierarchy of static higher-order knowledge, associated with the hierarchy of iterations of the MKBSC 
construction applied to the original game. Every iteration increases the order of explicitly represented agents’ knowledge, 
starting with 0-order (the factual knowledge about the current state of the game), then 1-order (the knowledge about the 
other agents’ 0-order knowledge), 2nd order, etc. This is static knowledge because it is not associated with any particular 
play. The second one is the hierarchy of (0-order) dynamic knowledge, associated with each particular play in the given 
model, where the agents re-compute it after every transition and new observation they make, in the way described in this 
paper. Here we also mention the close conceptual links with dynamic epistemic logic (DEL) [27], especially the mechanism of 
epistemic updates of the knowledge representing models. Some recent studies relating DEL and its use in solving concurrent 
games include [28,29], technical ideas in which can be used for further extension of the present work to a non-cooperative 
setting.
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These two hierarchies of knowledge can be interleaved in a natural way, by producing a combined hierarchy of higher-
order dynamic knowledge, the capturing and utilisation of which for synthesising winning strategy profiles for the team of 
agents we have explored here. We leave the study of that combined hierarchy from the perspective of multi-agent epistemic 
logic to future work, but we note its relationship with the hierarchy of k-trees, defined and explored originally in [8], and 
further works, including [30,31].

Another natural link can also be made with general game description languages (GDL) as a different framework for 
knowledge representation in games, and [32] provides a comparative study of the GDL approach with the DEL-based frame-
work that can also be useful for further work on the topic.

An important related line of research on models and logics for games with (perfect and) imperfect information comprises 
a large number of works, going back to [33–35], focusing mainly on the logical properties of semantics, expressiveness, 
deciding satisfiability, etc. More recent and also more computationally focused works in that line of research include:

• [36], developing a model checking algorithm for a variant of the alternating time temporal logic ATL with knowledge 
operators, assuming imperfect information and perfect recall, but also communication between the agents, so the strate-
gies considered there employ the distributed knowledge of the agents.

• [37], which develops (bounded) model checking methods for reachability and other problems, expressible in the logic 
ATL, under the assumption of imperfect information and perfect recall, but with bounded horizon.

• [38], which considers a variant of the logic NatATL (“ATL with Natural Strategies”) introduced in [39] with imperfect 
information and studies the model checking problem for it. In this logic, bounds are imposed on the complexity of the 
admissible strategies, assuming that they are represented by lists of guarded actions.

More related references can be found in [40].
The closest link of our study with that research line are the concurrent game models with incomplete and imperfect 

information that are essentially used as models in our work, too. The major distinctions in our study as compared to these 
are, first, that all agents work as a team; second, that there is a non-deterministic environment deciding the outcome of the 
action profiles of the team; third, that we do not employ (yet) a formal logical language here, and fourth, that the strategy 
profile is designed externally and then communicated, either fully, or only locally, to the individual agents. These make the 
methods and results of our work substantially different from those presented in the literature mentioned above.

7.3. Decentralised partially observable Markov decision processes

Technically, our framework of MAGIIAN models is a special case of decentralised partially observable Markov decision pro-
cesses (Dec-POMDP) [41,21,42,20], modelling multi-agent planning and decision-making under uncertainty, where the policy 
planning is centralised whereas the execution is assumed decentralised because of the lack of (adequate) communication 
between the agents in the execution phase. The essential differences of the general framework of Dec-POMDPs from our 
MAGIIAN models are as follows:

• The transitions in Dec-POMDPs are determined by transition probability functions with explicitly specified distributions 
associated with each action profile, whereas in MAGIIAN models they are nondeterministically settled for each action 
profile by Nature. (The possible outcomes can be assumed uniformly distributed, but without using that assumption for 
optimising the team’s joint policy.)

• The reward function in Dec-POMDPs is typically quantitative and the aim is to maximize it, whereas in MAGIIAN models 
it is a qualitative objective, typically reachability or safety.

• The agents’ observations in Dec-POMDPs are stochastic, subject to given probability distributions, whereas in MAGIIAN
models they are deterministic, i.e. uniquely determined by the states.

• A finitely bounded horizon (number of transition steps for optimising the reward) is usually explicitly assumed. On the 
other hand, the horizon on the problem that we study here is implicitly assumed unbounded.

The typical decision problem studied for Dec-POMDPs is as follows: given a Dec-POMDP M , a positive integer horizon 
T and a reward threshold K , the question is whether there is a joint policy for all agents that yields a total reward in T
steps which is at least K . This problem is clearly decidable and the main research problem in the studies cited above is 
to analyse and determine its complexity under various additional assumptions. Typically, it is NEXPTIME-complete, even in 
the 2-agent case. This is where the main difference with our study occurs. The reward function in our framework is very 
simple: it assigns a reward 1 if the objective is reached, otherwise assigns 0, and we do not assume a pre-defined finite 
horizon, which makes the respective reachability problem in the focus of our study generally semi-decidable – just like the 
infinite-horizon Dec-POMDP problems under various optimality criteria, cf. [41]. Respectively, our main aim is to develop 
semi-decision procedures for constructing successful strategy (policy) profiles, and a major problem of our study is to ensure 
termination of these procedures. And, very importantly, we essentially employ the higher-order knowledge of the agents in 
the design of these strategy profiles, which is (at least explicitly) not taken into account in the alternative approaches and 
methods mentioned further.
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From the large body of literature on Dec-POMDPs, we have identified the following directions and works as the closest 
to our study:

• Approximation algorithms for solving the infinite-horizon problems in Dec-POMDPs with quantitative reward functions 
have been proposed, e.g. in [43], using a joint controller with a correlation device that sends signals to all agents, 
plus a bounded policy iteration algorithm for improving the agents’ finite-state controllers; followed by [44] where 
an optimal policy iteration algorithm for solving DEC-POMDPs is developed, using stochastic finite-state controllers to 
represent policies. Other works in this direction include [45], presenting a best-first search algorithm for computing 
an optimal policy vector, and [46], based on a memory-bounded optimisation approach using nonlinear optimisation
techniques. In [47], an incremental policy generation method is applied to Dec-POMDPs with finite horizon using one-
step reachability analysis, but the same approach can also be used in infinite-horizon policy iteration. In [48] a new 
MacDec-POMDP planning algorithm is presented that searches over policies represented as finite-state controllers, which 
can be much more concise and easier to interpret than representations based on policy trees, and can operate over an 
infinite horizon. In [49], the infinite-horizon assumption is replaced by indefinite-horizon.
The methods and results mentioned above, as well as other related works in the area, are well surveyed in [21,42,22]. It 
is important to emphasize that all these methods are specifically applicable to optimising quantitative reward functions, 
but essentially not – at least, not naturally and efficiently – in the case of qualitative reachability objectives studied 
here.

• [16] proposes transforming a Dec-POMDP into a deterministic MDP, based on “complete information-states” which rep-
resent the joint history of the individual “decision rules” applied by the agents, starting with a given initial belief state. 
That enables reduction of finding an optimal separable joint policy in the original Dec-POMDP to the same problem 
in the resulting complete information-state MDP, by applying various methods developed for the latter problem. Again, 
the methods explored there apply to optimising quantitative reward functions.

• [18] studies the decision problem with finite horizon, but where the objectives are qualitative, reachability goals, rather 
than maximizing quantitative long-term reward functions, as in general Dec-POMDPs. It is shown there that, under 
certain assumptions (including an explicit finite horizon and a shared initial belief state) the complexity of the problem 
is as hard as the one for standard Dec-POMDP, and a method for computing a solution for the deterministic case based 
on compilation to classical planning is presented.

• We also note the recent works [17,50] which show, inter alia, that all (deterministic) joint policies for QDec-POMDPs 
can be (succinctly) represented as multi-agent knowledge-based programs, but without discussing the question of how 
such policies (and their representing programs) for a given objective can be constructed. This result is quite close in 
spirit to our observation that the intensional and extensional views on knowledge-based strategies are equivalent.

In [51] the different, yet quite similar to Dec-POMDPs framework of Multiagent Team Decision Problem (MTDP) is presented, 
where possible explicit communication between the agents is also considered, and the assumption of agents’ perfect recall 
for the agents is made. In particular, “state-estimator functions” are added and used to model and update the current 
belief states based on the agents’ communication and recall. These are conceptually similar to our abstract mechanism for 
knowledge updates. Again, only quantitative reward functions are considered in that work, and the complexities of solving 
the respective decision problems are studied and shown in [21] to be of the same complexity as for Dec-POMDPs.

In summary, none of the works on solving Dec-POMDPs or related problems surveyed above addresses the case of 
reachability objectives with unbounded horizon studied here, nor do they propose a solution that is adequate and efficient 
for solving that problem. Thus, whereas technically our work falls in the broader framework of Dec-POMDPs, both the 
decision problem studied here and our approach to its solution are substantially different from those mentioned above.

7.4. Planning under uncertainty

From a more general perspective, our work also relates, albeit in less essential ways, to other formal frameworks and 
studies of cooperative multi-agent planning under uncertainty [52–55] and, in particular, multi-agent epistemic planning 
[56–59]. Some of these works, e.g. [52], also assume incompleteness of the information about the domain, viz. that some 
of that information is unavailable at plan time, but can be acquired at runtime by the agents executing the plan, by also 
taking into account the higher-order knowledge or beliefs of the agents.

Major differences from most of these works are that in our framework agents are assumed to cooperate but not commu-
nicate with each other, their collective goal is not epistemic but ontic, and they act collectively against Nature. Still, some 
ideas and techniques from these works are quite relevant to our study and worth exploring further.

We also note the general link with (multi-agent) temporal planning [60–62]. Although the models and problems studied 
here, and the method we developed for their solutions, are different from those explored in that area, some ideas and 
approaches from the latter, such as easy-to-use modelling languages, can be beneficial for further progress on the topic 
explored here.
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7.5. Other related topics and works

Of the many other related topics and works, we only mention the implicit link of our study to theories of mind (see, e.g., 
[63]), though in our case the “minds” of the agents are only represented by their knowledge known to the other agents, 
and possibly by the strategies which they follow, but not by beliefs, intentions, and other attitudes. Still, we believe that 
many interesting phenomena of “mind”, especially in the context of Artificial Intelligence, can be studied and explored in 
our simplified framework of knowledge.

8. Conclusion

We have studied agents’ (first- and higher-order) knowledge representation in multi-agent games with imperfect infor-
mation against Nature and its use for synthesising knowledge-based strategy profiles for a team of agents by a supervisor, 
which then provides each agent with their own strategy and lets them play without them being able to communicate with 
each other. In particular, we have introduced and studied the generalised knowledge-based construction MKBSC and have 
established connections between (transducer-based) finite-memory strategies and knowledge-based strategies in the original 
game, and observation-based memoryless strategies in its iterated MKBSC expansions.

Conclusions From our results one can draw the following conclusions. First, higher-order (nested) knowledge can be based 
on the notion of “most precise estimate of the current state-of-affairs”. The higher the order (i.e., the nesting depth) of 
knowledge, the higher the strategic abilities of the team. Also, the higher the uncertainty of the agents, i.e., the less they 
observe and know, the higher the benefit from nested knowledge. Next, for the class of knowledge-based strategies consid-
ered here (i.e., for the proposed notion of knowledge) and the classes of reachability and safety objectives, for a given bound 
on the nesting depth of knowledge and under the PDK condition, we have an algorithm for strategy synthesis; without such 
a bound it is only a semi-algorithm. Then, there is a duality between the extensional and the intensional views. The former 
is more suitable for strategy synthesis, while the latter can be more convenient in the play, and can also be used to explain 
the synthesised strategies. And finally, on some games the iterated MKBSC stabilises. If there is no winning memoryless 
observation-based strategy in the stable expansion, then, under the PDK condition, there is no winning knowledge-based 
strategy of any order in the original game. However, there might still be a winning finite-memory observation-based strategy 
in the original game.

Future work In future work we plan to characterise the class of objectives that can be achieved with knowledge-based 
strategies of the type defined here. Next, we plan to capture formally the notion of “degree of imperfectness” of informa-
tion and the intuition (expressed in Section 4.2) that the MKBSC decreases this degree. We also plan to study the strategy 
synthesis problem after relaxing some of the assumptions made here, such as the case (YN) when agents are permitted to 
know each others strategies, or when agents do have some (limited) communication. Further, we plan to study in depth 
the stabilisation phenomenon of the MKBSC and, in particular, characterise the structural conditions for stabilisation. Fur-
thermore, we will explore other knowledge representations, comparing the respective classes of objectives that they are 
sufficient for, and define the corresponding expansions following the general scheme. We will also design strategy synthesis 
algorithms and heuristics, and investigate their complexity. Further, we will explore temporal (epistemic) logic as a means 
for defining objectives, and epistemic logic as a means for representing the individual knowledge-based strategies. Related 
to this, we plan to investigate the notion of common knowledge in the context of MAGIIAN games. Then, we will explore 
the connection of our work to multi-agent epistemic planing. And finally, we plan to evaluate the practical utility of the 
strategy synthesis method proposed here, and investigate in depth potential application areas.
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Appendix A. k-trees

Following [8], we define the set of k-trees Tk and the set of i-objective k-trees Tk,i , for all agents i ∈ Agt. The set of 
i-objective k-forests is defined as Fk,i

def= 2Tk,i .

Definition 25 (k-tree). Let G be a MAGIIAN over the set of locations Loc, with agents Agt = {1,2, . . . ,n}. We recursively 
define the sets:
28
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T0
def= Loc (or rather, {〈l,∅, . . . ,∅〉 | l ∈ Loc})

T0,i
def= Loc

Tk+1
def= {〈l, F1, . . . , Fn〉

∣∣ l ∈ Loc and F i ∈ Fk,i for all i ∈ Agt.
}

Tk+1,i
def= {〈l, F1, . . . , Fn〉 ∈ Tk+1

∣∣ F i = ∅

}

Example 26. In a 2-agent game against Nature, consider the 2-tree:

t(2)
1 =

〈
l2, F (1)

1 , F (1)
2

〉

where:

F (1)
1 = {〈l1,∅, {l1}〉 , 〈l2,∅, {l2, l3}〉}

F (1)
2 = {〈l2, {l1, l2} ,∅〉 , 〈l3, {l3} ,∅〉}

This 2-tree models a state of affairs in which the game is in location l2, and agent 1 knows (i.e., considers possible, as 
modelled by F (1)

1 ) that the game is either in location l1 or in l2, and that in the former case agent 2 knows that the game 
is in l1, while in the latter case, in l2 or l3. The knowledge of agent 2 is analogous, as modelled by F (1)

2 .

Next we define, by mutual recursion, a global update function Gk , and a family of local update functions Hk,i:

Gk : Tk × Act × Loc → Tk

Hk,i : Fk,i × Acti × Obsi → Fk,i

Definition 27 (Knowledge update). Let G = (Loc, linit, Act, �, Obs) be a MAGIIAN. We recursively define the functions:

G0(l,act, l′) def= l′

Gk+1(〈l, F1, . . . , Fn〉 , (act1, . . . ,actn), l′) def=〈
l′, Hk,1(F1,act1,obs1(l

′)), . . . , Hk,n(Fn,actn,obsn(l
′))

〉

Hk,i(Fi,acti,oi)
def={

Gk(t
(k),act, l)

∣∣∣ t(k) ∈ F i,act(i) = acti, (root(t(k)),act, l) ∈ �, l ∈ oi

}

The above definition is slightly more general than the original one from [8], since the game model presented there does 
not involve named actions.

References

[1] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize, in: Proceedings of FOCS’90, IEEE Computer Society, 1990, pp. 746–757.
[2] J.H. Reif, The complexity of two-player games of incomplete information, Comput. Syst. Sci. 29 (2) (1984) 274–301.
[3] K. Chatterjee, L. Doyen, T.A. Henzinger, J. Raskin, Algorithms for omega-regular games with imperfect information, Log. Methods Comput. Sci. 3 (3) 

(2007) 1–23, https://doi .org /10 .2168 /LMCS -3(3 :4 )2007.
[4] L. Doyen, J. Raskin, Games with imperfect information: theory and algorithms, in: K.R. Apt, E. Grädel (Eds.), Lectures in Game Theory for Computer 

Scientists, Cambridge University Press, 2011, pp. 185–212, http://www.cambridge .org /gb /knowledge /isbn /item5760379.
[5] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Knowledge-based programs, Distrib. Comput. 10 (4) (1997) 199–225, https://doi .org /10 .1007 /

s004460050038.
[6] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, MA, USA, 2003.
[7] R. Fagin, J.Y. Halpern, M.Y. Vardi, A model-theoretic analysis of knowledge, J. ACM 38 (2) (1991) 382–428, https://doi .org /10 .1145 /103516 .128680.
[8] R. van der Meyden, Common knowledge and update in finite environments, Inf. Comput. 140 (2) (1998) 115–157.
[9] D. Berwanger, Ł. Kaiser, Information tracking in games on graphs, J. Log. Lang. Inf. 19 (4) (2010) 395–412, https://doi .org /10 .1007 /s10849 -009 -9115 -8.

[10] D. Berwanger, L. Kaiser, B. Puchala, A perfect-information construction for coordination in games, in: Proceedings of FSTTCS 2011, in: LIPIcs, vol. 13, 
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2011, pp. 387–398.

[11] G.L. Peterson, J.H. Reif, Multiple-person alternation, in: Proceedings of FOCS 1979, IEEE Computer Society, 1979, pp. 348–363.
[12] C. Dima, F.L. Tiplea, Model-checking ATL under imperfect information and perfect recall semantics is undecidable, arXiv:1102 .4225.
[13] S. Vester, Alternating-time temporal logic with finite-memory strategies, in: G. Puppis, T. Villa (Eds.), Proceedings Fourth International Symposium on 

Games, Automata, Logics and Formal Verification, GandALF 2013, Borca di Cadore, Dolomites, Italy, 29-31th August 2013, in: EPTCS, vol. 119, 2013, 
pp. 194–207.

[14] E. Lundberg, Collaboration in Multi-Agent Games, Tech. Rep., KTH Royal Institute of Technology, School of Computer Science and Communication, 2017, 
https://kth .diva -portal .org /smash /get /diva2 :1115157 /FULLTEXT01.pdf.

[15] P. Kazmierczak, T. Ågotnes, W. Jamroga, Multi-agency is coordination and (limited) communication, in: H.K. Dam, J.V. Pitt, Y. Xu, G. Governatori, T. Ito 
(Eds.), Proceedings of PRIMA 2014, in: Lecture Notes in Computer Science, vol. 8861, Springer, 2014, pp. 91–106.
29

http://refhub.elsevier.com/S0004-3702(22)00068-6/bib0A289BC8E35A101C91A5C150BC296629s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib8B94F666B3B0D8994E00C3AC3357F48Bs1
https://doi.org/10.2168/LMCS-3(3:4)2007
http://www.cambridge.org/gb/knowledge/isbn/item5760379
https://doi.org/10.1007/s004460050038
https://doi.org/10.1007/s004460050038
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib9F7EB454B8AEC657D08194FB4C12BA9Bs1
https://doi.org/10.1145/103516.128680
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib4252960777E298B2A328B15627EB1C41s1
https://doi.org/10.1007/s10849-009-9115-8
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib33C74AA5A534CCF60B14C3CD3B7449B9s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib33C74AA5A534CCF60B14C3CD3B7449B9s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib06634CC5D19330AFA0EB8CF873C8D7DAs1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibC43273947CA5CD800636F2BAA20E39A6s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib38827889364671607D6CBE73FF7E4CE4s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib38827889364671607D6CBE73FF7E4CE4s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib38827889364671607D6CBE73FF7E4CE4s1
https://kth.diva-portal.org/smash/get/diva2:1115157/FULLTEXT01.pdf
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibF18D4FF5A80047AC91F26B588D322504s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibF18D4FF5A80047AC91F26B588D322504s1


D. Gurov, V. Goranko and E. Lundberg Artificial Intelligence 309 (2022) 103728
[16] J.S. Dibangoye, C. Amato, O. Buffet, F. Charpillet, Optimally solving Dec-POMDPs as continuous-state MDPs, J. Artif. Intell. Res. 55 (2016) 443–497, 
https://doi .org /10 .1613 /jair.4623.

[17] A. Saffidine, F. Schwarzentruber, B. Zanuttini, Knowledge-based policies for qualitative decentralized POMDPs, in: S.A. McIlraith, K.Q. Weinberger (Eds.), 
Proceedings of AAAI-18 and EAAI-18, AAAI Press, 2018, pp. 6270–6277, https://www.aaai .org /ocs /index .php /AAAI /AAAI18 /paper /view /17029.

[18] R.I. Brafman, G. Shani, S. Zilberstein, Qualitative planning under partial observability in multi-agent domains, in: M. desJardins, M.L. Littman (Eds.), 
Proceedings of AAAI 2013, AAAI Press, 2013, http://www.aaai .org /ocs /index .php /AAAI /AAAI13 /paper /view /6388.

[19] H. Nylén, A. Jacobsson, Investigation of a Knowledge-based Subset Construction for Multi-player Games of Imperfect Information, Tech. Rep., KTH Royal 
Institute of Technology, School of Computer Science and Communication, 2018, https://kth .diva -portal .org /smash /get /diva2 :1221520 /FULLTEXT01.pdf.

[20] F.A. Oliehoek, C. Amato, A Concise Introduction to Decentralized POMDPs, Springer Briefs in Intelligent Systems, Springer, 2016.
[21] S. Seuken, S. Zilberstein, Formal models and algorithms for decentralized decision making under uncertainty, Auton. Agents Multi-Agent Syst. 17 (2) 

(2008) 190–250, https://doi .org /10 .1007 /s10458 -007 -9026 -5.
[22] C. Amato, G. Chowdhary, A. Geramifard, N.K. Ure, M.J. Kochenderfer, Decentralized control of partially observable Markov decision processes, in: 

Proceedings of CDC 2013, IEEE, 2013, pp. 2398–2405.
[23] J. Pilecki, M.A. Bednarczyk, W. Jamroga, SMC: synthesis of uniform strategies and verification of strategic ability for multi-agent systems, J. Log. Comput. 

27 (7) (2017) 1871–1895, https://doi .org /10 .1093 /logcom /exw032.
[24] E. Handberg, L. Rostami, Epistemic Structures for Strategic Reasoning in Multi-Player Games, Tech. Rep., KTH Royal Institute of Technology, School of 

Computer Science and Communication, 2019, https://kth .diva -portal .org /smash /get /diva2 :1338657 /FULLTEXT01.pdf.
[25] D.O. Stahl, P.W. Wilson, On players′ models of other players: theory and experimental evidence, Games Econ. Behav. 10 (1) (1995) 218–254, https://

doi .org /10 .1006 /game .1995 .1031.
[26] J.Y. Halpern, Y. Moses, Knowledge and common knowledge in a distributed environment, J. ACM 37 (3) (1990) 549–587, https://doi .org /10 .1145 /79147.

79161.
[27] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic, Springer, Dordecht, 2008.
[28] B. Maubert, S. Pinchinat, F. Schwarzentruber, S. Stranieri, Concurrent games in dynamic epistemic logic, in: C. Bessiere (Ed.), Proceedings of IJCAI 2020, 

ijcai.org, 2020, pp. 1877–1883.
[29] B. Maubert, S. Pinchinat, F. Schwarzentruber, Reachability games in dynamic epistemic logic, in: S. Kraus (Ed.), Proceedings of IJCAI 2019, Macao, China, 

August 10-16, 2019, ijcai.org, 2019, pp. 499–505.
[30] X. Huang, R. van der Meyden, Synthesizing strategies for epistemic goals by epistemic model checking: an application to pursuit evasion games, in: 

Proceedings of AAAI 2012, 2012.
[31] R. van der Meyden, M.Y. Vardi, Synthesis from knowledge-based specifications, CoRR, arXiv:1307.6333 [abs], 2013.
[32] T. Engesser, R. Mattmüller, B. Nebel, M. Thielscher, Game description language and dynamic epistemic logic compared, Artif. Intell. 292 (2021) 103433, 

https://doi .org /10 .1016 /j .artint .2020 .103433.
[33] W. van der Hoek, M. Wooldridge, Cooperation, knowledge, and time: alternating-time temporal epistemic logic and its applications, Stud. Log. 75 (1) 

(2004) 125–157.
[34] W. Jamroga, W. van der Hoek, Agents that know how to play, Fundam. Inform. 63 (2–3) (2004) 185–219.
[35] W. Jamroga, T. Ågotnes, Constructive knowledge: what agents can achieve under incomplete information, J. Appl. Non-Class. Log. 17 (4) (2007) 423–475.
[36] D.P. Guelev, C. Dima, C. Enea, An alternating-time temporal logic with knowledge, perfect recall and past: axiomatisation and model-checking, J. Appl. 

Non-Class. Log. 21 (1) (2011) 93–131, https://doi .org /10 .3166 /jancl .21.93 -131.
[37] X. Huang, Bounded model checking of strategy ability with perfect recall, Artif. Intell. 222 (2015) 182–200, https://doi .org /10 .1016 /j .artint .2015 .01.005.
[38] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability under imperfect information, in: E. Elkind, M. Veloso, N. Agmon, M.E. Taylor (Eds.), 

Proceedings of AAMAS 2019, International Foundation for Autonomous Agents and Multiagent Systems, 2019, pp. 962–970, http://dl .acm .org /citation .
cfm ?id =3331791.

[39] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability, Artif. Intell. 277 (2019), https://doi .org /10 .1016 /j .artint .2019 .103170.
[40] T. Ågotnes, V. Goranko, W. Jamroga, M. Wooldridge, Knowledge and ability, in: H. van Ditmarsch, J. Halpern, W. van der Hoek, B. Kooi (Eds.), Handbook 

of Epistemic Logic, College Publications, 2015, pp. 543–589.
[41] D.S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of decentralized control of Markov decision processes, Math. Oper. Res. 27 (4) 

(2002) 819–840, https://doi .org /10 .1287 /moor.27.4 .819 .297.
[42] F.A. Oliehoek, Decentralized POMDPs, in: M.A. Wiering, M. van Otterlo (Eds.), Reinforcement Learning, in: Adaptation, Learning, and Optimization, 

vol. 12, Springer, 2012, pp. 471–503.
[43] D.S. Bernstein, E.A. Hansen, S. Zilberstein, Bounded policy iteration for decentralized POMDPs, in: L.P. Kaelbling, A. Saffiotti (Eds.), Proceedings of 

IJCAI-05, Professional Book Center, 2005, pp. 1287–1292, http://ijcai .org /Proceedings /05 /Papers /0379 .pdf.
[44] D.S. Bernstein, C. Amato, E.A. Hansen, S. Zilberstein, Policy iteration for decentralized control of Markov decision processes, J. Artif. Intell. Res. 34 (2009) 

89–132, https://doi .org /10 .1613 /jair.2667.
[45] D. Szer, F. Charpillet, An optimal best-first search algorithm for solving infinite horizon DEC-POMDPs, in: J. Gama, R. Camacho, P. Brazdil, A. Jorge, L. 

Torgo (Eds.), Proceedings of ECML 2005, in: Lecture Notes in Computer Science, vol. 3720, Springer, 2005, pp. 389–399.
[46] C. Amato, D.S. Bernstein, S. Zilberstein, Optimizing memory-bounded controllers for decentralized POMDPs, in: R. Parr, L.C. van der Gaag (Eds.), Pro-

ceedings of UAI 2007, AUAI Press, 2007, pp. 1–8, https://dl .acm .org /doi /abs /10 .5555 /3020488 .3020489.
[47] C. Amato, J.S. Dibangoye, S. Zilberstein, Incremental policy generation for finite-horizon DEC-POMDPs, in: A. Gerevini, A.E. Howe, A. Cesta, I. Refanidis 

(Eds.), Proceedings of ICAPS 2009, AAAI, 2009, http://aaai .org /ocs /index .php /ICAPS /ICAPS09 /paper /view /711.
[48] C. Amato, G.D. Konidaris, A. Anders, G. Cruz, J.P. How, L.P. Kaelbling, Policy search for multi-robot coordination under uncertainty, Int. J. Robot. Res. 

35 (14) (2016) 1760–1778, https://doi .org /10 .1177 /0278364916679611.
[49] C. Amato, S. Zilberstein, Achieving goals in decentralized POMDPs, in: C. Sierra, C. Castelfranchi, K.S. Decker, J.S. Sichman (Eds.), Proceedings of AAMAS 

2009, vol. 1, IFAAMAS, 2009, pp. 593–600, https://dl .acm .org /citation .cfm ?id =1558095.
[50] B. Zanuttini, J. Lang, A. Saffidine, F. Schwarzentruber, Knowledge-based programs as succinct policies for partially observable domains, Artif. Intell. 288 

(2020) 103365, https://doi .org /10 .1016 /j .artint .2020 .103365.
[51] D.V. Pynadath, M. Tambe, The communicative multiagent team decision problem: analyzing teamwork theories and models, J. Artif. Intell. Res. 16 

(2002) 389–423, https://doi .org /10 .1613 /jair.1024.
[52] S. Sardiña, G.D. Giacomo, Y. Lespérance, H.J. Levesque, On the limits of planning over belief states under strict uncertainty, in: P. Doherty, J. Mylopoulos, 

C.A. Welty (Eds.), Proceedings of KR 2006, AAAI Press, 2006, pp. 463–471, http://www.aaai .org /Library /KR /2006 /kr06 -048 .php.
[53] A. Torreño, E. Onaindia, O. Sapena, FMAP: distributed cooperative multi-agent planning, Appl. Intell. 41 (2) (2014) 606–626, https://doi .org /10 .1007 /

s10489 -014 -0540 -2.
[54] C.J. Muise, V. Belle, P. Felli, S.A. McIlraith, T. Miller, A.R. Pearce, L. Sonenberg, Planning over multi-agent epistemic states: a classical planning approach, 

in: B. Bonet, S. Koenig (Eds.), Proceedings of AAAI 2015, AAAI Press, 2015, pp. 3327–3334, http://www.aaai .org /ocs /index .php /AAAI /AAAI15 /paper /view /
9974.

[55] A. Torreño, E. Onaindia, A. Komenda, M. Stolba, Cooperative multi-agent planning: a survey, ACM Comput. Surv. 50 (6) (2018) 84:1–84:32, https://
doi .org /10 .1145 /3128584.
30

https://doi.org/10.1613/jair.4623
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17029
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6388
https://kth.diva-portal.org/smash/get/diva2:1221520/FULLTEXT01.pdf
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib6F55B0D25430E1EDFD30E8FF72F84E72s1
https://doi.org/10.1007/s10458-007-9026-5
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib6586410AF3B1AC900CCC86ACB60B35D2s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib6586410AF3B1AC900CCC86ACB60B35D2s1
https://doi.org/10.1093/logcom/exw032
https://kth.diva-portal.org/smash/get/diva2:1338657/FULLTEXT01.pdf
https://doi.org/10.1006/game.1995.1031
https://doi.org/10.1006/game.1995.1031
https://doi.org/10.1145/79147.79161
https://doi.org/10.1145/79147.79161
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib7DC4EEB35173FD5BD6D53A259FE369E2s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib78D8C0F3609586204AAEEB8C7355823Cs1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib78D8C0F3609586204AAEEB8C7355823Cs1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib26E0E533D8B505CD3EC709D7D37C6BB3s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib26E0E533D8B505CD3EC709D7D37C6BB3s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib021DD22DC85BDC196084EF00FF928125s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib021DD22DC85BDC196084EF00FF928125s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib8D4974F310E4691302BC2ECCBF0EB45Es1
https://doi.org/10.1016/j.artint.2020.103433
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibD88BD3F5FA044DC4CC4025DE4B802013s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibD88BD3F5FA044DC4CC4025DE4B802013s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibA5F3A1B9F4896494D9E69E7B424866B7s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bibDA74C23CFE2ECA2D7C7A182F87BC887Es1
https://doi.org/10.3166/jancl.21.93-131
https://doi.org/10.1016/j.artint.2015.01.005
http://dl.acm.org/citation.cfm?id=3331791
http://dl.acm.org/citation.cfm?id=3331791
https://doi.org/10.1016/j.artint.2019.103170
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib81B827A5AA6D890593E6542048988D7As1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib81B827A5AA6D890593E6542048988D7As1
https://doi.org/10.1287/moor.27.4.819.297
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib71317B12A9AD424F7193624C4044CF26s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib71317B12A9AD424F7193624C4044CF26s1
http://ijcai.org/Proceedings/05/Papers/0379.pdf
https://doi.org/10.1613/jair.2667
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib3CB96CA5587B2AD58D2D66FD51662B41s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib3CB96CA5587B2AD58D2D66FD51662B41s1
https://dl.acm.org/doi/abs/10.5555/3020488.3020489
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/711
https://doi.org/10.1177/0278364916679611
https://dl.acm.org/citation.cfm?id=1558095
https://doi.org/10.1016/j.artint.2020.103365
https://doi.org/10.1613/jair.1024
http://www.aaai.org/Library/KR/2006/kr06-048.php
https://doi.org/10.1007/s10489-014-0540-2
https://doi.org/10.1007/s10489-014-0540-2
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974
https://doi.org/10.1145/3128584
https://doi.org/10.1145/3128584


D. Gurov, V. Goranko and E. Lundberg Artificial Intelligence 309 (2022) 103728
[56] T. Bolander, M.B. Andersen, Epistemic planning for single and multi-agent systems, J. Appl. Non-Class. Log. 21 (1) (2011) 9–34, https://doi .org /10 .3166 /
jancl .21.9 -34.

[57] M.C. Cooper, A. Herzig, F. Maffre, F. Maris, P. Régnier, A simple account of multi-agent epistemic planning, in: G.A. Kaminka, M. Fox, P. Bouquet, E. 
Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (Eds.), Proceedings of ECAI 2016, in: Frontiers in Artificial Intelligence and Applications, vol. 285, 
IOS Press, 2016, pp. 193–201.

[58] T. Engesser, T. Bolander, R. Mattmüller, B. Nebel, Cooperative epistemic multi-agent planning for implicit coordination, in: S. Ghosh, R. Ramanujam 
(Eds.), Proceedings of M4M@ICLA 2017, in: EPTCS, vol. 243, 2017, pp. 75–90.

[59] Y. Li, Y. Wang, Multi-agent knowing how via multi-step plans: a dynamic epistemic planning based approach, in: P. Blackburn, E. Lorini, M. Guo (Eds.), 
Proceedings of LORI 2019, in: Lecture Notes in Computer Science, vol. 11813, Springer, 2019, pp. 126–139.

[60] W. Cushing, S. Kambhampati, Mausam, D.S. Weld, When is temporal planning really temporal?, in: M.M. Veloso (Ed.), Proceedings of IJCAI 2007, 2007, 
pp. 1852–1859, http://ijcai .org /Proceedings /07 /Papers /299 .pdf.

[61] M.C. Cooper, F. Maris, P. Régnier, Tractable monotone temporal planning, in: L. McCluskey, B.C. Williams, J.R. Silva, B. Bonet (Eds.), Proceedings of ICAPS 
2012, AAAI, 2012, http://www.aaai .org /ocs /index .php /ICAPS /ICAPS12 /paper /view /4689.

[62] M.C. Cooper, F. Maris, P. Régnier, Monotone temporal planning: tractability, extensions and applications, J. Artif. Intell. Res. 50 (2014) 447–485, https://
doi .org /10 .1613 /jair.4358.

[63] I. van de Pol, I. van Rooij, J. Szymanik, Parameterized complexity results for a model of theory of mind based on dynamic epistemic logic, Electron. 
Proc. Theor. Comput. Sci. 215 (2016) 246–263, https://doi .org /10 .4204 /eptcs .215 .18.
31

https://doi.org/10.3166/jancl.21.9-34
https://doi.org/10.3166/jancl.21.9-34
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib937311225764F6D3EC946B47E0665C7As1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib937311225764F6D3EC946B47E0665C7As1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib937311225764F6D3EC946B47E0665C7As1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib6AF292D44255B079CF6F42E05A495DF4s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib6AF292D44255B079CF6F42E05A495DF4s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib8D152AB8F896147A558950014AF420C9s1
http://refhub.elsevier.com/S0004-3702(22)00068-6/bib8D152AB8F896147A558950014AF420C9s1
http://ijcai.org/Proceedings/07/Papers/299.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4689
https://doi.org/10.1613/jair.4358
https://doi.org/10.1613/jair.4358
https://doi.org/10.4204/eptcs.215.18

	Knowledge-based strategies for multi-agent teams playing against Nature
	1 Introduction
	2 Synthesis of knowledge-based strategies
	2.1 Knowledge-based strategies
	2.2 Synthesis of knowledge-based strategies

	3 Preliminaries on multi-agent games with imperfect information against Nature
	3.1 Plays and objectives
	3.2 Observation-based strategies
	3.3 Knowledge-based strategies

	4 A multi-agent knowledge-based subset construction
	4.1 Generalising the KBSC
	4.2 Strategy preservation
	4.3 Strategy translation
	4.3.1 Translation to transducers
	4.3.2 Translation to knowledge-based strategies

	4.4 Strategy synthesis

	5 The iterated MKBSC construction
	5.1 Generalised induced transducers
	5.2 Generalised knowledge representation
	5.3 Generalised knowledge update

	6 Follow-up discussion
	6.1 Utilising the iterated MKBSC
	6.2 Stabilisation of the iterated MKBSC
	6.3 Limitations of the MKBSC

	7 Related work
	7.1 Games with imperfect information and knowledge-based strategies
	7.2 Logics for multi-agent knowledge and strategic reasoning
	7.3 Decentralised partially observable Markov decision processes
	7.4 Planning under uncertainty
	7.5 Other related topics and works

	8 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A k-trees
	References


