
Information and Computation 245 (2015) 98–123
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Augmenting ATL with strategy contexts ✩

François Laroussinie a, Nicolas Markey b,∗
a LIAFA, CNRS & U. Paris-Diderot, Case 7014, F-75205 Paris cedex 13, France
b LSV, CNRS & ENS Cachan, 61 av. Pdt Wilson, F-94230 Cachan, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2014
Available online 26 June 2015

Keywords:
Temporal logics
Games for synthesis
Model checking
Satisfiability

We study the extension of the alternating-time temporal logic (ATL) with strategy contexts:
contrary to the original semantics, in this semantics the strategy quantifiers do not reset
the previously selected strategies.
We show that our extension ATLsc is very expressive, but that its decision problems
are quite hard: model checking is k-EXPTIME-complete when the formula has k nested
strategy quantifiers; satisfiability is undecidable, but we prove that it is decidable when
restricting to turn-based games. Our algorithms are obtained through a very convenient
translation to QCTL (the computation-tree logic CTL extended with atomic quantification),
which we show also applies to Strategy Logic, as well as when strategy quantification
ranges over memoryless strategies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The alternating-time temporal logic (ATL) is a convenient extension of CTL for expressing properties of multi-agent
systems. For this, it includes quantification over strategies of the agents, instead of the sole quantifiers over paths of CTL.
However, in order to retain the nice algorithmic properties of CTL, the quantification over strategies in ATL is forgetful,
in the sense that each quantifier deletes the previously selected strategies. Under this semantics, ATL model checking is
PTIME-complete [3], while satisfiability is EXPTIME-complete [37].

ATL with strategy contexts (ATLsc for short), introduced in [6], lifts this restriction, and stores the previously selected
strategies within a context. The players keep on following their strategies until the formula says otherwise. This makes the
logic very expressive, and very convenient for specifying properties of multi-agent systems, in settings where the agents
are neither collaborative nor completely antagonist. For instance, considering a client/server interaction, ATLsc can express
the existence of a policy for the server in order to enforce mutual exclusion to the resource, and to make each client have
a way of eventually accessing the resource. Such a property mixes collaboration between the server and each client, and
possibly antagonism between clients. This expressive power comes with a cost: ATLsc model checking was proved to be
k-EXPTIME-complete, where k is the number of nested strategy quantifiers in the formula being checked [13,14]. It follows
that ATLsc model-checking problem is Tower-complete (Tower contains the classes k-EXPTIME for all k; see [33] for more
details about the complexity class Tower). Satisfiability of ATLsc is undecidable [35].

✩ This paper is a long version of [25], whose focus was mainly on satisfiability of ATLsc via quantified CTL [14]. We added several results from [13], with
new proofs using QCTL, so that this paper contains all our expressiveness and algorithmic results about ATLsc with a uniform presentation.

* Corresponding author.
E-mail addresses: francois.laroussinie@liafa.univ-paris-diderot.fr (F. Laroussinie), nicolas.markey@lsv.ens-cachan.fr (N. Markey).
http://dx.doi.org/10.1016/j.ic.2014.12.020
0890-5401/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.12.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:francois.laroussinie@liafa.univ-paris-diderot.fr
mailto:nicolas.markey@lsv.ens-cachan.fr
http://dx.doi.org/10.1016/j.ic.2014.12.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.12.020&domain=pdf

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 99
In this paper, we revisit these problems with a uniform technique: we establish a very tight link between ATLsc and
QCTL (the extension of CTL with quantification over atomic propositions [34,21,17,24]). We prove that the model-checking
problems for both logics are essentially the same problem (there are reductions both ways). Moreover, while satisfiability
is undecidable for ATLsc , we use our translation to QCTL to prove that satisfiability is decidable in restricted cases, and in
particular when restricted to turn-based games.

The convenience of QCTL is not particular to ATLsc , and we prove that our technique also applies to Strategy
Logic (SL) [11,29], another extension of ATL with explicit handling of strategies. Also, using a different semantics for quan-
tification in QCTL, we use our translation to study the variant of ATLsc where strategy quantifiers range over memoryless
strategies. In this case, model checking is PSPACE-complete, but satisfiability is undecidable, even for finitely branching
two-player turn-based games.

Related work Over the last decade, several formalisms have been proposed as improvements to ATL for specifying properties
of multi-agent models. We review some of these extensions here.

Extensions of ATL with explicit strategy restrictions To the best of our knowledge, the first temporal logic allowing for real
interaction between strategies is the logic ATL with commitments (a.k.a. Counterfactual ATL) [36]. This logic extends ATL with
an operator that can force a player to play according to a given (explicit) strategy. This can be used to express e.g. what
an agent could do if some other agent were restricted to follow a given strategy. Building on similar ideas, ATL with explicit
strategies [38], and the more recent ATL with explicit actions [19], decorate the strategy quantifiers with strategies or actions,
thus restricting the allowed behaviors of some of the players.

These extensions provide a way of improving the expressiveness of ATL, and involve a true interaction between strategies.
However, having explicit strategies is many cases not very powerful, nor very convenient. It must be noticed that all three
extensions where only studied for memoryless strategies (both for explicit strategies and for the range of strategy quantifiers),
which weakens the expressiveness but gives rise to conceptually simple algorithms.

Extensions of ATL with contexts Together with Thomas Brihaye and Arnaud Da Costa, we introduced ATLsc in [6].
We proved that model checking is decidable in [13]. The present paper includes the results of those two papers, with a
more detailed and uniform presentation using QCTL. The link between QCTL and ATLsc was only sketched in [14]; the
present paper explains this link is more details, and how it can be used to solve model checking and satisfiability (in re-
stricted cases) for ATLsc .

Several variants of our semantics of ATL with strategy contexts were already proposed by other researchers. ATL with irre-
vocable strategies [1] makes strategies sticky: once a player is assigned a strategy (through a strategy quantifier), she cannot
change strategy anymore (and the subsequent strategy quantifications for that player are ignored). This way, similarly to our
approach, strategies are stored in a context, but they cannot be dropped from the context. The same authors then defined
ATL with strategy commitment and release [2], which in essence is the same as our extension ATLsc . They also proposed several
variations on the semantics, and discussed their expressiveness. In terms of verification, both logics were only studied w.r.t.
memoryless strategies, which again greatly simplifies the algorithmic questions.

Stochastic Game Logic [5] also extends ATL by storing strategies in contexts. However, this logic is studied in the context
of stochastic games and strategies, which makes the setting much richer. Model checking is proven undecidable in the gen-
eral case, and decidable when strategy quantification is restricted to range over memoryless (randomized or deterministic)
strategies.

Finally, the logic Strategy Interaction Logic (SIL) introduced in [39] is equivalent to ATLsc , with a slightly different syntax.
The authors of [39] identify a fragment of SIL, which they name Basic SIL (BSIL), in which the strategy context is reset
after each temporal modality. In this case, the authors prove that model checking can be decided in polynomial space over
turn-based games. Another fragment of SIL, Temporal Cooperation Logic (TCL), is investigated in [20]: there, no alternation
is allowed between existential and universal strategy quantification, unless the strategy context is reset. This is shown to
make model-checking EXPTIME-complete over turn-based games. Practical experiments are reported in [39,20].

Strategy logics Strategy Logic (SL) [11,29] is another proposal for expressing complex properties of games. It builds on
a different approach, where strategies can be handled explicitly: first-order quantification can be used to select strategies,
which can then be assigned to players. LTL is then used to impose constraints on the resulting paths. The logic was defined
and studied in [11] for two-player turn-based games. An extended version was proposed in [29] for n-player concurrent
games.

In terms of expressiveness, SL embeds all the logics listed above. As regards algorithms, SL model checking was proved
decidable [29,27], while satisfiability is undecidable [29]. As we explain in Section 6.2, SL actually enjoys the same algorith-
mic properties as ATLsc (in particular, we prove that satisfiability is decidable over turn-based games), and these results can
also be obtained via a tight correspondence with QCTL.

Several variants of SL have also been defined and studied. In particular, the syntactic restriction SL[1G] (One-Goal Strategy
Logic) [28] restricts formulas to be in prenex normal form, with a single assignment of strategies to players and an LTL
objective. This logic can be shown to have elementary (2-EXPTIME-complete) model-checking and satisfiability problems.
Other variants, e.g. with boolean combinations of goals in the scope of strategy quantification, have also been investigated.
An algorithm for model checking SL[1G] is reported in [7], and for an epistemic variant of SL in [8].

On a different note, Updatable Strategy Logic (USL) [9] has been considered as an extension of SL to non-deterministic
strategies: such strategies are allowed to return sets of moves, rather than a single move. In that setting, assigning a

100 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
strategy to an agent does not remove the previously assigned strategy, but it refines it. While the setting is different, USL
again shares similarities with SL and ATLsc , and in particular could be handled via QCTL.1

2. Definitions

2.1. Preliminaries

Given two mappings f : A → B and g: A′ → B ′ , and a subset C ⊆ A ∩ A′ , we say that f and g coincide on C , written f �C g ,
when f (c) = g(c) for all c ∈ C . In case A = A′ , and B = 2S and B ′ = 2S ′

for some sets S and S ′ , then given T ⊆ S ∩ S ′ , we say
that f and g agree in T , written f ≡T g , if for all a ∈ A, it holds f (a) ∩ T = g(a) ∩ T . If A is a subset of a larger set A, then
f is said to be a partial function (w.r.t. A), and A is called its domain (written dom(f)).

For k ∈ N, we define [k] = {i ∈N | 0 ≤ i < k}. We also let [∞] = N. Let � be a set. A word over � is a mapping w: [k] → �,
for some k ∈N ∪{∞}; for n ∈ [k], we usually write wn for w(n). The word w is finite when k ∈N (then k is the length of w ,
denoted |w|), otherwise it is infinite (then |w| = +∞). When w is finite, we write last(w) for its last element w(|w| − 1).
The (only) word of length zero is denoted with ε. Given a finite word v and a word w , their concatenation v · w is the
sequence u s.t. u(n) = v(n) when n < |v| and u(n) = w(n − |v|) when n ≥ |v|. When v is a one-letter word, we sometimes
write v0 · w to denote v · w . A prefix of a word w is a finite word p such that there exists a word s such that w = p · s. For
any n ≤ |w|, w has a unique prefix of length n, which we denote w<n (or sometimes w≤n−1).

Let D be a set. A D-tree is a non-empty set T of finite words over D such that for any t ∈ T , all the prefixes of t are
in T . The elements of T are called nodes, and the special node ε (the empty word) is the root of T . A �-labeled D-tree is a
pair 〈T , �〉 where T is a D-tree and �: T → � labels the nodes of T with a letter in �.

2.2. Kripke structures

Let AP be a set of atomic propositions, and � = 2AP .

Definition 1. A Kripke structure over AP is a 3-tuple S = 〈Q , R, �〉 where Q is a finite or countably infinite set of states,
R ⊆ Q 2 is a binary relation and �: Q → � is a labeling function. We always assume that the relation R be left-total, i.e., for
any q ∈ Q , there is a q′ ∈ Q such that (q, q′) ∈ R .

Let S = 〈Q , R, �〉 be a Kripke structure, and q ∈ Q . A path in S from q is a non-empty word π over Q such that π0 = q
and for all n ∈ [|π | − 1], it holds (πn, πn+1) ∈ R . Given a finite path π and a path ρ such that last(π) = ρ0, the join of π
and ρ , denoted π : ρ is defined as the concatenation π<|π |−1 · ρ . Notice that since each state in a Kripke structure must
have at least one successor, any finite path can be enlarged.

Given a subset I ⊆ Q , we write I Q ∗
S (resp. I Q ω

S) for the set of finite (resp. infinite) paths in S from some q ∈ I; we write
qQ ∗

S (resp. qQ ω
S) in case I = {q}, and Q +

S (resp. Q ω
S) in case I = Q . With a path π , we associate a trace � ◦ π : [|π |] → �,

which is a word over �.
The computation tree of S from q is the �-labeled Q -tree 〈T , l〉 where T is the Q -tree {w ∈ Q ∗ | q · w ∈ qQ ∗

S } and
l(w) = �(last(q · w)) for all w ∈ T . Notice that from our assumption that each state in S has at least one outgoing transition,
any node in the computation tree has at least one successor. A branch in T is an infinite word w ∈Qω such that q · w ∈ qQ ω

S .
Any finite prefix of a branch is a node of T .

2.3. Quantified CTL

The temporal logics CTL* and CTL were defined in the 1980s [32,12,16]. Let AP be a set of atomic propositions. The
syntax of CTL* is as follows:

CTL∗ � ϕs,ψs ::= p | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp

ϕp,ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp U ψp

where p ranges over AP. Formulas of CTL* are interpreted in the computation tree (hence the name) of a given Kripke
structure. Let S = 〈Q , R, �〉 be such a structure, let ρ be an infinite path in S , and n ∈ N. That formula ϕ holds true at
position n along ρ in S is defined inductively as follows:

S,ρ,n |� p iff p ∈ �(ρn)

S,ρ,n |� ¬ϕ iff S,ρ,n �|� ϕ

S,ρ,n |� ϕ ∨ψ iff S,ρ,n |� ϕ or S,ρ,n |� ψ

1 Personal communication with the authors of [9].

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 101
S,ρ,n |� Eϕp iff ∃ρ ′ ∈ ρn Q ω
S . S,ρ ′,0 |� ϕp

S,ρ,n |� Aϕp iff ∀ρ ′ ∈ ρn Q ω
S . S,ρ ′,0 |� ϕp

S,ρ,n |� Xϕp iff S,ρ,n + 1 |� ϕp

S,ρ,n |� ϕp U ψp iff ∃l ≥ 0. (S,ρ,n + l |� ψp and

∀0 ≤ m < l. S,ρ,n + m |� ϕp)

Several useful abbreviations can be defined: besides the classical � = p ∨¬ p (which always evaluates to true), ⊥ = ¬�
and ϕ ∧ψ = ¬(¬ϕ ∨¬ψ), the following modalities will be used throughout this paper:

Fϕp = � U ϕp Gϕp = ¬F¬ϕp.

The former states that ϕp will eventually hold true along the current path, while the latter states that it holds true at any
position along that path.

An important remark about this semantics is that the evaluation of state formulas (of the form ϕs in the grammar
defining CTL*) at position n along ρ only depends on ρn . In other terms, for any two paths ρ and ρ ′ and any two positions n
and n′ such that ρn = ρ ′

n′ , and for any state formula ϕs , it holds

S,ρ,n |� ϕs iff S,ρ ′,n′ |� ϕs.

As a consequence, for a state formula ϕs , we often replace S, ρ, 0 |� ϕs with S, ρ0 |� ϕs .
Another remark is that CTL* is invariant under bisimulation [30]: two structures that are bisimilar satisfy the same CTL*

formulas. In particular, evaluating a CTL* formula over a Kripke structure and over its computation tree are equivalent.
Formally, let q ∈ Q , and w be a branch in the computation tree T of S from q (so that q · w is an infinite path in S;
we abusively see w as a path in T starting from the root, when T is seen as an infinite-state Kripke structure). Let n ∈ N.
Then for any ϕ ∈ CTL∗ , it holds

S,q · w,n |� ϕ iff TS , w,n |� ϕ.

The fragment CTL of CTL* is obtained by restricting the form of path formulas to the following grammar:

ϕp,ψp ::= ¬ϕp | Xϕs | ϕs U ψs.

In other terms, the modalities X and U (and negations thereof) can only appear in the immediate scope of a path quantifier E
or A.

We now present an extension of CTL* with quantification over atomic propositions, which will be our main technical
tool in the sequel.

For P ⊆ AP, two Kripke structures S = 〈Q , R, �〉 and S ′ = 〈Q ′, R ′, �′〉 are P -equivalent (denoted S ≡P S ′) whenever
Q = Q ′ , R = R ′ , and � ≡P �′ (i.e., �(q) ∩ P = �′(q) ∩ P for any q ∈ Q). In other terms, S ≡P S ′ if S ′ can be obtained from S
by modifying the labeling function of S for propositions not in P .

Definition 2. The syntax of QCTL* is defined by the following grammar:

QCTL∗ � ϕs,ψs ::= p | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp | ∃p. ϕs

ϕp,ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp U ψp.

The fragment QCTL of is the analogous of CTL.

The structure semantics of QCTL* is derived from the semantics of CTL* by adding the following rule:

S,ρ,n |� ∃p. ϕs iff ∃S ′. S ′ ≡AP�{p} S and S ′,ρ,n |� ϕs.

In other terms, ∃p. ϕs means that it is possible to (re)label the Kripke structure with p in order to make ϕs hold.
While CTL* is invariant under bisimulation, this is not the case for QCTL*: evaluating QCTL* on a Kripke structure

and on its computation tree (seen as an infinite-state Kripke structure) are not equivalent. As a consequence, we consider
another semantics for QCTL*, called tree semantics, where ∃p. ϕs holds true if it is possible to label the computation tree
of the original Kripke structure (instead of the Kripke structure itself) in order to make ϕ hold. This is the semantics we
consider in the sequel.

We refer to [24] for a detailed study of QCTL* and QCTL. Here we just recall the following important properties of
these logics. First note that QCTL is actually as expressive as QCTL* (with an effective translation) [17,14]. Secondly model
checking and satisfiability are decidable but non-elementary More precisely the complexity depends on the number of
alternations of propositional quantifications in the formulas. In the following we will refer to the fragments EQkCTL and
QkCTL of QCTL and to EQkCTL* and QkCTL* the corresponding fragments of QCTL*: EQkCTL contains the QCTL formulas

102 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
in prenex normal form (where quantifications are external to the CTL formula), starting with an existential quantification ∃
and where the number of alternations is k. In QkCTL formulas are not supposed to be in prenex normal form but the
alternation of quantifier is bounded by k: formally, Q1CTL is CTL[EQ1CTL], and Qk+1CTL is Q1CTL[QkCTL]. The decision
procedures for these logics are based on automata construction: given a QCTL formula ϕ and a (finite) set D ⊂ N, one can
build a tree automaton Aϕ,D recognizing the D-trees satisfying ϕ . This provides a decision procedure for model checking as
the Kripke structure S fixes the set D , and it remains to check whether the computation tree of S is accepted by Aϕ,D . For
satisfiability the decision procedure is obtained by building a formula ϕ2 from ϕ such that ϕ2 is satisfied by some [2]-tree
if, and only if, ϕ is satisfied by some finitely-branching tree. Finally, it remains to notice that a QCTL formula is satisfiable
if, and only if, it is satisfiable in a finitely-branching tree (since QCTL is as expressive as MSO [24]) to get the decision
procedure for QCTL satisfiability. As a consequence, a QCTL formula is satisfiable if, and only if, it is satisfied by a regular
tree (corresponding to the computation tree of some finite Kripke structure).

2.4. Concurrent game structures

Game structures extend Kripke structures with several agents acting on the evolution of the system.

Definition 3. (See [3].) A concurrent game structure (CGS) is a 7-tuple C = 〈Q , R, �, Agt, M, Mov, Edge〉 where: 〈Q , R, �〉 is
a Kripke structure, Agt = {a1, . . . , ap} is a finite set of agents, M is a non-empty finite or countably infinite set of moves,
Mov: Q × Agt → P(M) � {∅} defines the set of available moves of each agent in each state, and Edge: Q ×MAgt → R is a
transition table associating, with each state q and each set of moves of the agents, the resulting transition departing from q.

Let C = 〈Q , R, �, Agt, M, Mov, Edge〉 be a CGS. The notions of paths and computation trees of C are inherited from the
underlying Kripke structure 〈Q , R, �〉. The size of C , denoted |C|, is |Q | + |Edge|. Notice that for all q ∈ Q , Edge(q) is a
|Agt|-dimensional table, whose size is then exponential in |Agt| (provided that |M| > 1). A move vector in C is a map-
ping m: Agt →M. For a state q ∈ Q , we define

Next(q) = {q′ ∈ Q | ∃m ∈ MAgt. ∀ai ∈ Agt. m(ai) ∈ Mov(q,ai)

and Edge(q,m) = (q,q′)}
and, for a coalition C ⊆ Agt and a partial move vector m with dom(m) = C ,

Next(q, C,m) = {q′ ∈ Q | ∃m′ ∈ MAgt. m′ �C m and Edge(q,m′) = (q,q′)}.
A turn-based game structure (TBGS for short) is a CGS where each state q is controlled by a single agent, called the owner
of q (and denoted Own(q)). Formally, for every q ∈ Q , for any two move vectors m and m′ with m =Own(q) m′ , it holds
Edge(q,m) = Edge(q,m′) (it is sometimes required that for all q, all players but Own(q) have a single possible move in q;
this would make no difference in our setting).

A strategy for a player ai ∈ Agt in a CGS C is a function f : Q +
S →M that maps any finite path to a possible move for ai ,

i.e., satisfying f (π) ∈ Mov(last(π), ai). A strategy f is memoryless if f (π) = f (π ′) whenever last(π) = last(π ′). A strategy
for a coalition A is a mapping assigning a strategy to each agent in A. The set of strategies for A is denoted Strat(A)

(and Strat0(A) is the subset of memoryless strategies). In the sequel, when no ambiguity arises, we subscript the strategies
with their domains, writing f A for a strategy of A ⊆ Agt and f i for a strategy of player ai (hence f i = f A(ai) when ai ∈ A).
Given a strategy f A ∈ Strat(A) and a coalition B , the strategy (f A)|B (resp. (f A)�B) denotes the restriction of f A to the
coalition A ∩ B (resp. A � B). Given two strategies f A ∈ Strat(A) and gB ∈ Strat(B), we define f A ◦ gB ∈ Strat(A ∪ B) as
(f A ◦ gB) j = f j (resp. g j) if a j ∈ A (resp. a j ∈ B � A).

Let ρ be a finite path in C , and f A ∈ Strat(A) for some coalition A. A path π is compatible with f A after ρ if it is obtained
by playing strategy f A after prefix ρ . Formally, this requires that π contains ρ as a prefix and that, for all n ∈ [|ρ|; |π | − 1],
letting mn: ai ∈ A �→ f i(π<n) be the move vector returned by the strategy f A , it holds πn+1 ∈ Next(πn, A, mn) (i.e., πn+1 is a
successor of πn when coalition A plays according to its strategy f A). The set of outcomes of f A after ρ , denoted Out(ρ, f A),
is the set of infinite paths that are compatible with f A after ρ .

Example 4. Fig. 1 represents two three-state two-player CGSs. The transitions are decorated with their corresponding
move vectors. In C , each player has only two allowed moves, while in C′ , they have three. One can easily check e.g. that
Next(q0, a1, 1) is {q0, q1} in C , and Next(q′

0, a2, 3) is {q′
0, q

′
1, q

′
2} in C′ .

2.5. ATL with strategy contexts

We now introduce our logic, which extends the alternating-time temporal logic of [3] with strategy contexts. We assume
a fixed set of atomic propositions AP and a fixed set of agents Agt.

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 103
Fig. 1. Two concurrent game structures.

Definition 5. The formulas of ATL∗
sc are defined by the following grammar:

ATL∗
sc � ϕs,ψs ::= p | ¬ϕs | ϕs ∨ψs | 〈·A·〉ϕp | 〈·A·〉ϕp | (|A|)ϕs | (|A|)ϕs

ϕp,ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp U ψp

where p ranges over AP and A ranges over 2Agt .

ATL∗
sc formulas are interpreted over CGSs, within a context (i.e., a preselected strategy): state formulas of the form ϕs in

the grammar above are evaluated over states, while path formulas of the form ϕp are evaluated along paths. In order to have
a uniform definition, we evaluate all formulas at a given position along a path.

The semantics is quite similar to that of CTL*, but ATL∗
sc now has strategy quantifiers in place of path quantifiers. When

strategy quantifiers assign new strategies to some players, the other players keep on playing their previously assigned
strategies. This is what “strategy contexts” refers to. Informally, formula 〈 ·A·〉ϕp holds at position n along ρ under the
context F if it is possible to extend F with a strategy for the coalition A such that the outcomes of the resulting strategy
after ρ≤n all satisfy ϕp . Formula 〈 ·A·〉ϕp is similar, but for the complement of coalition A. This will be useful e.g. for
quantifying over the strategies of all players independently of the set of players. Strategies can be dropped from the context
using operators (|-|) and (| - |). See Remark 6 below for our explanations why we introduced complement coalitions in the
syntax.

We now define the semantics formally. Let C be a CGS, ρ be an infinite path of C , and n ∈N point to a position along ρ .
Let B ⊆ Agt be a coalition, and f B ∈ Strat(B). That a (state or path) formula ϕ holds at a position n along ρ in C under
strategy context f B , denoted C, ρ, n |� f B ϕ , is defined inductively as follows (omitting atomic propositions and Boolean
operators):

C,ρ,n |� f B (|A|)ϕs iff C,ρ,n |�(f B)�A ϕs

C,ρ,n |� f B (|A|)ϕs iff C,ρ,n |�(f B)|A ϕs

C,ρ,n |� f B 〈·A·〉ϕp iff ∃g A ∈ Strat(A). ∀ρ ′ ∈ Out(ρ≤n, g A ◦ f B).

C,ρ ′,n |�g A ◦ f B ϕp

C,ρ,n |� f B 〈·A·〉ϕp iff ∃g Ā ∈ Strat(Agt � A). ∀ρ ′ ∈ Out(ρ≤n, g Ā ◦ f B).

C,ρ ′,n |�g Ā ◦ f B ϕp

C,ρ,n |� f B Xϕp iff C,ρ,n + 1 |� f B ϕp

C,ρ,n |� f B ϕp U ψp iff ∃l ≥ 0. C,ρ,n + l |� f B ψp and ∀0 ≤ m < l.

C,ρ,n + m |� f B ϕp

Notice how the existential strategy quantifier embeds an implicit universal quantification over the set of outcomes of the
selected strategy. Also notice that, given a state formula ϕs , two paths ρ and ρ ′ , a position n such that ρ≤n = ρ ′≤n , and a
context f B , it holds

C,ρ,n |� f B ϕs iff C,ρ ′,n |� f B ϕs

In particular, when n = 0, that C, ρ, 0 |� f B ϕs does not depend on the whole path ρ but only on its first state ρ0. In the
sequel we equivalently write C, ρ0 |� f B ϕs in place of C, ρ, 0 |� f B ϕs . Finally, we write C, q0 |� ϕs when C, q0 |� f∅ ϕs (with
empty context).

The usual shorthands such as F and G are defined as for CTL*. It will also be convenient to use the constructs [·A·]ϕp as
a shorthand for ¬〈 ·A·〉 ¬ϕp , and 〈 ·A·〉ϕs as a shorthand for 〈 ·A·〉⊥ U ϕs .

The fragment ATLsc of ATL∗
sc is defined as usual, by restricting the set of path formulas to

ϕp,ψp ::= ¬ϕp | Xϕs | ϕs U ψs.

104 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
Remark 6. Previous definitions of ATL∗
sc (see [6,13]) did not allow complement coalitions in the syntax for 〈 ·-·〉 and (|-|).

We add them here for two reasons. The first one is convenience: as already argued, it is sometimes useful to consider
coalitions formed by all but a few players; complement coalitions provides an efficient way of naming such coalitions,
independently of the set of all players of the game under study. The second reason is theoretical: our expressiveness result
of Theorem 9, in the way we state it in this paper, requires talking about complement coalitions: indeed, in order to
have generic translations (independent of the set of agents of the game), we sometimes need to talk about complement
coalitions. The corresponding statements in our previous papers were weaker, as they did required the set of agents to
be fixed. On a similar note, when we deal with satisfiability (see Section 5), the set of agents is not fixed a priori, and
complement coalitions could not be expressed explicitly.

Example 7. We consider again the CGSs of Fig. 1. One can check that in both CGSs, player a1 has a strategy to avoid
visiting q2 (resp. q′

2), but he has no strategy for leaving state q0 (resp. q0). But what distinguishes these two CGSs is the
following: in C , for any move m1 of player a1, it holds |Next(q0, a1, m1)| = 2. On the other hand, for move 3 of a1 in C′ ,
we have |Next(q′

0, a1, 3)| = 3. In particular, under move 3 of a1 in q′
0, player a2 still has a move to reach q′

1 and another
move to reach q′

2, so that formula 〈 ·a1·〉(〈 ·a2·〉 Xa ∧〈 ·a2·〉 Xb) holds true in q′
0. No such move exists in C , and the same formula

is false in q0.

The classical semantics of ATL* and ATL, as defined in [3], did not involve a strategy context. Syntactically, the logic was
defined as

ATL∗ � ϕs,ψs ::= p | ¬ϕs | ϕs ∨ψs | 〈〈A〉〉ϕp

ϕp,ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp U ψp.

The semantics was similar to that of ATL∗
sc , but without the strategy context. The semantics of the strategy quantifier 〈 〈A〉 〉ϕp

is then defined as follows:

C,ρ,n |� 〈〈A〉〉ϕp iff ∃g A ∈ Strat(A). ∀ρ ′ ∈ Out(ρ≤n, g A). C,ρ ′,n |� ϕp.

The fragment ATL is obtained by restricting set of path formulas to

ϕp,ψp ::= ¬ϕp | Xϕs | ϕs U ψs.

Example 8. Consider the formula 〈 〈a1〉 〉(〈 〈a2〉 〉 X a ∧〈 〈a2〉 〉 X b) of ATL*. The first quantification 〈 〈a1〉 〉 in this formula is useless,
since the selected strategy is lost when quantifying over strategies of a2. As a consequence, this formula is equivalent to
〈 〈a2〉 〉 X a ∧〈 〈a2〉 〉 X b, which is false both in q0 and in q′

0 (in the CGSs of Fig. 1). It can be proved that q0 and q′
0 are alternating

bisimilar [4], so that they cannot be distinguished by ATL*.

3. Expressiveness of ATLsc and ATL∗
sc

We devote this section to expressiveness issues. We begin with some examples of ATLsc formulas, witnessing how useful
our new formalism can be. We then give some theoretical results about the expressiveness of ATLsc , showing for instance
that ATLsc and ATL∗

sc have the same expressive power. We finish the section with a comparison (w.r.t. expressiveness) to
plain ATL. Comparisons with other formalisms are deferred to Section 6, where we review several logics related to ATLsc .

3.1. Examples of formulas

For the reader to get acquainted with ATLsc , we give in this section several examples of ATLsc formulas. This will also
witness the expressive power and usefulness of our logic.

Client-server interactions Consider a situation where a server S controls the access to a resource shared among several
clients a1 to an . The server has a double role: it has to ensure that at most one client uses the resource at any point in time
(mutual exclusion), but also to provide a way for each client to be able to access the resource; the latter mixes collaboration
between the server and individual agents, and antagonism between agents. In ATL∗

sc , we can express this requirement as
follows:

〈·S·〉G
[(∧

i, j∈[1,n]
i �= j

¬(accessi ∧access j)

)
∧
(∧

i∈[1,n]
〈·ai ·〉 F accessi

)]

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 105
Nash equilibria In n-player games (with n > 2), players will usually have non-zero-sum objectives, and the notion of winning
strategy is not relevant anymore. Instead, equilibria positions are sought, in which all players has optimal outcome. Here
optimal may have many different meanings. One of them, corresponding to Nash equilibria [31], is related to the other
players strategies: a Nash equilibrium is a strategy profile in which each individual strategy is the best response to the
others’ strategies.

ATLsc can express the existence of a Nash equilibrium (here in a setting where the individual objectives of the players
are Boolean, and only considering pure strategies): this would be written as

〈·Agt·〉
[∧

a∈Agt

(¬ϕa ⇒¬〈·a·〉ϕa)

]
In this formula, we write that there is a strategy profile (the one witnessing the outermost quantifier) such that no player
can improve their payoff (i.e., if they are not winning in the equilibrium, they don’t have a way of achieving their goal in
this situation).

In ATLsc , we can additionally impose extra requirements to Nash equilibria. Indeed, several Nash equilibria might coexist,
and some might be better than others (for instance, Nash equilibria where all the players fail to achieve their objectives
might coexist with Nash equilibria where all the objectives are met). In ATLsc we can additionally impose constraints on the
equilibria strategies.

Winning secure equilibria A winning secure equilibrium [10] is a winning (for all players) Nash equilibria with the additional
requirement that if a player deviates and worsens the payoff of some player, then she also worsens her own payoff. In other
terms, no player can harm another player without harming herself. The existence of a winning secure equilibrium can be
written as

〈·Agt·〉
[∧

a∈Agt

ϕa ∧
∧

a,b∈Agt

[·a·](¬ϕb ⇒¬ϕa)

]
Dominant strategy A strategy is said dominant if it is a best response to any strategies of the other players. The existence of
a dominant strategy for player ai can be expressed as

〈·ai ·〉[·ai ·](〈·ai ·〉ϕi ⇒ϕi).

3.2. ATLsc vs ATL∗
sc

From ATL∗
sc to ATLsc Surprisingly, strategy contexts bring ATLsc to the same expressiveness as ATL∗

sc : any ATL∗
sc formula

can be translated into an equivalent ATLsc formula. The main idea is to replace the (implicit) universal quantification over
outcomes with explicit universal quantification over strategies. This way, all players are assigned a strategy in the con-
text. In that case, there is only one outcome (because our CGSs are deterministic), so that we can insert empty strategy
quantifier 〈 ·∅·〉 in front of any temporal modality.

Notice that the transformation has to depend on the original context. Actually, for any coalition A, our construction
transforms a formula
 ∈ ATL∗

sc into an ATLsc formula
̂A that is equivalent to
 under any context f of domain A, i.e.,
such that for any CGS C , any state q, and any context f with dom(f) = A, we have C, q |� f
 if, and only if, C, q |� f
̂A .

Let
 be an ATL∗
sc formula, and (B, B ′) ∈ 2Agt(
) × (2Agt(
) ∪ AgtC) be two coalitions. These coalitions will be used to

represent the set B ∪ (AgtC \ B ′) of players that are artificially assigned a strategy in our translation; this will precisely
correspond to the complement of the domain of the context in which the formula is evaluated. We allow B ′ to take the
special value AgtC , in order to keep our translation independent of the underlying CGS. We now define
̂[B,B ′] inductively
as follows:

P̂ [B,B ′] = P”¬ϕ
[B,B ′] = ¬ ϕ̂[B,B ′] ϕ̂ ∧ψ

[B,B ′] = ϕ̂[B,B ′] ∧ ψ̂ [B,B ′]”Xϕ
[B,B ′] = 〈·∅·〉 X ϕ̂[B,B ′] ϕ̂ U ψ

[B,B ′] = 〈·∅·〉(ϕ̂[B,B ′]
U ψ̂ [B,B ′])

(̂|A|)ϕ[B,B ′] = ϕ̂[B∪A,B ′] (̂|A|)ϕ
[B,B ′]

= ϕ̂[B,B ′∩A]

〈̂·A·〉ϕ[B,B ′] = 〈·A·〉[·B \ A·][·B ′ ∪ A·]ϕ̂[B\A,B ′∪A]

〈̂·A·〉ϕ
[B,B ′]

= 〈·A·〉[·(B ∩ A) ∪ (A \ B ′)·]ϕ̂[(B∩A)∪(A\B ′),AgtC]

Before stating and proving correctness of this transformation, let us first give some more intuition. Assume the context con-
tains strategies for some coalition B , and consider a formula of the form 〈 ·A·〉ϕ . This formula is equivalent to 〈 ·A·〉[·A ∪ B·]ϕ′ ,

106 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
where we make the quantification on the strategy of the “free” players explicit. Notice that this explicit quantification mod-
ifies the context, which is the reason why ϕ is updated into ϕ′: this is precisely why we have to keep track of the extra
strategies that have been made explicit. Now, consider formula 〈 ·A·〉ϕ in a context where coalition B ∪ (AgtC \ B ′) has been
artificially assigned a strategy. Then the “free” players, whose strategies must be quantified universally, are precisely those
in B ∪ (AgtC \ B ′) \ (AgtC \ A). Using the fact that X \ Ȳ = X ∩ Y , this coalition is easily proved to be (B ∩ A) ∪ (A \ B ′).

Clearly,
̂[B,B ′] is an ATLsc formula, thanks to the 〈 ·∅·〉 inserted in front of the temporal modalities. Notice that the
resulting formula only involves coalitions that appear in the original formula, and does not depend on AgtC (because
AgtC ∪ A = AgtC , A \AgtC = ∅, AgtC ∩ A = A, and [·AgtC ·]ψ is equivalent to [·∅·]ψ). This transformation achieves the following
result (the full proof of which is rather technical, so we moved it to Appendix A).

Theorem 9. Given a formula ϕ ∈ ATL∗
sc and a coalition B ′ , there exists an ATLsc formula ϕ̂[∅,B ′] , involving only players in Agtϕ ∪ B ′ ,

such that for any strategy context f with dom(f) = B ′ , ϕ and ϕ̂[∅,B ′] are equivalent under context f .

Remark 10. One can notice that the resulting formula does not make use of (|-|), even when applied to an ATLsc formula.
Hence, as a side result, we obtain that the (|-|) operator does not increase the expressive power of ATLsc .

3.3. Comparison with ATL

Clearly enough, ATL* properties can be expressed in ATL∗
sc : indeed, the ATL strategy quantifier 〈 〈A〉 〉 is equivalent

to (|∅|)〈 ·A·〉. Notice that following Examples 7 and 8, ATLsc is actually strictly more expressive than ATL*.
Similarly, CTL* is translated in ATL∗

sc by rewriting Eϕ as 〈 ·∅·〉ϕ and Aϕ as (|∅|)〈 ·∅·〉ϕ . Notice that these transformations
do not preserve the strategy context, and that they are different from the path quantifiers used in Game Logic (GL) [3].
There, the path quantifiers range over the set of outcomes of the strategies already in use. More precisely, in GL, we have

C,ρ, i |� f EGLϕp iff ∃ρ ′ ∈ Out(ρ≤i, f). C,ρ ′, i |� f ϕp

The universal path quantifier is dual. Both path quantifiers can be expressed in ATL∗
sc as follows:

EGLϕp ≡ ¬〈·∅·〉¬ϕp AGLϕp ≡ 〈·∅·〉ϕp

4. Model checking

Model checking is the problem of deciding whether C, q0 |� ϕ , for a given CGS C , a state q0 and a formula ϕ . In this
section, we present an algorithm for model checking ATLsc and ATL∗

sc , and study its complexity. Our algorithm is based on
a translation of the model-checking problem from ATL∗

sc into the model-checking problem for QCTL*. Using a translation in
the other direction, we prove that ATL∗

sc model checking is complete for k-EXPTIME (where k is the quantifier height of the
formula).

4.1. From ATL∗
sc to QCTL*

Let C = 〈Q , R, �, Agt, M, Mov, Edge〉 be a finite-state CGS, with a finite set of moves M = {m1, . . . , mk} and Agt =
{a1, . . . , an}. We consider the following sets of fresh atomic propositions: PQ = {pq | q ∈ Q }, P j

M = {m j
1, . . . , m

j
k} for ev-

ery a j ∈ Agt, and write PM = ⋃
a j∈Agt P j

M . Let SC be the Kripke structure 〈Q , R, �+〉 where for any state q, we have:

�+(q) = �(q) ∪ {pq}. A strategy for an agent a j from q can be seen as a function f j: qQ ∗
S → P j

M labeling the computation
tree of SC with propositions in P j

M .
Let C be a coalition in Agt, fC ∈ Strat(C) be a strategy context, and
 ∈ ATL∗

sc . We transform the question whether
C, q |� fC
 into an instance of QCTL* model checking over SC (assuming the tree semantics). For this, we define a QCTL*
formula
C inductively. Except for strategy quantifiers, the translation is straightforward:

ϕ ∧ψC = ϕC ∧ψC ¬ϕC = ¬ϕC pC = p

(|A|)ϕs
C = ϕs

C�A ϕp U ψp
C = ϕp

C U ψp
C Xϕp

C = Xϕp
C

For a formula 〈 ·A·〉ϕp with A = {a j1 , . . . , a jl } and coalition C s.t. A ∪ C �= ∅, we let:

〈·A·〉ϕp
C = ∃m

a j1
1 . . .m

a j1
k . . .m

a jl
1 . . .m

a jl
k .pout.(

strat(A)∧
out(A ∪ C)∧A
(

Gpout ⇒ ϕp
C∪A

))

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 107
with

strat(B) =
∧
a∈B

∧
q∈Q

AG
(

pq ⇒
∨

mi∈Mov(q,a)

(ma
i ∧

∧
j �=i

¬ma
j)

)

out(B) = pout ∧AG

[
¬pout ⇒AX ¬pout

]
∧AG

[
pout ⇒∨

q∈Q

(
pq ∧

∨
m∈Mov(q,B)

(
pm ∧AX

(
(

∨
q′∈Next(q,B,m)

pq′) ⇔ pout
)))]

for any non-empty coalition B ⊆ Agt. In
out(B), for m = (mia)a∈B ∈ Mov(q, B), we write pm for the propositional formula ∧
a∈B ma

ia
characterizing m. Formula
strat(B) ensures that the labeling of propositions m

a j

i describes a feasible strategy
for B; formula
out(B) ensures that the outcomes of the strategy assigned to coalition B (and only those outcomes) are
labeled by the atomic proposition pout . Note that
out(B) is based on the transition table Edge of C (via Next(q, B, m)) and
its size is in O (|Q |2 · |M||B|) (i.e., in O (|Q | · |Edge|)). When A ∪ C =∅, we define 〈·∅·〉ϕp

∅ = Aϕp
∅ . For (|A|)ϕC and 〈·A·〉ϕp

C ,
we simply replace A with Agt \ A and apply the same definitions as above.

In this translation, each strategy quantifier in the original ATL∗
sc formula induces a strategy quantifier in the QCTL*

formula (except 〈 ·∅·〉 interpreted in an empty context, as there is no need to mark the outcomes in this case). There is
another exception to this rule, in which the translation can be adapted to not involve quantification: in some cases, it is
not necessary to recompute the labeling with pout . This occurs with formulas of the form 〈·∅·〉ϕp

C in the direct scope of
another strategy quantifier, with no (|-|) operator in-between; in such cases, 〈·∅·〉ϕp

C can be defined as A(Gpout ⇒ϕp
C),

using propositions pout resulting from the previous quantification. In the following, such occurrences of modality 〈 ·∅·〉 (in an
empty context or in the scope of another strategy quantifier with no (|-|) in-between) are said to be trivial.

Let TC = 〈T , �〉 be the computation tree of the Kripke structure SC , ρ be a path in SC , n be a position along ρ , and
f A be a strategy for some coalition A from ρ≤n . Let �′ be a labeling extending � with propositions (ma

i)a∈A,1≤i≤k and pout .
We say that �′ is an f A -labeling after ρ≤n if, for every finite path π containing ρ≤n as a prefix, it holds ma

i ∈ �′(π) if, and
only if, f A(a)(π) = mi , and pout ∈ �′(π) if, and only if, π is compatible with f A after ρ≤n .

For such an f A -labeling �′ , we clearly have 〈T , �′〉, ρ, n |�
strat(A) ∧
out(A). The converse is also true: if 〈T , �′〉, ρ, n |�

strat(A) ∧
out(A), then propositions (ma

i)a∈A,1≤i≤k encode a strategy f A in the subtree rooted at node ρ≤n , and �′ is an
f A -labeling after ρ≤n . Indeed, consider a path π from ρ≤n and a position i ≥ n. Then formula
strat(A) enforces that for
all a ∈ A, node π≤i is labeled with some ma

i corresponding to a move mi ∈ Mov(q, a). Now, by induction, one easily shows
that the node corresponding to finite paths that are compatible with f A after ρ≤n are labeled with pout , while the other
nodes are not labeled with pout . Notice that this is easily extended to include a strategy context gC .

The following result is a direct consequence of the above:

Theorem 11. Let ρ be an infinite path in a CGS C , and n be a position along ρ . Let
 be an ATL∗
sc formula, and fC be a strategy

context for some coalition C . Let TC(ρ(0)) = 〈T , �〉 be the computation tree SC from ρ(0), and � fC be an fC -labeling extending �.
Then C, ρ, n |� fC
 if, and only if, 〈T , � fC 〉, ρ, n |�
C .

Combined with the (non-elementary) decision procedure for QCTL* model checking, we get a model-checking algorithm
for model checking ATL∗

sc .
We now consider complexity issues more precisely. We have

|
∅| = O (|
| · |Q |(|Agt| · |M|2 + |Edge|)),
which is polynomial in |
| and |C|. Moreover,
∅ belongs to QkCTL*, where k is the depth of 〈 ·-·〉 in
 (which we define as
the maximal number of nested non-trivial 〈 ·-·〉 quantifiers). Given an ATL∗

sc formula
 of depth k and a CGS C , the reduction
yields a model checking algorithm running in (k + 1)-EXPTIME [24].

Finally note that when starting from an ATLsc formula, the QCTL* formula we obtain can easily be translated
into QCTL: it contains the CTL+ formula A(Gpout ⇒ϕp), which can be succinctly written in CTL (for instance, when
ϕp = ϕs U ψs , A(Gpout ⇒ϕp) is equivalent to A(ϕs ∧pout) U (ψs ∨¬pout)). Thus it provides a QkCTL formula whose size
is in O (|
| · |Q |(|Agt| · |M|2 + |Edge|)) if
 is an ATLsc formula of 〈 ·-·〉-depth k. This yields a model-checking algorithm in
k-EXPTIME.

4.2. From QCTL* back to ATL∗
sc

We now propose a reduction in the converse direction, from an instance of the QCTL* model-checking problem into an
instance of the ATL∗

sc model-checking problem. Intuitively, strategies in the resulting game will correspond to labeling with
atomic propositions in the original Kripke structure.

Let
 be a QCTL formula and S = 〈Q , R, �〉 be a Kripke structure. W.l.o.g., we assume that every atomic proposition
in
 is quantified at most once. We write AP f (
) for the set of free atomic propositions in
 (which are intended to

108 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
already label the Kripke structure), and APQ(
) = {P1, . . . , Pk} for the set of atomic propositions that are quantified in
.
We build a TBGS CS and an ATLsc formula
̃ such that S, q |�t
 if, and only if, CS , q |�
̃.

The game CS = 〈Q ′, R ′, �′, Agt, M, Mov, Edge〉 is defined as follows. The set of agents is Agt = {a0, . . . , ak}: Player a0 is in
charge of selecting the transitions in S , while Player ai (for i ≥ 1) has to decide the truth value of Pi . The set of states Q ′ is
Q ∪ {cq,i | i = 1, . . . , k} ∪ {pi | i = 0, . . . , k}: states q ∈ Q are controlled by a0, while states cq,i are controlled by ai . States pi

only carry a self-loop, and are not explicitly controlled. The transition set R ′ contains every transition (q, q′) ∈ R , and also
transitions (q, cq,i), (cq,i, pi), and (cq,i, p0) for i = 1, . . . , k and q ∈ Q . The labeling �′ is as follows: �′(q) = �(q) ∪ {P Q } if
q ∈ Q (P Q is a fresh atomic proposition), �′(cq,i) = �′(p0) =∅, and �′(pi) = Pi for i ≥ 1.

In a state q ∈ Q , a0 can choose either a successor state q′ (i.e., an S-transition (q, q′)) or some cq,i , the latter choice
being used to check whether Pi holds true in q. Indeed in cq,i , ai has two available moves: move m1 goes to Pi , and while
mode m0 goes to P0. Thus as soon as ai has selected a strategy, cq,i has a unique successor; this encodes the labeling for
atomic proposition Pi ∈ APQ(
). Note also that for any path in CS of the form ρ · cq,i , ρ is a path in S ending in q. Finally
note that as CS is a TBGS, its size is in O (|Q | · |
| + |R|), i.e. in O (|S| · |
|).

Following the ideas above, we define
̃ inductively:

¬̃ψ = ¬ ϕ̃ ϕ̃ ∧ψ = ϕ̃ ∧ ψ̃ ∃̃Pi .ϕ = 〈·ai ·〉ϕ̃›Xϕ = Xϕ̃ ϕ̃ U ψ = ϕ̃ U ψ̃ Ẽϕ = 〈·a0·〉(GP Q ∧ ϕ̃)‹Pi =
{ 〈·a0·〉 X 〈·a0·〉 X P if P ∈ APQ(
)

P otherwise

The size of
̃ is in O (|
|). We state the correctness of the reduction as follows:

Proposition 12. Let
 be a QCTL* formula with APQ(
) = {P1, . . . , Pk} and ψ be a
-subformula. Let I be the indices of proposi-
tions in AP f (ψ) ∩ APQ(
). Let S = 〈Q , R, �〉 be a KS, ρ be a path in S and n be a position along ρ . Let TS(ρ(0)) = 〈T , �I 〉 be the
computation tree from ρ(0) with a labeling function �I that extends � for {Pi | i ∈ I}. Let f be the strategy context for {ai}i∈I such
that: f (ai)(ρ

′ · cq,i) = m1 if, and only if, �T (ρ ′) � Pi for every T -node ρ ′ . Then we have:

〈T , �I〉,ρ,n |�s ψ iff CS ,ρ,n |� f ψ̃

Proof. The proof is based on the fact that any strategy for agent ai in CS corresponds to a (unique) Pi labeling of T . Indeed
such a strategy is a mapping from paths of the form ρ ′ · cq,i with ρ ′ ∈ Q + and as noticed above, we have: for any such a
CS path ρ ′ · cq,i , ρ ′ is a path in S ending in q which implies that ρ is a state of T . Using this observation, the proof is
straightforward. �
A complexity lower bound for ATLsc model checking Now consider a model checking instance C |�
 with
 ∈ EQkCTL. This
problem is k-EXPTIME-complete [24]. Now we can adapt the previous reduction from QCTL to ATLsc in order to obtain a
formula with 〈 ·-·〉-depth equals to k:

• First we can replace all occurrences of the quantifier 〈 ·a0·〉 in
̃ with ¬〈 ·∅·〉 ¬, because every such subformula is in-
terpreted in a context where every agent in {a1, . . . , ak} has a fixed strategy, so that quantifying on the ability of the
last agent (a0) to select a path in the structure is equivalent to looking for a path in the outcomes of the context (and
Ec ≡ ¬〈 ·∅·〉 ¬). Notice that such 〈 ·∅·〉 correspond to trivial quantification, because no (|-|) is used in the formula.

• Second, formula Ẽϕ is in ATL∗
sc , as it involves a conjunction of path formulas in the scope of a strategy quantifier.

However, this is easily overcome in pretty much the same way as we did at the end of Section 4.1.

From this reduction, we get a k-EXPTIME-hardness lower bound for ATLsc model checking (notice that this already holds
for TBGSs). The same approach can be followed for EQkCTL* and ATL∗

sc , yielding a (k + 1)-EXPTIME-hardness bound. As a
result:

Theorem 13. Model checking the fragment of ATLsc (resp. ATL∗
sc) with at most k non-trivial nested strategy quantifiers is

k-EXPTIME-hard (resp. (k + 1)-EXPTIME-hard), even for TBGS.

To sum up our results about model checking, we have:

Corollary 14. Model checking ATLsc and ATL∗
sc is Tower-complete. More precisely, model checking the fragment of ATLsc (resp. ATL∗

sc)
with k non-trivial nested strategy quantifiers is k-EXPTIME-complete (resp. (k + 1)-EXPTIME-complete).

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 109
5. Satisfiability

Satisfiability checking is the problem of deciding whether there exists a CGS C and a state q0 such that C, q0 |� ϕ , for a
given formula ϕ . The above translation to QCTL* works for model checking, but does not extend to satisfiability: the QCTL*
formula we build depends both on the formula and on the structure. Actually, as was proved recently in [35], satisfiability
is undecidable for ATLsc , both when looking for infinite or finite CGS. For the sake of completeness, and because it has
interesting consequences, we sketch a (modified) proof of this result in this section.

We then establish decidability of satisfiability in two different settings: first when restricting to turn-based games, and
then in the case where the set of actions allowed to the players is fixed. A consequence of our decidability proofs (based
on automata constructions) is that in both settings, ATLsc does have the finite-model property (thanks to Rabin’s regularity
theorem).

Before we proceed to the algorithms for satisfiability, we prove a generic result about the number of players needed in a
game in order to satisfy a formula involving a given set of agents. This result has already been proved for ATL (e.g. in [37]).
Given a formula
 ∈ ATL∗

sc , we use Agt(
) to denote the set of all agents involved in the strategy quantifiers of
.

Proposition 15. An ATL∗
sc formula
 is satisfiable if, and only if, it is satisfiable in a CGS with |Agt(
)| + 1 agents.

Proof. Assume that
 is satisfied in a CGS C = 〈Q , R, �, Agt, M, Mov, Edge〉. If |Agt| ≤ |Agt(
)|, it suffices to add extra idle
players in C . Otherwise, if |Agt| > |Agt(
)| + 1, we can replace the agents {b1, . . . , bk} in Agt that do not belong to Agt(
)

by a unique agent a mimicking the actions of the removed players. Notice that this requires extending the set of moves for
Player a to Mk . �

Note also that this result still holds when considering turn-based CGS.

5.1. General case

In [35], Troquard and Walther show that satisfiability of ATLsc is undecidable. The proof consists in reducing the sat-
isfiability problem for the modal logic S5n to the satisfiability problem for ATLsc . The construction is elegant and induces
several important results, which is the reason why we include it here (with a few changes).

The multi-modal logic S5n The logic S5n is a multidimensional modal logic [23], whose formulas are built from Boolean
operators, atomic propositions P ∈ AP and modalities �i . These formulas are interpreted over models M = 〈F , V〉
where F is a product frame W1 × . . . × Wn , and V is a valuation for atomic propositions over F . The (implicit) tran-
sition relation over W i is universal: for any world w = (w1, . . . , wn) and any w ′

i ∈ W i , there is an i-transition to
(w1, . . . , wi−1, w ′

i, wi+1, . . . , wn). This provides the semantics of �iϕ: M, w |� �iϕ if, and only if, there exists w ′
i ∈ W i

such that M, w[wi → w ′
i] |� ϕ . When n > 2 (which we assume from now on), satisfiability (both over finite and infinite

models) is undecidable for S5n [26], and S5n does not have the finite-model property [22].

Let
 be an S5n formula. From
, we build an ATLsc formula
︷︷

 inductively as follows:︷ ︷

ϕ ∧ψ = ︷︷
ϕ ∧

︷︷
ψ

︷ ︷
¬ψ = ¬

︷︷
ψ

︷︷
P = 〈·∅·〉 X P

︷ ︷�iψ = 〈·ai ·〉
︷︷
ψ

The following result connects both satisfiability problems:

Proposition 16. (See [35].) Let
 be an S5n formula and
︷︷

 be the resulting ATLsc formula, obtained as above. Then
 is satisfiable in

a finite (resp. infinite) S5n model if, and only if, 〈 ·∅·〉
︷︷

 is satisfiable in a finite (resp. infinite) CGS.

Proof. First assume that there exists a model M = (F , V) for
, with F = W1 × . . . × Wn . Take w such that M, w |�
.
For every i, the states in W i are denoted wi

1, w
i
2, We define a CGS CM = 〈Q , R, �, Agt, M, Mov, Edge〉 with M as its

underlying transition system: Q = F , R = Q × Q , and �(w) = V(w). We let Agt = {a1, . . . , an}. The action alphabet M is
{1, . . . , max1≤i≤n |W i |} if M is finite, and N>0 otherwise. In every world w ∈ Q , Player ai can choose the next position
in W i : in other terms, Mov(w, ai) = {1, . . . , |W i |} if W i is finite, or N>0 otherwise, and Edge(w,m) = wm with wm =
〈w1

m1
, w2

m2
, . . . , wn

mn
〉 when m is 〈m1, . . . , mn〉. Note that as M is universal, the transition table does not depend on the

current state w . As a world w in M is also a state in CM and also corresponds to a move in the game structure, we might
abusively write Edge(w,m) = m or Edge(w, w ′) = w ′ in the sequel.

In our reduction, formula
︷︷

 only involves non-nested occurrences of the X modality. Hence we are only interested in

the first move proposed by strategies. Given a world w in F , we write F w for the class of all strategies for Agt such that
F w(ε) = w . In other terms, any strategy in F w enforces the first transition to go to w . Now we can easily see that, for every

110 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
S5n formula
 and for any two worlds w and w ′:

M, w |�
 ⇔ CM, w ′ |�F w

︷︷

The proof is by structural induction over
. The cases of Boolean operators are direct. We only consider �i and proposi-
tions P :

• When
 = P : M, w |� P is equivalent to P ∈ V(w), which in turn is equivalent to CM, w ′ |�F w 〈 ·∅·〉 X P because the
strategy F w ensures a first transition to w , where P holds true.

• When
 = �iψ : if M, w |� �iψ , then there exists w ′′ such that w ′′
j = w j for j �= i and M, w ′′ |� ψ . By induction

hypothesis, we get CM, w ′ |�F w′′
︷︷
ψ , which implies CM, w ′ |�F w 〈 ·ai ·〉

︷︷
ψ because F w ′′ is clearly equivalent (when con-

sidering only the first transition) to F w modified by a new move for Player ai .

Now consider any state w ′ in Q . Since M, w |�
, we have CM, w ′ |� 〈 ·∅·〉
︷︷

 , since the strategy quantifier 〈 ·∅·〉

(i.e. 〈 ·Agt·〉) allows us to select a strategy in F w to ensure CM, w ′ |�F w

︷︷

 . Thus 〈 ·∅·〉

︷︷

 is satisfiable.

Now assume that there exists C = 〈Q , R, �, Agt, M, Mov, Edge〉 and q ∈ Q such that C,q |� 〈·∅·〉
︷︷

 . We first show that

there is such a structure involving n agents. We then deduce that the S5n formula
 is satisfiable.

Assume that C involves n +1 players {a0, a1, . . . , an} (following Proposition 15). As C, q |� 〈 ·∅·〉
︷︷

 , there exists a strategy F

for {a0, a1, . . . , an} such that C, q |�F

︷︷

 . Pick such an F . In

︷︷

 , the strategy quantifiers only deal with Players a1 to an . The

strategy (and in particular the first move) for a0 is fixed by F , and is not updated by
︷︷

 . Now, consider the structure

C′ = 〈Q , R ′, �, {a1, . . . , an}, M, Mov′, Edge′〉, in which Edge′(q, 〈m1, . . . , mn〉) is defined as Edge(q, 〈m0, m1, . . . , mn〉), where

m0 is the first move proposed by Fa0 . Then C′, q |� 〈 ·∅·〉
︷︷

 .

We now pick an n-player CGS C such that C, q |� 〈 ·∅·〉
︷︷

 . We define MC = (F , V) as follows: F = W1 × . . . × Wn with

W i = Mov(q, ai), and V(m) = �(Edge(q,m)). In other terms, the states of MC are the move vectors of C , and they are
labeled with the atomic propositions of the state they lead to. Associated with a universal relation, this defined an S5n

model. We now show that it is a model for
.
Given a strategy F in C for every player, F (q) defines a unique move vector mF (q) from q; it also corresponds to some

world w F (q) in MC . We clearly have:

C,q |�F

︷︷

 ⇔ MC, w F (q) |�

The proof works exactly as in the previous case. Finally we have C, q |� 〈 ·∅·〉
︷︷

 , and then there exists a complete strategy F

such that C, q |�F

︷︷

 . From the previous result, we get MC, w F (q) |�
, and then
 is satisfiable.

Finally note that M is infinite if, and only if, CM has an infinite action alphabet. Conversely, C has an infinite action

alphabet if, and only if, MC is infinite. Therefore
 is finitely (resp. infinitely) satisfiable if, and only if, 〈 ·∅·〉
︷︷

 is satisfiable

in a finite (resp. infinite) CGS.2 �
Proposition 16 and its proof entail the following results:

Corollary 17.

• ATLsc does not have the finite-model property.
• ATLsc does not have the finite-branching property.
• Satisfiability of ATLsc is undecidable for finite or infinite CGS [35].

5.2. Turn-based games

In this section, we consider the restriction of satisfiability to turn-based games: given an ATLsc formula, we look for a
turn-based game structure satisfying
. As we now explain, this problem turns out to be decidable.

Let
 be an ATLsc formula. Write Agt(
) = {a1, . . . , an} for the set of players involved in
. Following Proposition 15,
let Agt be the set Agt(
) ∪ {a0}, where a0 is an additional player. Pick a TBGS C , and consider its computation tree

2 Notice that finiteness refers here to the total size of the CGS, not only its number of states.

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 111
TC = 〈T , �〉. Since C is turn-based, we may assume that � labels each node of the tree with the owner of the corresponding
state. Formally, for each node π ∈ T , we have �(π) � turn j if, and only if, a j = Own(last(π)). A strategy for an agent a j
is then encoded using an atomic proposition mov j : indeed, a strategy for a j precisely corresponds to a selection of one
successor of every turn j -state (notice that this is a crucial difference with CGSs). The outcomes of a strategy of Player a j are
the runs in which every turn j -state is followed by a mov j-state. The decidability proof now consists in using this encoding
of strategies together with the translation from ATL∗

sc into QCTL*.
We again consider the computation tree TC = 〈T , �〉 of C . Given a coalition B ⊆ Agt and a strategy f B for that coalition,

a labeling function �′ extending � is an f B -tb-labeling if �′ labels T with propositions mov j for all a j ∈ B as dictated by f B ,
and with proposition pout in order to mark outcomes. More precisely,

• for any node π labeled with turn j ∈ B , we have �′(π · q) = mov j if, and only if, f B(j)(π) = q,
• when a state is labeled with pout and turn j for some a j ∈ B , then only its mov j -successor is labeled with pout; states

labeled with pout and turnk with ak /∈ B , have all their successors labeled with pout; finally, states not labeled with pout

have none of their successors labeled with pout .

Given a coalition C (which we intend to represent the agents that have a strategy in the current context), we translate
an ATL∗

sc formula
 into a QCTL* formula
̂C inductively as follows:

(̂|A|)ϕC = ϕ̂
C�A

ϕ̂ ∧ψ
C = ϕ̂

C ∧ ψ̂
C ¬̂ψ

C = ¬ ϕ̂
C

ϕ̂ U ψ
C = ϕ̂C U ψ̂C ”Xϕ

C = Xϕ̂C P̂ C = P

For formulas of the form 〈 ·A·〉ϕ with A = {a j1 , . . . , a jl } that correspond to non-trivial 〈 ·-·〉 quantifiers, we let:

〈̂·A·〉ϕC = ∃mov j1 . . .mov jl .pout.(

tb

strat(A)∧
tb
out(A ∪ C)∧A

(
Gpout ⇒ “ϕp

C∪A
))

with

tb
strat(B) = AG

∧
a j∈B

(turn j ⇒EX1mov j)

tb
out(B) = pout ∧AG

[¬pout ⇒AX¬pout
]∧AG

[
pout ⇒(∧

a j∈B

(
turn j ⇒AX(mov j ⇔ pout)

)∧
∧

a j /∈B

(
turn j ⇒AXpout

))]
where B ⊆ Agt, and EX1α = EXα ∧ ∀p.

Ä
EX(α ∧ p) ⇒AX(α ⇒ p)

ä
expresses the existence of a unique successor satisfy-

ing α. For trivial occurrences of 〈 ·∅·〉, we let:

〈̂·∅·〉ϕp
∅ = A“ϕp

∅ 〈̂·∅·〉ϕp
C = A(Gpout ⇒ “ϕp

C
) if C �= ∅

Now we have the following proposition, the proof of which is done by structural induction over the formula:

Proposition 18. Let
 ∈ ATL∗
sc , and Agt = Agt(
) ∪ {a0} as above. Let C be a TBGS, ρ be a path of C , n be a position along ρ , and f B

be a strategy context whose domain is B ⊆ Agt. Let TC(ρ(0)) = 〈T , � f B 〉 be the computation tree of the Kripke structure underlying C
from ρ(0), labeled with an f B -tb-labeling � f B . Then we have:

C,ρ,n |� f B
 iff 〈T , � f B 〉,ρ,n |�
̂B

Proof. The proof is by structural induction over
. The cases of atomic propositions, Boolean operators and temporal modal-
ities are straightforward.

• If
 = 〈 ·A·〉ϕp: assume C, ρ, n |� f B
. Then there exists g A ∈ Strat(A) such that for any ρ ′ ∈ Out(ρ≤n, g A ◦ f B), we have
C, ρ ′, n |�(g A ◦ f B) ϕ . Let �g A ◦ f B be some (g A ◦ f B)-tb-labeling built from � f B by updating the labeling for propositions
(mov j)a j∈A and pout . By induction hypothesis, for any ρ ′ ∈ Out(ρ≤n, g A ◦ f B), we have 〈T , �(g A ◦ f B)〉, ρ ′, n |� “ϕp

A∪B . Then,
by definition of �g A ◦ f B , the outcomes generated by g A ◦ f B are exactly the runs satisfying Gpout , and then we clearly
have 〈T , �(g A ◦ f B)〉, ρ, n |� A(Gpout ⇒ “ϕp

A∪B
). Moreover
tb

strat(A) and
tb
out(A ∪ B) also hold true for 〈T , �(g A ◦ f B)〉, ρ, n.

Therefore we have 〈T , � f B 〉, ρ, n |� 〈̂·A·〉ϕp
B

, since it suffices to extend � f B in order to encode the strategy g A and update
the truth value of pout accordingly.

112 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
Conversely, assume 〈T , � f B 〉, ρ, n |� 〈̂·A·〉ϕp
B

. Then there exists a labeling �′ for (mov j)a j∈A and for pout so that
(1)
tb

strat(A) holds true, which ensures that the labeling with (mov j)a j∈A corresponds to a strategy g A for A from ρ≤n ,
and (2)
tb

out(A ∪ B) also holds true, which ensures that pout marks the outcomes from ρ≤n induced by g A ◦ f B . This
implies that �′ is a (g A ◦ f B)-tb-labeling. Finally we also know that A(Gpout ⇒ “ϕp

A∪B
) holds for 〈T , � f B 〉, ρ, n, which

entails that every outcome of g A ◦ f B satisfies “ϕp
A∪B

). The induction hypothesis entails the expected result.
• If
 = (|A|)ϕs: assume C, ρ, n |� f B
. Then C, ρ, n |� f B\A ϕs . Applying the induction hypothesis, we get 〈T , � f B\A 〉, ρ, n |�“ϕs

B\A . It follows that 〈T , � f B 〉, ρ, n |� “ϕs
B\A , because the labeling of strategies for coalition A in f B is not used for

evaluating “ϕs
B\A , and the labeling with proposition pout will be updated at the next occurrence of a 〈 ·-·〉 quantifier.

Conversely, assume that 〈T , � f B 〉, ρ, n |� “ϕs
B\A . For the same reason as above, we have 〈T , � f B\A 〉, ρ, n |� “ϕs

B\A . Applying
the induction hypothesis, we get C, ρ, |� f B\A ϕs , and then C, ρ, n |� f B
. �

Finally, it remains to enforce that the Kripke structure satisfying
̂∅ corresponds to a turn-based game structure. This is
achieved by also requiring

tb = AG
[∨

a j∈Agt

(
turn j ∧

∧
al �=a j

¬ turnl

)]
.

Finally, we let
̂ be the formula
tb ∧
̂∅ .

Proposition 19. Let
 be an ATL∗
sc formula and
̂ be the QCTL* formula defined as above. Then
 is satisfiable in a turn-based CGS

if, and only if,
̂ is satisfiable (in the tree semantics).

Proof. If
 is satisfiable in a TBGS, then there exists such a structure C with |Agt(
)| + 1 agents. Pick such a structure C ,
and a path ρ such that C, ρ, 0 |�
. Now consider the computation tree TC(ρ(0)) = 〈T , �〉. From Proposition 18, we have
〈T , �〉, ρ, 0 |�
̂∅ . Thus clearly 〈T , �〉, ρ, 0 |�
̂.

Conversely assume T |�
̂. Thus T |�
tb ∧
̂∅: the first part of the formula ensures that every state of the Kripke struc-
ture can be assigned to a unique agent, hence defining a TBGS. The second part ensures that
 holds in the corresponding
game, thanks to Proposition 18. �

The above translation from ATL∗
sc into QCTL* transforms a formula with k strategy quantifiers into a formula with at

most k + 1 nested blocks of quantifiers. By slightly modifying the definition of 〈̂·A·〉ϕp
C

, we can obtain a translation from
ATLsc into QCTL with the same property. Satisfiability of a QCTL* (resp. QCTL) formula with k + 1 blocks of quantifiers is
in (k + 3)-EXPTIME (resp. (k + 2)-EXPTIME) [24]. Hence the algorithm is in Tower.

We now prove that this high complexity cannot be avoided:

Proposition 20. Satisfiability of ATLsc and ATL∗
sc formulas over turn-based CGSs is Tower-hard (i.e., it is k-EXPTIME-hard, for all k).

Proof (sketch). Model checking ATLsc over turn-based games is Tower-hard (Theorem 13), and it can easily be encoded as
a satisfiability problem. Indeed, let C = 〈Q , R, �, Agt, M, Mov, Edge〉 be a TBGS, and
 be an ATLsc formula. Let (pq)q∈Q be
fresh atomic propositions. We define an ATLsc formula �C to describe the game C as follows:

�C = AG
(∨

q∈Q

(pq ∧
∧

q′ �=q

¬pq′ ∧
∧

P∈�(q)

P ∧
∧

P ′ /∈�(q)

¬ P ′)
)

∧

AG
[∧

q∈Q

(
pq ⇒(

∧
q→q′

〈〈Own(q)〉〉 X pq′ ∧
∧

q′. q �→q′
¬〈〈Own(q)〉〉 X pq′)

)]
where q → q′ denotes the existence of a transition from q to q′ in C . Any TBGS C′ satisfying �C corresponds to a kind
of unfolding of C with possibly duplications of transitions (and of the corresponding moves). First note that duplicating
transitions does not change the truth value of ATLsc formula: in a turn-based structure, duplicating a transition consists in
adding a new move for the owner of the source state and this move is completely equivalent to the previous move. Thus
we can assume that C′ corresponds to some unfolding of C (with extra labeling for propositions pq), thus it yields the same
computation tree as C; this ensures that both structures satisfy the same ATLsc formulas when the extra propositions are
not used. In particular, C′ satisfies
 if, and only if, C does.

Finally we clearly have that C, q |�
 if, and only if, �C ∧pq ∧
 is satisfiable in a turn-based structure. �
Theorem 21. Satisfiability for ATLsc and ATL∗

sc over turn-based CGSs is Tower-complete.

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 113
We conclude this section with proving that in TBGS, ATL∗
sc has the finite-model property:

Proposition 22. If an ATL∗
sc formula
 is satisfiable in a turn-based CGS, then there exists a finite turn-based CGS satisfying
.

Proof. Assume
 is satisfiable, then the QCTL* formula
̂ is satisfiable and there exists a tree satisfying
̂. Such a tree T
can be chosen to be regular (QCTL* models can be characterized by alternating parity tree automata [24]); we can consider
the underlying finite Kripke structure KT , and apply the same construction as we did for proving Proposition 19, obtaining
a finite TBGS satisfying
. �
5.3. Games with a bounded action alphabet

We now consider another setting where the reduction to QCTL* can be used to solve the satisfiability for ATL∗
sc : we look

for CGSs involving a given set of moves, and a given set of players.3 Formally, the problem is defined as follows:

Problem: (Agt, M)-satisfiability
Input: a finite set of moves M, a set of agents Agt, and an ATL∗

sc formula
 involving the agents in Agt;
Question: does there exist a CGS C = 〈Q , R, �, Agt, M, Mov, Edge〉 and a state q ∈ Q such that C, q |�
.

We fix M = {m1, . . . , mk} and Agt = {a1, . . . , an}. Moreover we assume w.l.o.g. that every agent may choose all k moves
from every state (i.e., Mov(q, a) = M for any q ∈ Q and a ∈ Agt). Therefore we know that we are looking for a CGS whose
computation tree is a [kn]-tree. In the following, we use a specific alphabet Ma to represent the moves chosen by Player a,
and we use atomic propositions of the form ma

i to label strategies in the computation tree (of the Kripke structure): a node q
is labeled with ma

i when the strategy for a requires to play mi from q.
We use DC
 to denote the set of non-empty coalitions for which outcomes are considered while evaluating
. Infor-

mally, DC
 is obtained by traversing the tree representing
 and computing at each node the “accumulated coalition”
since the root of the tree. For example, considering
 = 〈 ·a1·〉

[〈 ·a2·〉 X P1 ∧〈 ·a3·〉(|a1|) X P2
]∨〈 ·a2, a4·〉 X P3, the set DC
 is

{{a1}, {a1, a2}, {a1, a3}, {a3}, {a2, a4}}. Note that |DC
| is bounded by |
|.
We encode the transition table of the CGS in its computation tree: we have to specify the successor state when each

player has chosen his move. We also have to deal with partial moves: what are the possible successor states when some
coalition A plays some move m (where m is of the form (ma

ia
)a∈A)? For this, we use atomic propositions to represent the

moves that have been chosen by coalitions: for every coalition A in DC
 ∪ {Agt} and every move m for A (again, with m of
the form (ma

ia
)a∈A), we define the atomic proposition after(m) to specify that the coalition A has played the move m in the

parent node. Now we have to ensure that a complete move m ∈ MAgt fixes a unique successor and that every state (except
the root) corresponds to at least one move from its parent:

Edge = AG
(∧

m∈MAgt

EX1after(m)

)
∧AX AG

(∨
m∈MAgt

after(m)

)
Moreover the labeling of after(m) for a partial move for coalition A has to be consistent w.r.t. the labeling of complete
moves, thus we have:

′
Edge = AG

(∧
m∈MAgt

after(m)⇒
∧

A∈DC

after(m|A)

)
∧

AG
(∧

A∈DC

∧
m∈MA

after(m)⇒
∨

m′∈MAgt s.t.
m′ |A=m

after(m′)
)

where after(m|A) is the atomic proposition corresponding to the restriction of m to players in A. Thus we clearly have that
for any coalition A ∈DC
 and any move m for A, a state q is labeled by after(m) if, and only if, q ∈ Next(q′, A,m) where q′
is the parent of q. The number of such atomic propositions after(m) is bounded by |
| · |M|n , and the size of
Edge ∧
′

Edge

is in O (|
| · |M|2n+1).
From an ATL∗

sc formula
, we now define a QCTL* formula Ê
C in a similar way as we defined formula
C in Section 4
(when reducing the ATL∗

sc model-checking problem to the QCTL model-checking problem). Here, the sub-formulas
strat

and
out are defined using propositions after(-) instead of the transition table (which is not known at that point). For

3 One could be tempted to only bound the number of moves, and apply Proposition 15 in order to bound the number of players. However, Proposition 15
does not apply when the set of moves is fixed.

114 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
formulas of the form 〈 ·A·〉ϕ with A = {a j1 , . . . , a jl } that correspond to non-trivial 〈 ·∅·〉 quantifiers, we let:Ì〈·A·〉ϕp
C = ∃m

a j1
1 . . .m

a j1
k . . .m

a jl
1 . . .m

a jl
k .pout.(

ba
strat(A)∧
ba

out(A ∪ C)∧A
(

Gpout ⇒ Áϕp
C∪A

))
with:

ba
strat(B) =

∧
a∈B

AG
(∨

mi∈M
(ma

i ∧
∧
j �=i

¬ma
j)

)

ba

out(B) = pout ∧AG
(¬pout ⇒AX¬pout

)∧
AG

[
pout ⇒

∨
m∈MB

(
pm ∧AX(after(m) ⇔ pout)

)]
where, given m = (ma

j)a∈B , pm stands for
∧

a∈B ma
j . As for trivial occurrences of the 〈 ·∅·〉 quantifier, we still have:Ì〈·∅·〉ϕp

∅ = AÁϕp
∅ Ì〈·∅·〉ϕp

C = A(Gpout ⇒ Áϕp
C
) if C �= ∅

This yields a formula whose size is in O (|
| · |Agt|2 · |M||Agt|+1).
As for the turn-based case, given a strategy f B , we say that a labeling function � is an f B -ba-labeling when proposi-

tions (ma
ia
)a∈B describe the moves proposed by f B , and when pout labels the outcomes of f B . We also assume that the

labeling of proposition after(-) in f B satisfies the formulas
Edge and
′
Edge . Our translation has the expected property

(we omit the proof as it follows exactly the same lines as for Proposition 18):

Proposition 23. Let
 ∈ ATL∗
sc . Fix a finite set M = {m1, . . . , mk} of actions, and a finite set Agt = {a1, . . . , an} of agents (containing

Agt(
)). Let C be a CGS based on M and Agt. Let ρ be a path of C , n be a position along ρ , and f B be a strategy context whose
domain is B ⊆ Agt. Let TC(ρ(0)) = 〈T , � f B 〉 be an computation tree of the Kripke structure underlying C from ρ(0), labeled with an
f B -ba-labeling � f B . Then we have:

C,ρ,n |� f B
 iff 〈T , � f B 〉,ρ,n |� Ê
B

We can then relate the truth values of
 and of Ê
 =
Edge ∧
′
Edge ∧ Ê
∅:

Proposition 24. Let
 be an ATL∗
sc formula, Agt = {a1, . . . , an} be a finite set of agents, M = {m1, . . . , mk} be a finite set of moves,

and Ê
 be the formula defined above. Then
 is (Agt, M)-satisfiable in a CGS if, and only if, the QCTL* formula Ê
 is satisfiable (in the
tree semantics).

Sketch of proof. If
 is (Agt, M)-satisfiable, then we can derive a tree satisfying Ê
 (thanks to Proposition 23). Conversely if Ê
 is satisfied in some tree T , then this tree corresponds to some CGS based on Agt and M: indeed, formula
Edge ∧
′
Edge

ensures that for every node, the labeling of the successor nodes with after(m) for every m ∈ Mn defines a transition table.
The end of the proof is similar to proof for the turn-based case. �

Notice that if
 has k ≥ 1 nested quantifiers, then so does Ê
. However, the size of Ê
 is exponential in |Agt|. Satisfiability
of QkCTL* (resp. QkCTL) formula being (k + 2)-EXPTIME-complete (resp. (k + 1)-EXPTIME-complete), we end up with an
algorithm in (k + 3)-EXPTIME (resp. (k + 2)-EXPTIME) for ATL∗

sc (resp. ATLsc) formulas involving at most k ≥ 1 nested
quantifiers.

Proposition 25. The (Agt, M)-satisfiability problem for ATLsc and ATL∗
sc is Tower-hard.

Proof. The proof uses similar ideas as for the case of TBGSs (see Proposition 20). Since the reduction is from the model-
checking problem, we already know the set of agents and actions. The main difficulty is to require that the satisfying CGS
be turn-based. This can be achieved using the following formula:

AG

⎡⎣∧
q∈Q

∨
a∈Agt

Ñ
pq ⇒

[
(
∧

q→q′
〈〈a〉〉 X pq′) ∧ ([[a]]

∨
q→q′

〈·∅·〉 X pq′)
]é⎤⎦

The rest of the proof is similar to the proof of Proposition 20. �
Theorem 26. (Agt, M)-satisfiability for ATLsc and ATL∗

sc is Tower-complete.

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 115
Fig. 2. Two CGS that can be distinguished by ATLsc,0, but not by ATLsc .

6. Extensions of ATLsc

In this section, we explain how our technique of using QCTL* applies in two other settings: first, for the variant of ATL∗
sc

where strategy quantifiers are restricted to range over memoryless strategies; second, for strategy logic (SL), a different
formalism for expressing properties of multi-agent systems.

6.1. ATLsc with memoryless strategy quantifiers

In this section, we consider the logic obtained from ATLsc by restricting strategy quantifiers to range over memoryless
strategies. Notice that the memoryless requirement only applies to explicitly quantified strategies: for instance, 〈 ·A·〉0ϕ states
that coalition A has a memoryless strategy to enforce ϕ , whatever the other players do, even if they have memory:

C,π,n |� f 〈·A·〉0ϕ ⇔
∃ f A ∈ Strat0(A). ∀π ′ ∈ Out(π≤n, f A ◦ f). C,π ′,n |� f A ◦ f ϕ.

Enforcing memoryless strategies for the opponent coalition can be achieved by making the strategy quantification explicit:
formula 〈 ·A·〉0[·B·]0〈 ·∅·〉0ϕ only considers memoryless strategies of players in B . Notice that because of this difference be-
tween implicit and explicit strategy quantification, our translation from ATL∗

sc to ATLsc does not apply for memoryless
strategies.

It is well known that the strategies witnessing an ATL property can be chosen memoryless: in other terms, 〈 〈A〉 〉ϕ and
〈 〈A〉 〉0ϕ are equivalent (when 〈 〈A〉 〉ϕ is interpreted with the classical semantics of ATL). Moreover, 〈 ·a1·〉0(〈 ·a2·〉0 Xa ∧〈 ·a2·〉0 Xb)

is true on only one of the two CGSs of Fig. 1. It follows that ATLsc,0 is strictly more expressive than ATL. Actually, ATLsc,0 can
even distinguish CGSs that ATLsc cannot: consider the two one-player CGSs S and S ′ of Fig. 2; they involve only one player,
and can be seen as Kripke structures; as Kripke structures, they are bisimilar, so that they satisfy the same CTL* formulas,
and consequently also the same ATLsc formulas (any ATLsc formula is easily translated into an equivalent CTL* formula for
these one-player models). But the ATLsc,0 formula 〈 ·a·〉0(X ¬a ∧X X a) holds true in state q′

0 of S ′ , while it fails to hold in q0
in S .

Model checking The number of memoryless strategies for one player being bounded (with |M||Q |), we can easily enumerate
all of them, and store each strategy within polynomial space. Hence:

Theorem 27. Model checking ATLsc,0 and ATL∗
sc,0 is PSPACE-complete.

Proof. We again rely on our translation to QCTL*, but this time in the structure semantics [24]: instead of ranging over
labellings of the computation tree, propositional quantification then ranges over labellings of the Kripke structure. Indeed,
a memoryless strategy is simply a function mapping each state of the game to an available move.

However, we cannot directly reuse the translation of Section 4.1: indeed, in this translation, we quantify over atomic
proposition pout to mark the outcomes of the selected strategies. This is not correct in the structure semantics of QCTL*,
since this would only involve ultimately-periodic outcomes.

To overcome this problem, we propose a slightly different translation: instead of quantifying over pout , we use a CTL*
formula to characterize the outcomes: the translation of 〈 ·A·〉0ϕ in a context with domain C now reads as follows (reusing
the notations of Section 4.1):

〈·A·〉0ϕp
C = ∃m

a j1
1 . . .m

a j1
k . . .m

a jl
1 . . .m

a jl
k .(

strat(A)∧ A
[
(
′

out(A ∪ C)) ⇒ ϕp
C∪A

)]
where

′
out(B) = G

Ñ∧
q∈Q

∧
m∈Mov(q,B)

⎡⎣(pq ∧pm)⇒
∨

q′∈Next(q,B,m)

Xpq′

⎤⎦é .

116 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
Fig. 3. The turn-based game encoding the tiling problem.

Formula
′
out(B) characterizes the outcomes of the strategies in use for some coalition B . In the end, the QCTL* formula
∅

has size O (|
| · |Q | · (|Agt| · |M|2 + |Q | · |Edge|)). Using the PSPACE algorithm for model checking QCTL* in the structure
semantics, we obtain a PSPACE algorithm for model checking ATL∗

sc,0.
Finally, hardness in PSPACE is obtained for ATLsc,0 by a straightforward encoding of QBF. �

Satisfiability While restricting to memoryless strategies makes model checking easier, it actually makes satisfiability unde-
cidable:

Theorem 28. Satisfiability of ATLsc,0 (with memoryless-strategy quantification) is undecidable, even when restricting to turn-based
games or when the set of agents and actions is fixed.

While this result may look surprising given our previous results, it is the natural counterpart of the fact that QCTL
satisfiability is undecidable over finite graphs. The proof of Theorem 28 uses the same ideas as for the undecidability of
QCTL satisfiability over graphs [24].

Proof. The proof of this result is long and technical; we postpone the full proof to Appendix B, and only give the main ideas
here. We encode the following tiling problem: given a finite set of square tiles with a color on each of their four edges, is
it possible to tile the quadrant N ×N, with neighboring tiles sharing the same color on their common edge? This problem
was proved undecidable in [18]. Our reduction consists in building a formula that is satisfiable if, and only if, there exists a
valid tiling. The formula is the conjunct of two subformulas:

• One subformula characterizes those CGS that have the shape of a grid: each state has two successors (right and up,
say), and their successors share a common successor. This is the most technical part of the formula.

• The second subformula states that the grid can be tiled: each state of the grid-shaped CGS has transitions, controlled
by a one of the players, to “tile states”; a tiling can then be encoded by a memoryless strategy of that player, and its
correctness is expressed by requiring that under that strategy, the colors of the selected tiles match between a state
and its successors.

This reduction is depicted on Fig. 3, where we also have intermediary c-states, mainly for having a turn-based game. �
6.2. Strategy logic

Strategy Logic (SL) [11,29] extends LTL with explicit quantification and use of strategies. SL allows first-order quantifi-
cation over strategies, and those strategies are then assigned to players.

Formula 〈 〈x〉 〉ϕ expresses the existence of a strategy enforcing ϕ; the strategy is stored in variable x for later use in ϕ:
the agent binding operator (a, x) can be used to assign strategy x to agent a. An assignment χ is a partial function from
Agt ∪ Var to Strat. An SL formula ϕ is interpreted over pairs (χ, q) where q is a state of some CGS and χ is an assignment
such that any free4 strategy variable or agent occurring in ϕ belongs to dom(χ). Note that we must have Agt ⊆ dom(χ)

when temporal modalities X and U are interpreted: this implies that the set of outcomes is restricted to a single execution
generated by all the strategies assigned to players in Agt, and the temporal modalities are therefore interpreted along this
execution. We refer to [29] for a complete definition of SL.

4 We use the standard notion of freeness for strategy variables, with the hypothesis that 〈 〈x〉 〉 binds x, and for the agents with the hypothesis that (a, x)
binds a and that every agent in Agt is free in temporal subformulas (i.e., with U or X as root).

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 117
In the following we assume w.l.o.g. that every quantifier 〈 〈x〉 〉 introduces a fresh strategy variable x: this allows us to
permanently use variable x to denote the selected strategy for a. Moreover, we require that every player may play any
move in any state (Mov(q, a) = M): this rules out the problem whether a selected strategy can be assigned to a player
when evaluating a formula. We omit the formal proofs of the results stated in this part, as they closely follow the same
arguments as for ATL∗

sc .

Model checking Following the ideas developed for ATL∗
sc model checking, we reduce the model-checking problem for SL

to the model-checking problem for QCTL*. Consider a CGS C = 〈Q , R, �, Agt, M, Mov, Edge〉 with M = {m1, . . . , mk} and
Agt = {a1, . . . , an}, and where Mov constantly returns M. Let
 ∈ SL and V a partial function V : Agt ⇁ Var assigning
strategy variables to some of the agents. We build a QCTL* formula
V as follows:

ϕ ∧ψ V = ϕV ∧ψ V ¬ϕV = ¬ϕV ϕ U ψ V = A
(

out(V)⇒ϕp

V U ψ V
)

(a, x)ϕV = ϕV [a �→x] pV = p Xϕp
V = A

(

out(V)⇒ Xϕp

V
)

Strategy quantification is handled as follows:

〈〈x〉〉ϕV = ∃mx
1 . . .mx

k.

(

strat(x)∧ϕ

)
with:

strat(x) = AG
(∨

mi∈M
(mx

i ∧
∧
j �=i

¬mx
j)

)

out(V) = G

[∨
q∈Q

(
pq ∧

∨
m∈MAgt

(
pV

m ∧XpEdge(q,m)

))]
where pV

m
stands for

∧
a∈Agt

mV (a)
αi

when m = (mα1 , . . . , mαn).

We then have C, q |�
 if, and only if, 〈T , �〉, q |�
V∅ , where 〈T , �〉 is the computation tree of C with each state q being
labeled with a corresponding atomic proposition pq .

Theorem 29. Let C be a CGS = 〈Q , R, �, Agt, M, Edge〉 and let 〈T , �〉 be the computation tree of C such that � includes a label-
ing for propositions pq. Let
 be an SL formula and
V∅ be the QCTL* formula defined as above. Then C, q |�
 if, and only if,
〈T , �〉q |�
V∅ .

Satisfiability for turn-based case One easily sees that ATL∗
sc can be expressed in SL. It follows that satisfiability is undecidable

for SL. We thus restrict to our two decidable cases (turn-based games and bounded set of moves and players), and prove
decidability of satisfiability for SL in both cases.

Given an SL formula
 and a partial function V : Agt ⇁ Var, we define a QCTL* formula
̂V inductively as follows
(Boolean cases omitted):

〈̂〈x〉〉ϕV = ∃movx.

[
AG

(
EX1movx

)
∧ ϕ̂V

]
(̂a, x)ϕ

V = ϕ̂V [a �→x]

Note that in this case we require that every reachable state has a (unique) successor labeled with movx: indeed when one
quantifies over a strategy x, the agent(s) who will use this strategy are not known a priori. However, in the turn-based case,
a given strategy should be dedicated to a single agent: there is no natural way to share a strategy between two different
agents (or the other way around, any two strategies for two different agents can be seen as a single strategy), as they are
not playing in the same states. When the strategy x is assigned to some agent a, only the choices made in the a-states are
considered.

The temporal modalities are treated as follows:

ϕ̂ U ψ
V = A

[
G
(∧

a j∈Agt

(turn j ⇒XmovV (a j))

)
⇒ ϕ̂V U ψ̂ V

]
”Xϕ

V = A
[

G
(∧

a j∈Agt

(turn j ⇒XmovV (a j))

)
⇒Xϕ̂V

]
Finally, we let
̂ be the formula
tb ∧
̂V∅ . Then we have the following theorem:

Theorem 30. Let
 be an SL formula and
̃ be the QCTL* formula defined as above. Then
 is satisfiable in a TBGS if, and only if,
̃ is
satisfiable (in the tree semantics).

118 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
Satisfiability for bounded action alphabet Let M be {m1, . . . , mk} and Agt = {a1, . . . , an}. The reduction carried out for ATLsc

can also be adapted for SL in this case. First note that it is not necessary to consider partial moves in the construction:
in SL, temporal modalities are also interpreted under a complete context (i.e. where every agent has a strategy). This makes
the construction a bit simpler, in particular we will only consider atomic propositions after(m) for moves in Mn , thus we
will not use the formula
′

Edge any more. Given an SL formula
 and a partial function V : Agt ⇁ Var, we define the QCTL*
formula Ê
V inductively as follows:Ï〈〈x〉〉ϕV = ∃mx

1 . . .∃mx
k.
strat(x)∧ ÊϕV Ì(a, x)ϕ

V = ÊϕV [a �→x]

The temporal modalities are handled as follows:Ïϕ U ψ
V = A

[(
G

∧
m∈MAgt

(
pV

m ⇒X after(m)
))⇒

(ÊϕV U Êψ V
)]

ÈXϕ
C = A

[(
G

∧
m∈MAgt

(
pV

m ⇒X after(m)
))⇒

(
XÊϕV

)]
where pV

m
stands for

∧
a∈Agt

mV (a)
αi

when m = (mα1 , . . . , mαn).

Finally, let Ê
 be the formula
Edge ∧ Ê
V
∅

. We have:

Theorem 31. Let
 be an SL formula based on the set Agt = {a1, . . . , an}, let M = {m1, . . . , mk} be a finite set of moves, and Ê
 be the
QCTL* formula defined as above. Then
 is (Agt, M)-satisfiable if, and only if, Ê
 is satisfiable (in the tree semantics).

7. Conclusion

We developed a tight link between the extension of ATL with strategy contexts and the logic QCTL. We believe that our
logic ATLsc (and similar formalisms such as SL) is very well suited for reasoning about complex, multi-agent systems: it can
express useful properties in non-zero-sum games, and provide much better granularity than Nash equilibria and similar
solution concepts. But the technical formalism of games blurs the setting, and we believe that QCTL is the formalism of
choice for fully understanding ATLsc and related logics.

Our translation to QCTL provides us with a uniform presentation of verification algorithms for ATLsc—when such algo-
rithms exist. In view of this, we will keep on developing our knowledge and understanding of QCTL, for instance in terms
of the behavioral equivalence it characterizes.

We believe that ATLsc forms a powerful formalism for designing multi-agent systems. Our projects regarding the possible
continuations of this work include identifying fragments of ATLsc that preserve a good expressive power while enjoying
reasonably efficient model-checking algorithms. The two-alternation fragment of ATLsc (where alternation is understood as
the alternation depth of the corresponding QCTL or QCTL* formula) could be a good candidate: all the interesting formulas
listed in Section 3 have alternation two. Implementing a model-checker for QCTL (with bounded alternation) might be a
good option, given our rather simple translation from ATLsc .

Other possible directions of research include the use of randomized strategies in place of deterministic ones. Since a
stochastic version of ATLsc has already been shown undecidable [5], our aim here would be to stick to qualitative formulas
expressing sure, almost-sure or limit-sure winning, in the same way as [15] do for randomized ATL.

Acknowledgments

The research reported in this article has been partly sponsored by ERC Stg Grant EQualIS (308087) and FP7 FET project
Cassting (601148).

Appendix A. Proof of Theorem 9

Theorem 9. Given a formula ϕ ∈ ATL∗
sc and a coalition B ′ , there exists an ATLsc formula ϕ̂[∅,B ′] , involving only players in Agtϕ ∪ B ′ ,

such that for any strategy context f with dom(f) = B ′ , ϕ and ϕ̂[∅,B ′] are equivalent under context f .

This result is proved through the following two lemmas: Theorem 9 is a special case of the second result of Lemma 33
for B = dom(g) = ∅.

Lemma 32. Let C be a CGS with set of agents AgtC , ρ be a path and n be a position along ρ . For any state-formula ϕ ∈ ATL∗
sc , for any

strategy contexts f , g and g′ such that dom(g) ⊆ dom(g′), g′ = g (in other terms, g′ extends g), and dom(f) ∩ dom(g′) = ∅,
|dom(g)

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 119
for any coalitions B and B ′ s.t. dom(f) = (AgtC \ B) ∩ B ′ , and for any outcome π ∈ Out(ρ≤n, g′ ◦ f), we have:

C,π,n |�g ◦ f ϕ̂[B,B ′] ⇔ C,π,n |�g′ ◦ f ϕ̂[B,B ′].

Proof. We prove this result by structural induction, omitting the easy cases of atomic propositions and Boolean operators.

For the case where ϕ = 〈 ·A·〉ψ , assume C, π, n |�g ◦ f 〈̂·A·〉ψ [B,B ′]
. Then by definition, C, π, n |�g ◦ f 〈 ·A·〉[·B \ A·][·B ′ ∪ A·]×

ψ̂ [B\A,B ′∪A] . Thus there exists f A ∈ Strat(A) such that for any f ′ ∈ Strat((B \ A) ∪ (B ′ ∪ A)), it holds C, π ′, n |� f ′ ◦ f A ◦ g ◦ f

ψ̂ [B\A,B ′∪A] , where π ′ is the unique path in Out(ρ≤n, f ′ ◦ f A ◦ g ◦ f). Equivalently, with the above f A and for any f ′ ∈
Strat((B \ A) ∪ (B ′ ∪ A)), C, π ′, n |� f ′ ◦ f A ◦ g′ ◦ f ψ̂ [B\A,B ′∪A] because dom(g) ⊆ dom(g′) ⊆ dom(f) ⊆ dom(f ′) ∪ A. In the end,
we get C, π, n |�g′ ◦ f ϕ̂[B,B ′] , as expected. The converse implication is proven similarly, as well as the case where ϕ = 〈 ·A·〉ψ .

Now assume ϕ = (|A|)ψ . If C, π, n |�g ◦ f ϕ̂[B,B ′] , then C, π, n |�g ◦ f ψ̂ [B∪A,B ′] , so that C, π, n |�g′ ◦ f ψ̂ [B∪A,B ′] by induction
hypothesis (as ψ is a state-formula). Thus C, π, n |�g′ ◦ f ϕ̂[B,B ′] . The converse direction follows the same lines. The proof for
ϕ = (|A|)ψ is similar. �
Lemma 33. Let C be a CGS with set of agents AgtC , ρ be a path and n be a position along ρ , and f be a strategy context with dom(f) ⊆
Agt
 . Then for any ATL∗

sc formula ϕ , for any strategy context g s.t. dom(g) = AgtC � dom(f), for any outcome π ∈ Out(ρ≤n, g ◦ f),
and for any coalitions B and B ′ s.t. dom(f) = (AgtC \ B) ∩ B ′ , it holds: C, π, n |� f ϕ ⇔ C, π, n |�g ◦ f ϕ̂[B,B ′] . Moreover, if ϕ is a
state-formula, this result extends to any strategy context g s.t. dom(g) ∩ dom(f) = ∅.

Proof. We prove the result by induction on the structure of ϕ . The cases of atomic propositions and Boolean connectives
are straightforward.

• If ϕ = Xψ , then C, π, n |� f ϕ is equivalent to C, π, n + 1 |� f ψ . Applying the induction hypothesis, this is equivalent
to C, π, n + 1 |�g ◦ f ψ̂ [B,B ′] . This means that C, π, n |�g ◦ f Xψ̂ [B,B ′] , which in turn is equivalent to C, π, n |�g ◦ f 〈 ·∅·〉 X
ψ̂ [B,B ′] because Out(π≤n, g ◦ f) = {π}.

• If ϕ = ψ1 U ψ2: this case can be handled in a similar way as for the previous case, and we omit it.
• If ϕ = 〈 ·A·〉ψ : as this is a state formula, we prove the second, more general statement. Let g be a strategy context with

dom(g) ∩ dom(f) = ∅, and π be an outcome of g ◦ f from ρ≤n . Finally, fix B and B ′ such that dom(f) = (AgtC \ B) ∩ B ′ .

C,π,n |� f 〈·A·〉ψ
⇔ ∃ f A ∈ Strat(A). ∀π ′ ∈ Out(π≤n, f A ◦ f). C,π ′,n |� f A ◦ f ψ

⇔ ∃ f A ∈ Strat(A). ∀ f ′ ∈ Strat(AgtC � dom(f A ◦ f)).

∀π ′ ∈ Out(π≤n, f ′ ◦ f A ◦ f). C,π ′,n |� f A ◦ f ψ

⇔ ∃ f A ∈ Strat(A). ∀ f ′ ∈ Strat(AgtC � dom(f A ◦ f)).

∀π ′ ∈ Out(π≤n, f ′ ◦ f A ◦ f). C,π ′,n |� f ′ ◦ f A ◦ f ψ̂ [B\A,B ′∪A]

(by i.h., because dom(f A ◦ f) = (AgtC \ (B \ A)) ∩ (B ′ ∪ A))

⇔ ∃ f A ∈ Strat(A). ∀ f ′ ∈ Strat(AgtC � dom(f A ◦ f)).

∀π ′ ∈ Out(π≤n, f ′ ◦ f A ◦ f). C,π ′,n |� f ′ ◦ f A ◦ g ◦ f ψ̂ [B\A,B ′∪A]

(because f ′ ◦ f A ◦ g ◦ f = f ′ ◦ f A ◦ f)

⇔ ∃ f A ∈ Strat(A). ∀ f ′ ∈ Strat(AgtC � dom(f A ◦ f)).

∃π ′ ∈ Out(π≤n, f ′ ◦ f A ◦ f). C,π ′,n |� f ′ ◦ f A ◦ g ◦ f ψ̂ [B\A,B ′∪A]

(because |Out(π≤n, f ′ ◦ f A ◦ g ◦ f)| = 1)

⇔ ∃ f A ∈ Strat(A). C,π,n |� f A ◦ g ◦ f [·B \ A·][·B ′ ∪ A·]ψ̂ [B\A,B ′∪A]

(because dom(f ′) = (B \ A) ∪ (AgtC \ (B ′ ∪ A)))

⇔ C,π,n |�g ◦ f 〈·A·〉[·B \ A·][·B ′ ∪ A·]ψ̂ [B\A,B ′∪A]

⇔ C,π,n |�g ◦ f ϕ̂[B,B ′]

• If ϕ = 〈 ·A·〉ψ : a similar sequence of equivalences applies, but now dom(f ◦ f) = AgtC \ [(B ∩ A) ∪ (A \ B ′)].
A

120 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
• If ϕ = (|A|)ψ : again, we prove the second statement. Let g be a strategy context with dom(g) ∩ dom(f) = ∅, and π be
an outcome of g ◦ f after ρ≤n . Let B and B ′ such that dom(f) = (AgtC \ B) ∩ B ′ . We have:

C,π,n |� f (|A|)ψ ⇔ C,π,n |� f\A ψ

⇔ C,π,n |�g ◦ f\A ψ̂ [B∪A,B ′]

(by i.h., because dom(f\A) = (AgtC \ (B ∪ A)) ∩ B ′)

⇔ C,π,n |�g ◦ f |A ◦ f\A ψ̂ [B∪A,B ′] (by Lemma 32)

⇔ C,π,n |�g ◦ f ψ̂ [B∪A,B ′]

• If ϕ = (|A|)ψ , a similar sequence of equivalences applies. �
Appendix B. Proof of Theorem 28

Theorem 28. Satisfiability of ATLsc,0 (with memoryless-strategy quantification) is undecidable, even when restricting to turn-based
games or when the set of agents and actions is fixed.

Proof. We prove the result for infinite-state turn-based games, by adapting the corresponding proof for QCTL under the
structure semantics [17], which consists in encoding the problem of tiling a quadrant. The result for finite-state turn-based
games can be obtained using similar (but more involved) ideas, by encoding the problem of tiling all finite grids (see [24]
for the corresponding proof for QCTL).

We consider a finite set T of tiles, and two binary relations H and V indicating which tile(s) may appear on the right and
above (respectively) a given tile. Our proof consists in writing a formula that is satisfiable only on a grid-shaped (turn-based)
game structure representing a tiling of the quadrant (i.e., of N × N). The reduction involves two players: Player 1 controls
square states (which are labeled with �), while Player 2 controls circle states (labeled with ©). Each state of the grid is
intended to represent one cell of the quadrant to be tiled. For technical reasons, the reduction is not that simple, and our
game structure will have three kinds of states (see Fig. 3):

• the “main” states (controlled by Player 2), which form the grid. Each state in this main part has a right neighbor and
a top neighbor, which we assume we can identify: more precisely, we make use of two atomic propositions v1 and v2
which alternate along the horizontal lines of the grid. The right successor of a v1-state is labeled with v2, while its top
successor is labeled with v1;

• the “tile” states, labeled with one item of T (seen as atomic propositions). Each tile state only has outgoing transition(s)
to a tile state labeled with the same tile;

• the “choice” states, which appear between “main” states and “tile” states: there is one choice state associated with each
main state, and each choice state has a transition to each tile state. Choice states are controlled by Player 1.

Assuming that we have such a structure, a tiling of the grid corresponds to a memoryless strategy of Player 1 (who only
plays in the “choice” states). Once such a memoryless strategy for Player 1 has been selected, that it corresponds to a valid
tiling can be expressed easily: for instance, in any cell of the grid (assumed to be labeled with v1), there must exist a pair
of tiles (t1, t2) ∈ H such that v1 ∧〈 ·2·〉0 X Xt1 ∧〈 ·2·〉0 X (v2 ∧X X t2). This would be written as follows:

〈·1·〉0G

⎡⎢⎢⎢⎢⎣
v1 ⇒

∨
(t1,t2)∈H

〈·2·〉0 X Xt1 ∧〈·2·〉0 X (v2 ∧X X t2)

∧
v2 ⇒

∨
(t1,t2)∈H

〈·2·〉0 X Xt1 ∧〈·2·〉0 X (v1 ∧X X t2)

⎤⎥⎥⎥⎥⎦ .

The same can be imposed for vertical constraints, and for imposing a fairness constraint on the base line (under the same
memoryless strategy for Player 1).

It remains to build a formula characterizing an infinite grid. This requires a slight departure from the above description
of the grid: each main state will in fact be a gadget composed of four states, as depicted on Fig. B.4. The first state of each
gadget will give the opportunity to Player 1 to color the state with either α or β . This will be used to enforce “confluence”
of several transitions to the same state (which we need to express that the two successors of any cell of the grid share a
common successor).

We now start writing our formula, which we present as a conjunction of several subformulas. We require that the main
states be labeled with m, the choice states be labeled with c, and the tile states be labeled with the names of the tiles.
We let AP′ = {m, c} ∪ T and AP = AP′ ∪ {v1, v2, α, β, �, ©}. The first part of the formula reads as follows (where universal

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 121
Fig. B.4. The cell gadget.

Fig. B.5. Several cells forming (part of) a grid.

path quantification can be encoded, as long as the context is empty, using 〈 ·∅·〉0):

A(m W c) ∧ AG

⎡⎣ ∨
p∈AP′

p ∧
∧

p′∈AP′\{p}
¬ p′

⎤⎦∧AG(�⇔¬©)∧

AG

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c ⇒
(
�∧

∧
t∈T

〈·1·〉0 X t ∧A X

(∨
t∈T

AGt

))
∧

�⇒
(∧

p∈AP

(E X p ⇔〈·1·〉0 X p)

)
∧

©⇒
(∧

p∈AP

(E X p ⇔〈·2·〉0 X p)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.1)

This formula enforces that each state is labeled with exactly one proposition from AP′ . It also enforces that any path
will wander through the main part until it possibly goes to a choice state (this is expressed as A(m W c), where m W c
means Gm ∨m U c, and can be expressed as a negated-until formula). Finally, the second part of the formula enforces the
witnessing structures to be turn-based.

Now we have to impose that the m-part has the shape of a grid (Fig. B.5): intuitively, each cell has three successors:
one “to the right” and one “to the top” in the main part of the grid, and one c-state which we will use for associating a
tile with this cell. For technical reasons, the situation is not that simple, and each cell is actually represented by the gadget
depicted on Fig. B.4. Each state of the gadget is labeled with m. We constrain the form of the cells as follows:

AG

⎡⎢⎢⎢⎣
m ⇒((�∧¬α ∧¬β)∨(©∧¬(α ∧β)))

∧ (
(m ∧�)⇒(v1 ⇔¬ v2)

)∧((v1 ∨ v2)⇒(m ∧�)
)

∧
(m ∧�)⇒[

A X
(

m ∧©∧(α ∨β)∧ A X (m ∧©∧¬α ∧¬β)
)∧

〈·1·〉0 X α ∧〈·1·〉0 X β
]

⎤⎥⎥⎥⎦ (B.2)

This says that there are four types of states in each cell, and specifies the possible transitions within such cells. We now
express constraints on the transitions leaving a cell:

AG
[
(E X c ∨E X v1 ∨E X v2)⇒(m ∧©∧¬α ∧¬β)

]
∧

AG
[
(m ∧©∧¬α ∧¬β)⇒(E X c ∧E X v1 ∧E X v2 ∧A X (c ∨ v1 ∨ v2)

]
(B.3)

122 F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123
It remains to enforce that the successor of the α and β states are the same. This is obtained by the following formula:

AG
[
(m ∧�)⇒[·2·]0

(〈·∅·〉0 X3 (c ∨ v1)∨〈·∅·〉0 X3 (c ∨ v2)
)]

(B.4)

Indeed, assume that some cell has two different “final” states; then there would exist a strategy for Player 2 (consisting in
playing differently in those two final states) that would violate Formula (B.4). Hence each cell as a single final state.

We now impose that each cell in the main part has exactly two m-successors, and these two m-successors have an
m-successor in common. For the former property, Formula (B.3) already imposes that each cell has at least two m-successors
(one labeled with v1 and one with v2). We enforce that there cannot be more than two:

AG
[
(m ∧�)⇒[·1·]0

[(〈·2·〉0 X3 (v1 ∧Xα)∧〈·2·〉0 X3 (v2 ∧Xα)
)⇒

[·2·]0〈·∅·〉0 X3 Xα
]]

. (B.5)

Notice that [·2·]0〈 ·∅·〉0ϕ means that ϕ has to hold along any outcome of any memoryless strategy of Player 2. Assume that
a cell has three (or more) successor cells. Then at least one is labeled with v1 and at least one is labeled with v2. There is
a strategy for Player 1 to color one v1-successor cell and one v2-successor cell with α, and a third successor cell with β ,
thus violating Formula (B.5) (as Player 2 has a strategy to reach a successor cell colored with β).

For the latter property (the two successors have a common successor), we add the following formula (as well as its
v2-counterpart):

[·1·]0〈·∅·〉0G
[
(m ∧�∧ v1)⇒

([〈·2·〉0 X3 (v1 ∧[·2·]0 X3 Xα)
]⇒[〈·2·〉0 X3 (¬ v1 ∧X3(¬ v1 ∧Xα))

])]
(B.6)

In this formula, the initial (universal) quantification over strategies of Player 1 fixes a color for each cell. The formula claims
that whatever this choice, if we are in some v1-cell and can move to another v1-cell whose two successors have color α,
then also we can move to a v2-cell having one α successor (which we require to be a v2-cell). As this must hold for any
coloring, both successors of the original v1-cell share a common successor. Notice that this does not prevent the grid to be
collapsed: this would just indicate that there is a regular infinite tiling.

We conclude by requiring that the initial state be in a square state of a cell in the main part. �
References

[1] T. Ågotnes, V. Goranko, W. Jamroga, Alternating-time temporal logics with irrevocable strategies, in: Proceedings of the 11th Conference on Theoretical
Aspects of Rationality and Knowledge, TARK’07, 2007, pp. 15–24.

[2] T. Ågotnes, V. Goranko, W. Jamroga, Strategic commitment and release in logics for multi-agent systems (extended abstract), Technical Report 08-01,
Clausthal University of Technology, Germany, 2008.

[3] R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672–713.
[4] R. Alur, T.A. Henzinger, O. Kupferman, M.Y. Vardi, Alternating refinement relations, in: Proceedings of the 9th International Conference on Concurrency

Theory, CONCUR’98, in: LNCS, vol. 1466, Springer, 1998, pp. 163–178.
[5] Ch. Baier, T. Brázdil, M. Größer, A. Kučera, Stochastic game logic, in: Proceedings of the 4th International Conference on Quantitative Evaluation of

Systems, QEST’07, IEEE Comp. Soc. Press, 2007, pp. 227–236.
[6] Th. Brihaye, A. Da Costa, F. Laroussinie, N. Markey, ATL with strategy contexts and bounded memory, in: Proceedings of the International Symposium

Logical Foundations of Computer Science, LFCS’09, in: LNCS, vol. 5407, Springer, 2009, pp. 92–106.
[7] P. Čermák, A model checker for strategy logic, Master’s thesis, Dept. of Computing, Imperial College, London, UK, 2014.
[8] P. Čermák, A. Lomuscio, F. Mogavero, A. Murano, MCMAS-SLK: a model checker for the verification of strategy logic specifications, in: Proceedings of

the 26th International Conference on Computer Aided Verification, CAV’14, in: LNCS, vol. 8559, Springer, 2014, pp. 525–532.
[9] C. Chareton, J. Brunel, D. Chemouil, Towards an updatable strategy logic, in: Proceedings of the 1st International Workshop on Strategic Reasoning,

SR’13, in: Electronic Proceedings in Theoretical Computer Science, vol. 112, 2013, pp. 91–98.
[10] K. Chatterjee, T.A. Henzinger, M. Jurdziński, Games with secure equilibria, Theor. Comput. Sci. 365 (1–2) (2006) 67–82.
[11] K. Chatterjee, T.A. Henzinger, N. Piterman, Strategy logic, in: Proceedings of the 18th International Conference on Concurrency Theory, CONCUR’07, in:

LNCS, vol. 4703, Springer, 2007, pp. 59–73.
[12] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Proceedings of the 3rd Workshop

on Logics of Programs, LOP’81, in: LNCS, vol. 131, Springer, 1982, pp. 52–71.
[13] A. Da Costa, F. Laroussinie, N. Markey, ATL with strategy contexts: expressiveness and model checking, in: Proceedings of the 30th Conference on

Foundations of Software Technology and Theoretical Computer Science, FSTTCS’10, in: LIPIcs, vol. 8, Leibniz-Zentrum für Informatik, 2010, pp. 120–132.
[14] A. Da Costa, F. Laroussinie, N. Markey, Quantified CTL: expressiveness and model checking, in: Proceedings of the 23rd International Conference on

Concurrency Theory, CONCUR’12, in: LNCS, vol. 7454, Springer, 2012, pp. 177–192.
[15] L. de Alfaro, T.A. Henzinger, O. Kupferman, Concurrent reachability games, in: Proceedings of the 39th Annual Symposium on Foundations of Computer

Science, FOCS’98, IEEE Comp. Soc. Press, 1998, pp. 564–575.
[16] E.A. Emerson, J.Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time, in: Conference Record of the 10th ACM Symposium

on Principles of Programming Languages, POPL’83, ACM Press, 1983, pp. 127–140.
[17] T. French, Decidability of quantified propositional branching time logics, in: Proceedings of the 14th Australian Joint Conference on Artificial Intelli-

gence, AJCAI’01, in: LNCS, vol. 2256, Springer, 2001, pp. 165–176.
[18] D. Harel, Recurring dominoes: making the highly undecidable highly understandable, Ann. Discrete Math. 24 (1985) 51–72.
[19] A. Herzig, E. Lorini, D. Walther, Reasoning about actions meets strategic logics, in: Proceedings of the 4th Workshop on Logic, Rationality, and Interac-

tion, LORI’13, in: LNCS, vol. 8196, Springer, 2013, pp. 162–175.

http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41474A3037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41474A3037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41474A3038s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41474A3038s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41484B3032s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41484B563938s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib41484B563938s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4242474B3037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4242474B3037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib42444C4D3039s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib42444C4D3039s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4365723134s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib434C4D4D3134s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib434C4D4D3134s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4342433133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4342433133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib43484A3036s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib434850303762s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib434850303762s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib43453832s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib43453832s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib444C4D3130s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib444C4D3130s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib444C4D3132s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib444C4D3132s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib6441484B3938s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib6441484B3938s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib45483833s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib45483833s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4672653031s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4672653031s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4861723835s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib484C573133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib484C573133s1

F. Laroussinie, N. Markey / Information and Computation 245 (2015) 98–123 123
[20] C.-H. Huang, S. Schewe, F. Wang, Model checking iterated games, in: Proceedings of the 19th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, TACAS’13, in: LNCS, vol. 7795, Springer, 2013, pp. 154–168.

[21] O. Kupferman, Augmenting branching temporal logics with existential quantification over atomic propositions, in: Proceedings of the 7th International
Conference on Computer Aided Verification, CAV’95, in: LNCS, vol. 939, Springer, 1995, pp. 325–338.

[22] A. Kurucz, S5 × S5 × S5 lacks the finite model property, in: Proceedings of the 3rd Workshop on Advances in Modal Logic, AIML’00, World Scientific,
2002, pp. 321–327.

[23] A. Kurucz, F. Wolter, M. Zakharyaschev, D.M. Gabbay, Many-Dimensional Modal Logics: Theory and Applications, Elsevier Science, 2003.
[24] F. Laroussinie, N. Markey, Quantified CTL: expressiveness and complexity, Research Report LSV-13-07, Lab. Spécification & Vérification, ENS Cachan,

France, 2013.
[25] F. Laroussinie, N. Markey, Satisfiability of ATL with strategy contexts, in: Proceedings of the 4th International Symposium on Games, Automata, Logics

and Formal Verification, GandALF’13, in: Electronic Proceedings in Theoretical Computer Science, vol. 119, 2013, pp. 208–223.
[26] R. Maddux, The equational theory of ca3 is undecidable, J. Symb. Log. 45 (2) (1980) 311–316.
[27] F. Mogavero, A. Murano, G. Perelli, M.Y. Vardi, Reasoning about strategies: on the model-checking problem, Research report arXiv:1112.6275 [cs.LO],

2012.
[28] F. Mogavero, A. Murano, G. Perelli, M.Y. Vardi, What makes ATL* decidable? a decidable fragment of strategy logic, in: Proceedings of the 23rd Inter-

national Conference on Concurrency Theory, CONCUR’12, in: LNCS, vol. 7454, Springer, 2012, pp. 193–208.
[29] F. Mogavero, A. Murano, M.Y. Vardi, Reasoning about strategies, in: Proceedings of the 30th Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS’10, in: LIPIcs, vol. 8, Leibniz-Zentrum für Informatik, 2010, pp. 133–144.
[30] F. Moller, A. Rabinovich, On the expressive power of CTL*, in: Proceedings of the 14th Annual Symposium on Logic in Computer Science, LICS’99, IEEE

Comp. Soc. Press, 1999, pp. 360–368.
[31] J.F. Nash Jr., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA 36 (1) (1950) 48–49.
[32] J.-P. Queille, J. Sifakis, Specification and verification of concurrent systems in CESAR, in: Proceedings of the 5th International Symposium on Program-

ming, SOP’82, in: LNCS, vol. 137, Springer, 1982, pp. 337–351.
[33] S. Schmitz, Complexity hierarchies beyond elementary, Research report arXiv:1312.5686 [cs.CC], 2013.
[34] A.P. Sistla, Theoretical issues in the design and verification of distributed systems, PhD thesis, Harvard University, Cambridge, Massachussets, USA,

1983.
[35] N. Troquard, D. Walther, On satisfiability in ATL with strategy contexts, in: Proceedings of the 13th European Conference in Logics in Artificial Intelli-

gence, JELIA’12, in: LNCS, vol. 7519, Springer, 2012, pp. 398–410.
[36] W. van der Hoek, W. Jamroga, M. Wooldridge, A logic for strategic reasoning, in: Proceedings of the 4th International Joint Conference on Autonomous

Agents and Multiagent Systems, AAMAS’05, ACM Press, 2005, pp. 157–164.
[37] D. Walther, C. Lutz, F. Wolter, M. Wooldridge, ATL satisfiability is indeed EXPTIME-complete, J. Log. Comput. 16 (6) (2006) 765–787.
[38] D. Walther, W. van der Hoek, M. Wooldridge, Alternating-time temporal logic with explicit strategies, in: Proceedings of the 11th Conference on

Theoretical Aspects of Rationality and Knowledge, TARK’07, 2007, pp. 269–278.
[39] F. Wang, C.-H. Huang, F. Yu, A temporal logic for the interaction of strategies, in: Proceedings of the 22nd International Conference on Concurrency

Theory, CONCUR’11, in: LNCS, vol. 6901, Springer, 2011, pp. 466–481.

http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4853573133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4853573133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4B7570393561s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4B7570393561s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4B75723032s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4B75723032s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4B575A473033s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4C4D313362s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4C4D313362s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4C4D313361s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4C4D313361s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D61643830s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D5056313262s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D5056313262s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D5056313261s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D5056313261s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D56313061s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4D4D56313061s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib6C696373313939392D4D52s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib6C696373313939392D4D52s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib4E61733530s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5153383261s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5153383261s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5363683133s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5369733833s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5369733833s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib54573132s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib54573132s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib7664484A573035s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib7664484A573035s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib574C57573036s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib57766448573037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib57766448573037s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5748593131s1
http://refhub.elsevier.com/S0890-5401(15)00075-9/bib5748593131s1

	Augmenting ATL with strategy contexts
	1 Introduction
	2 Deﬁnitions
	2.1 Preliminaries
	2.2 Kripke structures
	2.3 Quantiﬁed CTL
	2.4 Concurrent game structures
	2.5 ATL with strategy contexts

	3 Expressiveness of ATLsc and ATLsc*
	3.1 Examples of formulas
	3.2 ATLsc vs ATLsc*
	3.3 Comparison with ATL

	4 Model checking
	4.1 From ATLsc* to QCTL*
	4.2 From QCTL* back to ATLsc*

	5 Satisﬁability
	5.1 General case
	5.2 Turn-based games
	5.3 Games with a bounded action alphabet

	6 Extensions of ATLsc
	6.1 ATLsc with memoryless strategy quantiﬁers
	6.2 Strategy logic

	7 Conclusion
	Acknowledgments
	Appendix A Proof of Theorem 9
	Appendix B Proof of Theorem 28
	References

