
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:34
https://doi.org/10.1007/s10458-020-09457-8

1 3

Logic‑based specification and verification of homogeneous
dynamic multi‑agent systems

Riccardo De Masellis1 · Valentin Goranko1,2

© The Author(s) 2020

Abstract
We develop a logic-based framework for formal specification and algorithmic verification
of homogeneous and dynamic concurrent multi-agent transition systems. Homogeneity
means that all agents have the same available actions at any given state and the actions
have the same effects regardless of which agents perform them. The state transitions are
therefore determined only by the vector of numbers of agents performing each action and
are specified symbolically, by means of conditions on these numbers definable in Pres-
burger arithmetic. The agents are divided into controllable (by the system supervisor/con-
troller) and uncontrollable, representing the environment or adversary. Dynamicity means
that the numbers of controllable and uncontrollable agents may vary throughout the system
evolution, possibly at every transition. As a language for formal specification we use a suit-
ably extended version of Alternating-time Temporal Logic, where one can specify proper-
ties of the type “a coalition of (at least) n controllable agents can ensure against (at most)
m uncontrollable agents that any possible evolution of the system satisfies a given objective
� ″, where � is specified again as a formula of that language and each of n and m is either
a fixed number or a variable that can be quantified over. We provide formal semantics to
our logic L

HDMAS
 and define normal form of its formulae. We then prove that every formula

in L
HDMAS

 is equivalent in the finite to one in a normal form and develop an algorithm
for global model checking of formulae in normal form in finite HDMAS models, which
invokes model checking truth of Presburger formulae. We establish worst case complexity
estimates for the model checking algorithm and illustrate it on a running example.

Keywords Dynamic multi-agent systems · Logics for multi-agent systems · Logics for
strategic reasoning · Model-checking

 * Riccardo De Masellis
 riccardo.demasellis@philosophy.su.se

 Valentin Goranko
 valentin.goranko@philosophy.su.se

1 Stockholm University, Stockholm, Sweden
2 University of Johannesburg (Visiting Professorship), Johannesburg, South Africa

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09457-8&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 2 of 34

1 Introduction

1.1 The framework

We consider discrete concurrent multi-agent transition systems, i.e. multi-agent systems
(MAS) in which the transitions take place in a discrete succession of steps, as a result of
a simultaneous (or, at least mutually independent) actions performed by all agents. Such
MAS are typically modelled as concurrent game models (cf [1] or [6]).

Here we focus on a special type of concurrent MAS, which are homogeneous and
dynamic, in a sense explained below.

The homogeneity means that all agents are essentially indistinguishable from each other,
as their possible behaviours are determined by the same protocol. In particular, they have
the same available actions at each state and the effect of these actions depends not on which
agents perform them, but only on how many agents perform each action. Thus, the transi-
tions in such systems are determined not by the specific action profiles, but only by the
vector of numbers of agents that perform each of the possible actions in these action pro-
files. The latter can be regarded as an abstraction of the action profile. The transitions are
specified symbolically, by means of conditions on these vectors, definable in Presburger
arithmetic.

Typical examples of such homogeneous systems include:

• voting procedures where the outcome only depends on how many agents vote for each
possible alternative, but not who votes for what. These also involve voting proce-
dures where anonymity is required and the identity of agents should not be inferred by
observing the system’s evolution [14, 18];

• sensor networks of a type where protocols only depend on how many sensors send any
given signal [21];

• computer network servers, the functioning of which only depends on how many cur-
rently connected users are performing any given action (e.g. uploading or downloading
data, sending printing jobs, communicating over common channels, etc);

• markets, the dynamics of which only depends on how many agents are selling and
how many are buying any given stock (assuming the transactions are per unit) but not
exactly who does what.

The dynamicity of the systems that we consider means that the set (hence, the number) of
agents being present (or, just acting) in the system may vary throughout the system evolu-
tion, possibly at every transition from a state to a state. All examples listed above naturally
have that dynamic feature. There are different ways to interpret such dynamicity. In the
extreme version, agents literally appear and disappear from the system, e.g. users joining
and leaving an open network. A less radical interpretation is where the agents are in the
system all the time but may become active and inactive from time to time, e.g. voters,
or members of a committee, may abstain from voting in one election or decision making
round, and then become active again in the next one. A more refined version is where at
every state of the system performance each agent decides to act (i.e. take one of the avail-
able actions) or pass/idle, formally by performing the ‘pass/idle’ action. Technically, all
these interpretations seem to be reducible to the latter one. However, the way we model
the dynamicity here is by assuming that there is an unbounded, and possibly infinite set
of ‘potentially existing’ agents, but that only finitely many of them are ‘actually existing/

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 3 of 34 34

present’ at each stage of the evolution of the system. Therefore, at each transition round,
only finitely many currently existing agents can possibly perform an action, and each of
these may also choose not to perform any action (i.e., remain inactive in that round). How-
ever, the currently inactive (or, ‘non-existing’) agents do not have any individual influ-
ence on the transitions. Thus, the number of currently active agents, who determine the
next transition, can change from any instant to the next one, while always remaining finite.
We note, however, the difference between dynamic systems, in the sense described above,
and simply parametric systems, where the number of agents is taken as a parameter but
remains fixed during the whole evolution of the system. In that sense, the present study
applies both to parametric and truly dynamic systems.

In this work we develop a logic-based framework for formal specification and algorith-
mic verification of the behaviour of homogeneous dynamic multi-agent systems (hdmas)
of the type described above. We focus, in particular, on scenarios where the agents are
divided into controllable (by the system supervisor or controller) and uncontrollable, rep-
resenting the environment or an adversary. Both numbers, of controllable and uncontrolla-
ble agents, may be fixed or varying throughout the system evolution, possibly at every tran-
sition. The controllable agents are assumed to act according to a joint strategy prescribed
by the supervisor/controller, with the objective to ensure the desired behaviour of the sys-
tem (e.g. reaching an outcome in the voting procedure, or keeping the demand and supply
of a given stock within desired bounds, or ensuring that the server will not be deadlocked
by a malicious attack of adversary users, etc).

As a logical language for formal specification we introduce a suitably extended version,
L

HDMAS
 , of the alternating time temporal logic (ATL) [1]. In L

HDMAS
 one can specify prop-

erties of the type “A team of (at least) n controllable agents can ensure, against at most
m active uncontrollable agents, that any possible evolution of the system satisfies a given
objective � ″, where the objective � is specified again as a formula of that language, and
each of n and m is either a fixed number, a parameter, or a variable that can be quantified
over.

To summarise the comparison: in the standard concurrent game models of MAS agents
are explicitly distinguished and in the logic ATL they are explicitly referred to by their
names (individually, or in coalitions). In the HDMAS framework developed here, the only
distinction between the agents is whether they are controllable or not, and in the language
both are referred to only by numbers.

Here is an indicative, yet generic scenario, where our framework is readily applicable
for both modelling and verification.

 A military fortress has k protected points of entry: A1,A2 …Ak , with k > 2 . The com-
mander of the fortress has C soldiers, hereafter called ‘defenders’, that can be deployed to
protect these points of entry against an invading army. For each Ai , a number ci of defend-
ers, with mi ≤ ci ≤ Mi , can be deployed against ni ‘invaders’. If ci = Mi , then the defenders
successfully protect Ai against any number of invaders; if ci ≠ Mi , then entry point Ai is lost
when ni > mi . Moreover, both the defender and the invading commander may receive rein-
forcements and re-deploy their soldiers among the entry points once a day (say, at noon),
whereas the attacks can only take place at night. However, neither of them can observe the
precise distribution of the soldiers of the other party, but they can observe which points of
entry are currently “outpowered” by not being sufficiently protected by defenders. It is also
known that the enemy must outpower more than 2 points of entry at the same time in order
to successfully invade the fortress.

The framework hdmas that we develop here will enable modelling the scenario above
as well as specifying and algorithmically verifying claims of the kind: “The fortress

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 4 of 34

commander has a strategy to protect the fortress for at least d days, for a given d (or, for-
ever) with C defenders against at most V (or, against any number of) invaders”.

1.2 Structure and content of the paper

In Sect. 2 we introduce the hdmas framework, provide a running example, and prove some
technical results needed to introduce counting abstractions of joint actions and strategy
profiles. Using these counting abstractions, in Sect. 3 we provide formal semantics in
hdmas models for the logic L

HDMAS
 which we introduce there. We then define normal form

of formulae of L
HDMAS

 and the fragment L��
HDMAS

 , consisting of formulae in normal form.
The key technical result obtained in that section is that every formula in L

HDMAS
 is equiva-

lent on finite models to one in L��
HDMAS

 . In Sect. 4 we develop an algorithm for global model
checking of formulae in L��

HDMAS
 in finite hdmas models, which invokes model checking

truth of their respective translations into Presburger formulae, and illustrate that algorithm
on running examples. In Sect. 5 we establish some refined complexity estimates for the
model checking algorithm, using recent complexity results obtained in [11] for fragments
of Presburger arithmetic. We end with some concluding remarks on extensions and possi-
ble applications of our work in Sect. 6.

1.3 Related work

A more closely related framework to ours is Open Multi-Agent Systems (OMAS) [17].
hdmas shares with it the characteristic ’dynamic’ feature of agents, which can therefore
leave and join the system at runtime. However hdmas differs from OMAS in several essen-
tial aspects. First, although any finite number of agents can perform actions at each step,
the evolution of OMAS depends only on the projection of those on the set of actions or, in
other words, whether any action is performed by at least one agent. Thus, hdmas makes use
of the full expressivity of Presburger arithmetic. Next, the verification formalism of OMAS
is a temporal epistemic logic with (universally quantified) indices spanning over agents,
while ours includes strategic operators. Lastly, decidability of model-checking Open Multi-
agent Systems is obtained by restricting the semantics of the models and by using cutoff
techniques whereas we ultimately invoke model-checking truth of Preseburger formulas.

We are aware of other threads of, more or less essentially, related work, however none
of them considers formal models and verification methods for the type of homogeneous
and dynamic multi-agent scenarios studied here. Therefore, we only mention them briefly
as in all frameworks mentioned below, the number of agents is fixed along system exe-
cutions, possibly as a parameter and the formal specification languages do not explicitly
allow quantification over the number of agents.

• Counting abstraction for verification of parametric systems has been studied in [10]
and [4], where techniques based on Petri nets or Vector Addition Systems with States
(VASS) are used to obtain decidability of model checking.

• The work in [19] is closer to ours, as strategic reasoning is considered but only for a
restricted set of properties such as reachability, coverability and deadlock avoidance.
Also, assumptions on the system evolutions are made and, in particular, monotonicity
with respect to a well-quasi-ordering.

• In [15] temporal epistemic properties of parametric interpreted systems are checked
irrespective of the number of agents by using cutoff techniques.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 5 of 34 34

• Modular Interpreted Systems [13] is a MAS framework where a decoupling between
local agents and global system description is achieved, thus possibly amenable to
model dynamical MAS frameworks.

• Homogeneous MAS with transitions determined by the number of acting agents have
been introduced in [18].

• Population protocols [2] are parametric systems of homogeneous agents, and decidabil-
ity of model checking against probabilistic linear-time specification is studied in [9].

• In [7], instead of verifying MAS with unknown number of agents, the authors propose
a technique to find the minimal number of agents which, once deployed and suitably
orchestrated, can carry out a manufacturing task.

• Lastly, as noted above, our logic of specification builds on the Alternating time tempo-
ral logic ATL ([1]) and extends the model checking algorithm for ATL to hdmas.

2 Preliminaries and modelling framework

We start by introducing the basic ingredients of our framework. We assume a hereafter fixed
(finite, or possibly countably infinite) universe of potential agents Ag = {ag1, ag2,…} ,
but only finitely many of them will be assumed currently present, or ‘currently existing’,
at any time instant or stage of the evolution of the system. Alternatively, the universe of
agents can be assumed always finite but unbounded.

Next, we consider a finite set of action names Act = {act1,… , actn} . We extend this
set with a specific ‘idle’ action � and define Act+ = Act ∪ {�} . We also fix a set of distinct
variables X = {x1,… , xn} extended to X+ = X ∪ {x

�
} , called action counters, associated

to Act and Act+ respectively. Formally, we relate these by a mapping � ∶ Act+ → X+ such
that for each i ∈ {1,… , n} , �(acti) = xi and �(�) = x

�
 . Hereafter, Act , Act+ , X , X+ , and �

are assumed fixed, as above.
An action profile over a given set of actions Act� ⊆ Act+ is defined as a function

𝗉 ∶ Ag → Act� , assigning an action from Act′ to each agent in Ag . More generally, for any
subset of agents A ⊆ Ag , a joint action of A over a set of actions Act� ⊆ Act+ is a function
�A assigning an action from Act′ to each agent in A.

Given a function f, we will write: dom(f) for the domain of f; f |Z for the restriction of
f to a domain Z ⊆ dom(f) ; and f[Z] for the image of Z under f. For technical purposes, we
also consider a (unique) function f∅ with an empty domain.

To express relevant conditions on the number of agents performing actions in X , we
make use of Presburger arithmetic (the first-order theory of natural numbers with addition
and =). This is a fairly expressive, yet decidable theory, which makes it very natural and
suitable for many computational tasks related to verification of various discrete infinite-
state systems (see e.g. [12] for an introduction.)

Definition 1 (Guards) A (transition) guard g is an open (quantifier-free)1 formula of
Presburger arithmetic ��� with predicates = and < over variables from the set of action
counters X . We denote by G the set of all guards, by Var(g) the set of variables occurring

1 The restriction to quantifier-free guards is only partly essential for the technical results, given the quanti-
fier elimination property of Presburger arithmetic. We make that restriction mainly to keep the presentation
simpler.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 6 of 34

in a guard g ∈ G , and we use the following standard abbreviations in Presburger formulas:
n ∶= 1 +…+ 1 (n times 1) and nx ∶= x +⋯ + x (n times x) for any n ∈ ℕ and x ∈ X+.

Definition 2 An action distribution is any function ��� ∶ X� → ℕ , where X�
⊆ X+ . The

domain X′ is denoted, as usual, by dom(���) . Intuitively, an action distribution assigns for
every action act , through the value of the action counter �(act) , the number of agents who
are assigned the action act.

Given an action distribution ��� we define:

• ��� ⊧ g , for a given guard g , if ��� satisfies g with the expected standard semantics of
��� , namely:

 ��� ⊧ x1 = x2 if �(x1) = �(x2) and ��� ⊧ x1 < x2 if �(x1) = �(x2);
• ���(���) ∶=

∑
x∈dom(���) ���(x);

• H|m ∶= {��� ∣ ���(���) = m} is the set of action distributions where exactly m agents
perform actions;

• H ∶=
⋃

m∈ℕ H�m is the set of all action distributions.

We also define the mapping ⊕ ∶ H × H ⤏ H , which, given two action distributions ���1
and ���2 , is defined if dom(���1) = dom(���2) ∶= Z and returns a new action distribu-
tion, ���1 ⊕ ���2 , with domain Z, defined component-wise as the sum of ���1 and ���2 , i.e.
���1 ⊕ ���2(z) = ���1(z) + ���2(z) for each z ∈ Z.

Remark 1 Note that guards are defined over the set of variables X , while the domain of
action distributions can also include x

�
 . It follows that, for any action distribution ��� , the

value ���(x
�
) does not have any influence on the satisfiability of a guard. More generally,

for every ��� ∈ H and g ∈ G we have ��� ⊧ g iff ���|Var(g) ⊧ g.

We now relate action profiles with action distributions. Every action profile is associ-
ated with the action distribution that counts, for each action, the number of agents per-
forming it. In that sense, action distributions are counting abstractions for action profiles.
The formal definition follows, where we denote the set of all action profiles over Act by �
and define the inverse of an action profile � as the function 𝗉−1 ∶ Act → ℘(Ag) such that
�−1(act) = {ag ∈ Ag ∣ �(ag) = act}.

Definition 3 The action profile abstraction is the function � ∶ 𝖯 → H where
�(�)(�(act)) = |�−1(act)| for all � ∈ � and act ∈ Act+.

The function � partitions the set � into equivalence classes of action profiles having the
same abstraction that is, two action profiles �1 and �2 belongs to the same equivalence class
iff �(�1) = �(�2).

We now introduce the abstract models of our framework.

Definition 4 A homogeneous dynamic MAS (hdmas) is a structure
M = ⟨Ag,Act+, S, d, �,AP, �⟩ where:

• Ag = {ag1, ag2,…} is the countable set of agents.
• Act+ is the set of action names;

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 7 of 34 34

• S is a set of states;2
• d ∶ S → ℘(Act+) is the action availability function, that assigns to every state s the set

of actions d(s) available (to all agents) at s , and is such that � ∈ d(s);
• � ∶ S × S → G is the transitions guard function, labelling possible transitions between

states with guards such that:

• Var(𝛿(s, s�)) ⊆ 𝜇[d(s)] for each s, s� ∈ S (the guards at each state only involve action
counters corresponding to actions available at that state),

• and, for each s ∈ S and for each ��� ∈ H|
�[d(s)] , there exists a unique s� ∈ S such that

��� ⊧ 𝛿(s, s�) (every possible action distribution over the set of actions available at
the current state determines a unique transition).

• AP = {p1, p2,…} is a finite set of atomic propositions;
• � ∶ S → ℘(AP) is a labelling function, assigning to any state s the set of atomic propo-

sitions that are true at s.

Example 1 The fortress example presented in the introduction, with k = 3 entry points,
can be modeled as a hdmas as follows. The set S contain two states only, displayed
as circles in Fig. 1: s1 and s2 represents respectively the fortress being under control of
the defenders or being captured. Next, we have two actions for each entry point Ai : one
modelling the defensive action acti , and the other the attacking action acti for Ai ; there-
fore Act+ = {act1, act1, act2, act2, act3, act3, �} , with �(acti) = xi and �(acti) = xi for
i ∈ {1, 2, 3} . All of them are allowed in s1 and none of them in s2 , formally: d(s1) = Act+
and d(s2) = {�} . The guards g1, g2 are listed next to the picture, and an arrow is drawn
from si to sj and labeled with gk iff �(si, sj) = gk . Formula g1 guards transition from s1 to
s2 and therefore it defines when the fortress is captured. This happens when, for each of
the entry point Ai with i ∈ {1, 2, 3} , one of two conditions hold: 1) the number of defend-
ers xi is less than mi or 2) it is less than Mi and also less than the number of attackers xi .
If this is not the case, the defenders hold the fortress (loop in s1) but once is conquered, it
remains so regardless of the actions performed (g2 is a tautology). The label of each state,
as defined by the labelling function, is given next to it. We only have one atomic proposi-
tion, captured , false in s1 and true in s2 , therefore �(s1) = � and �(s2) = {captured}.

Example 2 A more abstract example is given in Fig. 2, which will be used to illus-
trate some technical points and the model checking algorithm later. The set of
actions is Act = {act1, act2, act3} and the action availability function is defined
by d(s1) = d(s3) = d(s4) = Act+ , d(s2) = {act1, act3, �} , d(s5) = {act2, act3, �}

s1

{}

s2

{captured}

¬g1
g1 g2 g1 :=

i{1,2,3}
xi < mi ∨ (xi < Mi ∧ xi < xi)

g2 := x1 = x1

Fig. 1 The fortress example modelled as a hdmas

2 Note that S is not required in general to be finite, but some of our technical results will assume finiteness.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 8 of 34

and d(s6) = {act1, �} . Lastly, the labelling function is defined as: �(s1) = � ,
�(s2) = �(s3) = �(s4) = {p} and �(s5) = �(s6) = {q}.

The restriction on � ensures that for any number of agents and their action profile of
available actions, the next state is uniquely defined. Thus, the dynamics of the system in
terms of possible state transitions is fully determined symbolically by the transitions guard
function � , as defined formally below.

Definition 5 Given a hdmas M , a transition in M is a triple (s, �, s�) , where s, s� ∈ S and
� ∈ � , such that:

1. each agent ag performs an available action: �(ag) ∈ d(s);
2. the abstraction �(�) satisfies the (unique) guard that labels the transition from s to s′ ,

i.e., 𝛼(�) ⊧ 𝛿(s, s�).

Since transitions only depend on the abstractions of the action profiles, that is, on action
distributions, it is immediate to see that actions profiles with the same abstraction, applied
at the same state, lead to the same successor state. Formally, the following holds.

Lemma 1 Given a hdmas M as above, for every s, s� ∈ S,and every �1, �2 ∈ � , if
�(�1) = �(�2) , then (s, �1, s�) is a transition in M iff (s, �2, s�) is a transition in M.

Lemma 1 enables us to define the transition function3 of M directly on action distribu-
tions, rather than on action profiles.

Definition 6 Let M be a hdmas. The transition function of M is the partial mapping
� ∶ S × H ⤏ S defined as follows. For each s ∈ S and ��� ∈ H , the outcome state �(s, ���)
of ��� at s is defined and equal to s� ∈ S iff there exists � ∈ � such that (s, �, s�) is a transi-
tion and �(�) = ��� ; otherwise �(s, ���) is undefined.

s1

{}

s2

{p}

s3

{p}

s4

{p}

s5

{q}

s6

{q}

¬g1 ∧ ¬g2 g1

g2 ¬g3

g3

¬g6
g6

¬g4 g4

¬g7
g7

g5

g1 := (x1 ≥ 2x2) ∧ (x3 ≤ 3)

g2 := (x1 + x2 + x3 ≤ 10) ∧ (x3 > 3)

g3 := (x1 > 5) ∧ (x3 > x1)
g4 := x1 > 5 ∧ (3x2 < x1 + 2x3)
g5 := x1 = x1;
g6 := x1 + 2x2 ≥ x3
g7 := x2 = x3;

Fig. 2 An abstract example of a hdmas

3 We remark that the assumption of determinism of hdmas is common in the study of multi-agent systems,
because non-determinism can be settled easily by the actions of a fictitious new agent (Nature). Intuitively,
one can transform a nondeterministic hdmas to a deterministic one by adding actions that resolve the non-
determinism. Then specifications can be translated from the latter to the former by adding controllable or
non-controllable agents that could execute these actions.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 9 of 34 34

Infinite sequences of successor states will be called ‘plays’. Formally, a play is
a sequence � = s0, s1,… in S� , such that for every stage (of the play) i ∈ ℕ , there is
��� i ∈ H such that �(si, ��� i) = si+1 . We denote by �[i] the state of the ith stage of the
play, for each i ∈ ℕ.

Since transitions from a given state s are defined only for action profiles that assigns
to all agents only actions that are available at s , we call these available action profiles
in s . We formally define for each state s ∈ S the set of available action profiles in s as

More generally, for each set of agents A ⊆ Ag we define likewise the set of joint actions
for A available in s as

where �A denotes (with a mild abuse of notation) the set of all possible joint actions for A.
Next, we define a positional strategy for a given coalition of agents A as a mapping

that assigns to each state s an available joint action for A.

Definition 7 Let A be a (possibly empty) set of agents and M be a hdmas with a state
space S . A joint (positional) strategy for the coalition A is a function �A ∶ S → 𝖯|A such
that �A(s) ∈ �s|A for each s ∈ S . The empty coalition has only one joint strategy �∅ , assign-
ing the empty joint action at every state.

Hereafter we assume that at every stage of the play representing the evolution of the
system, the set of all currently present agents is partitioned into two: the set of control-
lable agents, denoted by C , and the set of uncontrollable agents, denoted by N . Neither
of these subsets (and their sizes) is fixed initially, nor during the play, but each of them
can vary at each transition round.

Definition 8 Let M be a hdmas, s ∈ S be a state in it, C,N ⊆ Ag be the respective current
sets of controllable and uncontrollable agents, and let �

C
∈ �s|C . The outcome set of �

C
 at

s is defined as follows:

Respectively, given a joint strategy �
C
 for C we define the set of outcome plays of �

C
 at s

(against N) as

The abstraction � , although defined on actions profiles, is readily extended over joint
actions and naturally specifies an equivalence relation between them: two joint actions
are equivalent whenever their abstraction is the same. Likewise for joint strategies, as
the next definition formalizes.

Definition 9 Let M be a hdmas, C1,C2 ⊆ Ag and �
C1
, �

C2
 be respective joint actions for

C1 and C2 . We say that �
C1

 and �
C2

 are equivalent, denoted �
C1

≡ �
C2

 , if �(�
C1
) = �(�

C2
).

�s = {� ∈ � ∣ �(ag) ∈ d(s) for each ag ∈ Ag}.

�s|A = {�A ∈ �A ∣ �A(ag) ∈ d(s) for each ag ∈ A}.

out(s, �
C
,N) ∶=

{
s� ∈ S ∣ s� = �(s, �(�)) for some � ∈ �s|(C∪N)

such that �|
C
= �

C

}
.

out(s, �
C
,N) ∶=

{
� = s0, s1,… ∣ s0 = s and for all i ∈ ℕ there exists �i ∈ �si |(C∪N)
such that �i|C = �

C
(si) and �(si, �(�i)) = si+1

}
.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 10 of 34

Likewise, we say that joint strategies �
C1

 and �
C2

 are equivalent, denoted �
C1

≡ �
C2

 if
they prescribe equivalent joint actions for C1 and C2 at every state.

Note that if �
C1

≡ �
C2

 then |C1| = |C2| and �
C1

 and �
C2

 produce the same outcome sets.

Lemma 2 Let M be a hdmas and C1,C2,N1,N2 ⊆ Ag be such that, |C1| = |C2|,
|N1| = |N2|, C1 ∩ N1 = �, and C2 ∩ N2 = �. Then:

1. For any s ∈ S, if �
C1

 and �
C2

 are two equivalent joint actions available at s , respectively
for C1 and C2, then out(s, �

C1
,N1) = out(s, �

C2
,N2).

2. If �
C1

 and �
C2

 are two equivalent joint strategies in M, respectively for C1 and C2, then
for each s ∈ S, out(s, �

C1
,N1) = out(s, �

C2
,N2).

Proof (1) Let s� ∈ out(s, �
C1
,N1) . Then s� = �(s, �(�1)) for some �1 ∈ �s|(C1∪N1)

 such that
�1|C1

= �
C1

 . Fix a bijection h ∶ C2 → C1 . It can be extended to a bijection f ∶ Ag → Ag ,
such that f [N2] = N1.

Define �2 ∈ �s|(C2∪N2)
 so that �2(ag) ∶= �1(f (ag)) . Clearly, �(�2) = �(�1) . Also

�2|C2
= �1|f [C2]

 as f [C2] = C1 , hence �(�2|C2
) = �(�1|C1

) = �(�
C1
) = �(�

C2
) (since

�
C1

≡ �
C2

).

Therefore, we obtain that s� = �(s, �(�2)) ∈ out(s, �
C2
,N2).

Thus, out(s, �
C1
,N1) ⊆ out(s, �

C2
,N2).

The proof of the converse inclusion is completely symmetric.
(2) The claim follows easily by using (1). Indeed, every play � = s0, s1,… in

out(s, �
C1
,N1) can be generated step-by-step as a play in out(s, �

C2
,N2) , by using the equiv-

alence of �
C1

 and �
C2

 and applying (1) at every step of the construction. We leave out the
routine details.

Thus, out(s, 𝜎
C1
,N1) ⊆ out(s, 𝜎

C2
,N2) . Again, the converse inclusion is completely sym-

metric. ◻

We now prove that, as expected, the outcome sets from joint actions and strategies do
not depend on the actual sets of controllable and uncontrollable agents, but only on their
sizes.

Lemma 3 Let M be a hdmas, s ∈ S, with C,N ⊆ Ag be the respective current sets of
controllable and uncontrollable agents (hence, assumed disjoint), and let �

C
∈ �s|C be an

available joint action for C at s. Then for every C′
⊆ Ag such that |C�| = |C| there exists

an available joint action �
C
′ for C′ at s, such that for every N′

⊆ Ag where C� ∩ N
� = �, if

|N�| = |N|, then out(s, �
C
� ,N�) = out(s, �

C
,N).

Proof Fix any C
′
⊆ Ag such that |C�| = |C| . Take a bijection h ∶ C

� → C . It
transforms canonically the joint action �

C
 to a joint action �

C
′ available at s ,

defined by �
C
� (ag) ∶= �

C
(h(ag)) . Clearly, �(�

C
�) = �(�

C
) . Hence, by Lemma 2,

out(s, �
C
� ,N�) = out(s, �

C
,N) for every N′

⊆ Ag such that C� ∩ N
� = � and |N�| = |N| .

 ◻

Lemma 3 easily extends to joint strategies, as follows.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 11 of 34 34

Lemma 4 Let M be a hdmas, s ∈ S, with C,N ⊆ Ag be the respective current (disjoint)
sets of controllable and uncontrollable agents, and let �

C
 be a joint strategy for C. Then for

every C′
⊆ Ag with |C�| = |C| there exists a joint strategy �

C
′ such that for every N′

⊆ Ag
where C� ∩ N

� = �, if |N�| = |N|, then out(s, �
C
� ,N�) = out(s, �

C
,N).

Proof The argument is similar to the previous proof.
Fix any C′

⊆ Ag such that |C�| = |C| . Take a bijection h ∶ C
� → C . It transforms canoni-

cally the joint strategy �
C
 to a joint strategy �

C
′ , defined by �

C
� (s)(ag) ∶= �

C
(s)(h(ag)).

Clearly, �(�
C
� (s)) = �(�

C
(s)) for every state s , hence �

C
≡ �

C
′ . Therefore, by Lemma 2,

out(s, �
C
� ,N�) = out(s, �

C
,N) for every N′

⊆ Ag such that C� ∩ N
� = � and |N�| = |N| .

 ◻

Lemmas 3 and 4 essentially say that the strategic abilities in a hdmas are determined not by
the concrete sets of controllable and uncontrollable agents, but only by their respective sizes.
This justifies abstracting the notions of coalitional actions and strategies in terms of action
profile abstractions, to be used thereafter in our semantics and verification procedures.

Definition 10 Let M be a hdmas and C,N ∈ ℕ.
1.1. An abstract joint action for a coalition of C agents at state s ∈ S is an action

distribution ���C ∈ H|C such that dom(���C) = �[d(s)] (recall notation from Definition 2).
Thus, an abstract joint action for a given coalition at state s prescribes for each action

available at s how many agents from the coalition take that action.
1.2. The outcome set of states of the abstract joint action ���C of C controllable

agents against N uncontrollable agents at s is the set of states

2.1. An abstract (positional) joint strategy for a coalition of C agents is a func-
tion �C ∶ S → H|C such that for each s ∈ S , �C(s) is an abstract joint action such that
dom(�C(s)) = �[d(s)].

2.2. The outcome set of plays of an abstract joint strategy �C of C controllable
agents against N uncontrollable agents is the set of plays

3 Logic for specification and verification of HDMAS

We now introduce a logic L
HDMAS

 for specifying and verifying properties of hdmas, based
on the Alternating-time Temporal Logic ATL. It features a strategic operator that expresses
the ability of a set of controllable agents to guarantee the satisfaction a temporal objec-
tive, regardless of the actions taken by the set of uncontrollable agents. As shown in the
previous section, such ability only depends on the sizes of these sets. Therefore, our stra-
tegic operator ⟨⟨∗, ∗⟩⟩ takes two arguments: the first one represent the number of control-
lable agents and the second—the number of uncontrollable agents currently present in the

out(s, ���C,N) ∶=
{
s� ∈ S ∣ s� = 𝛥(s, ���C ⊕ ���N) for some ���N ∈ H|N

such that dom(���N) = 𝜇[d(s)]
}
.

out(s, 𝜌C,N) ∶=
{
𝜋 = s0, s1,… ∣ s0 = s and for all i ∈ ℕ there is ��� i ∈ H|N

such that dom(��� i) = 𝜇[d(s)] and 𝛥(si, 𝜌C(si)⊕ ��� i) = si+1
}
.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 12 of 34

system. Intuitively, a formula of the kind ⟨⟨C,N⟩⟩ � , with C,N ∈ ℕ and � being a (path)
formula of L

HDMAS
 specifies the property:

A coalition of C controllable agents has a joint strategy to guarantee satisfaction of the
objective � against N uncontrollable agents on every play consistent with that strategy.

Each of the arguments C and N may be a concrete number, a parameter, or a variable
that can be quantified over. Parameters are free variables that cannot be quantified over,
which gives extra expressiveness of the language, because some syntactic restrictions will
be imposed on the variables.

3.1 Formal syntax and semantics

We now fix a set of atomic propositions � = {p1, p2,… .} , a set of two special variables
Y = {y1, y2} , ranging over ℕ , which we call agent counters. These will represent the num-
bers of controllable and uncontrollable agents respectively, and can be quantified over. We
also fix a set of agent counting parameters4 Z = {z1, z2,…} , again ranging over ℕ , and
define the set of terms5 as T = Y ∪ Z ∪ ℕ . These will be used as arguments of the strategic
operators in the logical language defined below.

Definition 11 The logic L
HDMAS

 has two sorts of formulae, defined by mutual induction
with the following grammars, where free (and bound) occurrences of variables are defined
like in first-order logic (FOL):

Path formulae: �∶∶ = �� ∣ �� ∣ � ��,
where �,� are state formulae.
State formulae:
𝜑∶∶ = ⊤ ∣ p ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ (𝜑 ∨ 𝜑) ∣ ⟨⟨t1, t2⟩⟩ 𝜒 ∣ ∀y𝜑 ∣ ∃y𝜑

where p ∈ � , t1 ∈ T⧵{y2} , t2 ∈ T⧵{y1} , y ∈ Y , and � is a path formula.
The cases of ∀y� and ∃y� are subject to the following syntactic constraint: all free

occurrences of y in � must have a positive polarity, viz. must be in the scope of an even
number of negations.

The propositional connectives ⊥,→,↔ are defined as usual. Also, we define
�𝜓 ∶= ⊤�𝜓.

Remark 2 Some remarks on the formulae in L
HDMAS

 are in order:

1. Note that y1 can only occur in the first position of ⟨⟨t1, t2⟩⟩ and y2 can only occur in the
second position. However, the same parameter z may occur in both positions and this
is one reason to allow the use of parameters, as the model checking algorithm will treat
them uniformly.

2. The restriction for quantification only over positive free occurrences of variables is
imposed for technical reasons. By using the duality of ∀ and ∃ , that restriction can read-
ily be relaxed to the requirement all free occurrences of the quantified variable to be of
the same polarity (all positive, or all negative). Further relaxation, allowing both positive
and negative occurrences under some restrictions, is possible, but it would complicate

4 The role of parameters is mostly auxiliary, just like in algebra (or in first-order logic) and will be dis-
cussed further.
5 To avoid cluttering the notation, we will identify here natural numbers with their numerals.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 13 of 34 34

further the syntax and the model checking algorithm, without making an essential con-
tribution to the useful expressiveness of the language. Indeed, one can argue that, if a
formula is to make a meaningful claim about the strategic abilities of the coalition of
controllable agents which is quantified over the number of these agents, then it is natural
to assume that the controllable coalition appear only in positive context in that claim6.

3. Some additional useful syntactic restrictions can be imposed, which (as it will be shown
in the next section) do not essentially restrict the expressiveness of the language. They
lead to the notion of ‘normal form’, to be introduced shortly.

Hereafter, by L
HDMAS

-formulae we will mean, unless otherwise specified, state formulae
of L

HDMAS
 , whereas we will call the path formulae in L

HDMAS
 temporal objectives. In par-

ticular, for any L
HDMAS

-formula � of the type ⟨⟨t1, t2⟩⟩ � , the path subformula � is called the
temporal objective of �.

Some examples of L
HDMAS

 formulae:

• with reference to the fortress example:

• ⟨⟨C,N1⟩⟩� ⟨⟨C,N2⟩⟩� ⟨⟨C,N3⟩⟩�¬captured , with N1 < N2 < N3 and Ni ∈ ℕ for
i = {1, 2, 3} , says that there is a strategy for C ∈ ℕ defenders to hold the fortress for
three days against an increasing number of attackers.

• ∃y1⟨⟨y1,N⟩⟩�¬captured expresses that there is a number y1 of defenders that have a
strategy to hold the fortress forever against N many invaders.

• ∀y2⟨⟨C, y2⟩⟩�¬captured expresses that, for any number of invaders y2 , there is a
strategy for C defenders to hold the fortress forever against y2 invaders7.

• ∀y2∃y1⟨⟨y1, y2⟩⟩�¬captured expresses that for any number (y2) of invaders there is
a number (y1) of defenders who have a joint strategy to hold the fortress forever.

• lastly, an abstract example with nesting of strategic operators and quantifiers:
 ⟨⟨z2, z2⟩⟩� p ∨ ∃y1(⟨⟨y1, z1⟩⟩ � ⟨⟨y1, y2⟩⟩�¬p ∧ ¬∀y2⟨⟨z1, y2⟩⟩�¬⟨⟨y1, z2⟩⟩ p� q),
 for z1, z2 ∈ Z.

The semantics of L
HDMAS

 is based on the standard, positional strategy semantics of ATL
(cf [1] or [6]), applied in hdmas models, but uses abstract joint actions and strategy pro-
files, rather than concrete ones. In order to evaluate formulae that contain free variables and
parameters, we use a version of FOL assignment, here defined as a function � ∶ T → ℕ ,
where �(i) = i for i ∈ ℕ.

Definition 12 Let M be a hdmas, s be a state and � an assignment in it. The satisfaction
relation ⊧ is inductively defined on the structure of L

HDMAS
-formulae as follows:

6 For instance, ∃y
1
⟨⟨y

1
, 10⟩⟩�¬∃y

1
⟨⟨y

1
, 5⟩⟩ p , where y

1
 appear first positively and then negatively, expresses

that “there exists a coalition of controllable agents that can ensure against 10 uncontrollable agents that at
the next step there is no coalition of controllable agents that can ensure against 5 uncontrollable agents the
truth of p”, which is a rather unusual specification in any practical context.
7 We note that such a strategy would generally depend on y

2
 . However, given the monotonicity proper-

ties that our logic enjoys (proved in the next section), it turns out that the above reading of the formula is
equivalent on finite models to “there exists a strategy for C defenders to hold the fortress agains any number
y
2
 of attackers”.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 14 of 34

1. M, s, 𝜃 ⊧ ⊤;
2. M, s, 𝜃 ⊧ p iff p ∈ �(s);
3. ∧ and ¬ have the standard semantics;
4. M, s, 𝜃 ⊧ ⟨⟨t1, t2⟩⟩ 𝜒 iff there exists an abstract strategy �C for a coalition of C = �(t1)

agents such that for every play � in the outcome set out(s, �C,N) against N = �(t2)
uncontrollable agents the following hold:

(a) if � = �� then M,𝜋[1], 𝜃 ⊧ 𝜑;
(b) if � = �� then M,𝜋[i], 𝜃 ⊧ 𝜑 for every i ∈ ℕ;
(c) if � = �1 ��2 then M,𝜋[i], 𝜃 ⊧ 𝜑2 for some i ≥ 0 and M,𝜋[j], 𝜃 ⊧ 𝜑1 for all

0 ≤ j < i;

5. M, s, 𝜃 ⊧ ∀y𝜑 iff M, s, 𝜃[y ∶= m] ⊧ 𝜑 for every m ∈ ℕ , where the assignment �[y ∶= m]
assigns m to y and agrees with � on every other argument.

6. Likewise for M, s, 𝜃 ⊧ ∃y𝜑.

The notions of validity and (logical) equivalence in L
HDMAS

 are defined as expected,
and we will use the standard notation for them, viz. ⊧ 𝜑 for validity and �1 ≡ �2 for equiv-
alence. We also say that two L

HDMAS
-formulae, �1 and �2 are equivalent in the finite,

denoted �1 ≡� �� �2 , if M, s, 𝜃 ⊧ 𝜑1 iff M, s, 𝜃 ⊧ 𝜑2 for any finite hdmas model M and state
s and assignment � in M.

Remark 3 Note the following:

1. Defining the semantics in terms of abstract joint actions and strategies in the truth defi-
nitions of the strategic operators, rather than concrete ones, is justified by Lemmas 3
and 4 which imply that the ‘concrete’ and the ‘abstract’ semantics are equivalent.

2. Just like in FOL, the truth of any L
HDMAS

-formula � only depends on the assignment
of values to the parameters that occur in � and to the variables that occur free in � . In
particular, it does not depend at all on the assignment for closed formulae (containing
no parameters and free variables). In such cases we simply write M, s ⊧ 𝜑.

3. Again, just like in FOL, if y has no free occurrences in � , then ∀y� ≡ ∃y� ≡ � . Thus,
in order to avoid such vacuous quantification, whenever it occurs we can assume that
the formula is simplified automatically according to these equivalences.

Example 3 Consider the hdmas M in Example 2.

1. The closed formula � = ⟨⟨7, 5⟩⟩� p is satisfied in state s1 of M . Indeed, any abstract
joint strategy �7 that prescribes � to 3 of the controllable agents (�7(s1)(�) = 3) and act3
to 4 of them (�7(s1)(act3) = 4) guarantees that guard g2 is satisfied, enforcing transition
from s1 to s3.

2. M, s1 ⊧ ¬∃y1⟨⟨y1, 11⟩⟩� p . Indeed, for any value of y1 the abstract joint action profile
for the uncontrollable agents that prescribes to all of them to perform act3 falsifies both
g1 and g2 , thus forces a loop to s1 where p is false.

3. M, s4 ⊧ ⟨⟨7, 4⟩⟩� (∀y2∃y1⟨⟨y1, y2⟩⟩� p) , as we show in Sect. 4.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 15 of 34 34

3.2 Normal form and monotonicity properties

This is a technically important section, where we define the fragment L��
HDMAS

 of normal
form formulae of L

HDMAS
 . The normal form impose essential syntactic restrictions and

therefore reduce the expressiveness of the language. However, the key technical result
obtained here is that every formula in L

HDMAS
 is equivalent on finite models to one in

L
��
HDMAS

 . The importance of that result will be discussed further.

Definition 13 A L
HDMAS

-formula � is in a normal form if:

 (NF1) There are no occurrences of ∀y1 or ∃y2 in �.
 (NF2) Every subformula ⟨⟨t1, t2⟩⟩ � of � where either t1 = y1 or t2 = y2 (but not both), such

that that variable occurrence is bound in � , is immediately preceded respectively by
∃y1 or ∀y2.

 (NF3) Every subformula ⟨⟨y1, y2⟩⟩ � , where both variable occurrences are bound in � , is
immediately preceded either by ∀y2∃y1 or ∃y1∀y2.

Of the example formulae given after Definition 11, the first two are in normal form,
while the last one is not.

We denote by L��
HDMAS

 the fragment of L
HDMAS

 consisting of all formulae in normal form.
We can give a more explicit definition of the formulae of L��

HDMAS
 , by modifying the recur-

sive definition of state formulae of L
HDMAS

 , where the clauses ∀y� and ∃y� are replaced
with the following, where � is a temporal objective:

The same syntactic constraints as before apply. In addition, in each case above no variable
quantified in the prefix of the formula may occur free in �.

The rest of the section is devoted to prove that every formula in L
HDMAS

 is logically
equivalent in the finite to one in L��

HDMAS
 . That is of crucial importance, as our model check-

ing algorithm works only on L��
HDMAS

 formulae. Indeed, the fact that quantification in formu-
lae in normal form does not span across multiple temporal objectives enables us to obtain
fixpoint characterizations for formulae of the types listed in (1) above, presented at the end
of this section, in Theorem 3. That, in turn, allows us to retain the basic structure of the
recursive model checking algorithm for ATL (cf [1] or [6]).

A first important observation is that the semantics of the strategic operators in L
HDMAS

 is
monotonic with respect to the number of controllable and uncontrollable agents, in a sense
formalized in the following lemma.

Hereafter, for a given formula � , term t and k ∈ ℕ , we denote by �[k∕t] the result of
uniform substitution of all free8 occurrences of t in � by k.

Lemma 5 For every L
HDMAS

-formula � and a term t the following monotonicity properties
hold.

(1)
∃y1⟨⟨y1, t2⟩⟩ � ∣ ∀y2∃y1⟨⟨y1, y2⟩⟩ � ∣

∀y2⟨⟨t1, y2⟩⟩ � ∣ ∃y1∀y2⟨⟨y1, y2⟩⟩ �

8 The constraint to free occurrences is, of course, only relevant when t is a variable.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 16 of 34

(C-mon) Suppose C,C� ∈ ℕ are such that C′
> C. Then:

 (C-mon)+: If all free occurrences of t are positive and only in first position in
strategic operators in � then ⊧ 𝜑[C∕t] → 𝜑[C�∕t].

 (C-mon)− : If all free occurrences of t are negative and only in first position in
 strategic operators in � then ⊧ 𝜑[C�∕t] → 𝜑[C∕t].

(N-mon) Suppose N,N� ∈ ℕ are such that N′
< N. Then:

 (N-mon)+: If all free occurrences of t are positive and only in second position in
strategic operators in � then ⊧ 𝜑[N∕t] → 𝜑[N�∕t].

 (N-mon)−: If all free occurrences of t are negative and only in second position
in strategic operators in � then ⊧ 𝜑[N�∕t] → 𝜑[N∕t].

Proof (C-mon): Both claims are analogous and we prove both by simultaneous induction
on the structure of � . We will present the proof for (C-mon)+ , and the claim of (C-mon)−
will only be needed in the case when � = ¬� , proved by using the inductive hypothesis for
(C-mon)− for � and contraposition.

The inductive cases where the main connective of � is ∧,∨,∀,∃ are easily proved by
using the inductive hypothesis and the monotonicity of each of these logical connectives.

The only more essential inductive case is � = ⟨⟨t, t2⟩⟩ � , where the inductive hypoth-
esis is that the claim of (C-mon)+ holds for the main state subformulae of � . Note that
the semantics of the strategic and temporal operators is argument-monotone, in sense
that if ⊧ 𝜓 → 𝜓

′ then ⊧ ⟨⟨t, t2⟩⟩𝖷𝜓 → ⟨⟨t, t2⟩⟩𝖷𝜓
′ and ⊧ ⟨⟨t, t2⟩⟩𝖦𝜓 → ⟨⟨t, t2⟩⟩𝖦𝜓

′ ,
and likewise for Until. By using that and the inductive hypothesis, we obtain that
⊧ ⟨⟨t, t2⟩⟩ 𝜒[C∕t] → ⟨⟨t, t2⟩⟩ 𝜒[C�∕t] . Therefore, ⊧ ⟨⟨C, t2⟩⟩ 𝜒[C∕t] → ⟨⟨C�, t2⟩⟩ 𝜒[C�∕t] . Thus,
it remains to show that ⊧ ⟨⟨C, t2⟩⟩ 𝜒[C∕t] → ⟨⟨C�, t2⟩⟩ 𝜒[C∕t] . Let M, s, 𝜃 ⊧ ⟨⟨C, t2⟩⟩ 𝜒[C∕t] .
Let �C be an abstract strategy for C controllable agents such that every play � in the out-
come set out(s, �C, �(t2)) against �(t2) uncontrollable agents satisfies the temporal objective
�[C∕t] . Then, since C′

> C , the strategy �C can be extended to strategy �C′ whereby the
additional C� − C many agents always perform the idle action � . Clearly, �C′ ensures that
M, s, 𝜃 ⊧ ⟨⟨C�, t2⟩⟩ 𝜒[C∕t].

(N-mon): The proof is analogous to the one for (C-mon), so we only treat the
inductive case of � = ⟨⟨t1, t⟩⟩ � for the claim (N-mon)+ . Similarly to the case of (C-
mon)+ , it boils down to proving the validity ⊧ ⟨⟨t1,N⟩⟩ 𝜒[N∕t] → ⟨⟨t1,N�⟩⟩ 𝜒[N∕t] . Let
M, s, 𝜃 ⊧ ⟨⟨t1,N⟩⟩ 𝜒[N∕t] and let �C be an abstract strategy for C = �(t1) controlla-
ble agents such that every play � in the outcome set out(s, �C,N) against N uncontrolla-
ble agents satisfies the temporal objective �[N∕t] . Then the same strategy would ensure
M, s, 𝜃 ⊧ ⟨⟨t1,N�⟩⟩ 𝜒[N∕t] for every N′

< N , since every joint action of N′ can be lifted to

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 17 of 34 34

a joint action of N leading to the same outcome, where the remaining N − N� agents always
perform the idle action � . ◻

A key consequence of the monotonicity properties is that it allows to eliminate some quan-
tifier patterns, in the cases listed in the following lemma.

Lemma 6 For every term t and temporal objective � in L
HDMAS

 , the following hold.

1. ∀y1⟨⟨y1, t⟩⟩ � ≡ ⟨⟨0, t⟩⟩ �[0∕y1];
2. ∃y2⟨⟨t, y2⟩⟩ � ≡ ⟨⟨t, 0⟩⟩ �[0∕y2];
3. ∀y1∃y2⟨⟨y1, y2⟩⟩ � ≡ ⟨⟨0, 0⟩⟩ �[0∕y1, 0∕y2];
4. ∃y2∀y1⟨⟨y1, y2⟩⟩ � ≡ ⟨⟨0, 0⟩⟩ �[0∕y1, 0∕y2];
5. ∀y2∀y1⟨⟨y1, y2⟩⟩ � ≡ ∀y2⟨⟨0, y2⟩⟩ �[0∕y1];
6. ∀y1∀y2⟨⟨y1, y2⟩⟩ � ≡ ∀y2⟨⟨0, y2⟩⟩ �[0∕y1];
7. ∃y1∃y2⟨⟨y1, y2⟩⟩ � ≡ ∃y1⟨⟨y1, 0⟩⟩ �[0∕y2];
8. ∃y2∃y1⟨⟨y1, y2⟩⟩ � ≡ ∃y1⟨⟨y1, 0⟩⟩ �[0∕y2].

Proof The logically non-trivial implications of claims 1–6 follow immediately from the
polarity constraint in the definition of formulae and Lemma 5. Claims 7 and 8 follow
respectively from claims 5 and 6, by commuting the quantifiers. ◻

Lemma 6 shows that the only non-trivial cases of quantifications over formulae of the kind
⟨⟨t1, t2⟩⟩ � are those allowed in normal forms, listed in (1) (after Definition 13). We will make
use of that to re-define the syntax of L

HDMAS
 to suit better our further technical work. First

we define an admissible quantifier prefix Q to be a string of the form �yi or �yi�′yj where
�,�� ∈ {∃,∀} and i, j ∈ {1, 2} , i ≠ j . Now, we re-define the set of state formulas of L

HDMAS
 to

be generated by the following modified grammar:

The same positive polarity requirements as before for applying the quantifier prefixes are
imposed. Clearly, this grammar is equivalent to the original grammar, i.e. it generates the
same set of formulae. In the rest of the paper we adopt the new grammar above.

Next, we define recursively a partial quantifier elimination function PQE on path and
state formulae � ∈ L

HDMAS
 which produces formulae PQE(�) where all occurrences of subfor-

mulae in the left-hand sides of the equivalences in Lemma 6 are successively replaced with
the corresponding right-hand sides.

𝜑∶∶ = ⊤ ∣ p ∣ ¬𝜑 ∣ (𝜑 ∧ 𝜑) ∣ (𝜑 ∨ 𝜑) ∣ ⟨⟨t1, t2⟩⟩ 𝜒 ∣ Q𝜑

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 18 of 34

1: Input: a quantifier prefix Q and a (state or path) formula ξ of Lhdmas
2: Output: a (state or path) formula ξ of Lhdmas
3: procedure pqe(ξ)
4: case ξ of
5: p: return ξ

6: ¬ψ : return ¬pqe(ψ)
7: ψ1 ∧ ψ2: return pqe(ψ1) ∧ pqe(ψ2)
8: ψ1 ∨ ψ2: return pqe(ψ1) ∨ pqe(ψ2)
9: t1, t2 χ : return t1, t2 pqe(χ)
10: Qϕ:
11: case Qϕ of
12: ∀y1 y1, t χ : return 0, t pqe(χ)[0/y1]
13: ∃y2 t, y2 χ : return t, 0 pqe(χ)[0/y2]
14: ∀y1∃y2 y1, y2 χ : return 0, 0 pqe(χ)[0/y1, 0/y2]
15: ∃y2∀y1 y1, y2 χ : return 0, 0 pqe(χ)[0/y1, 0/y2]
16: ∀y1∀y2 y1, y2 χ : return ∀y2 0, y2 pqe(χ)[0/y1]
17: ∀y2∀y1 y1, y2 χ : return ∀y2 0, y2 pqe(χ)[0/y1]
18: ∃y1∃y2 y1, y2 χ : return ∃y1 y1, 0 pqe(χ)[0/y2]
19: ∃y2∃y1 y1, y2 χ : return ∃y1 y1, 0 pqe(χ)[0/y2]
20: default: return Qpqe(ϕ) Covers all other cases
21: end case
22: Xψ : return X pqe(ψ)
23: Gψ : return G pqe(ψ)
24: ψ1 Uψ2: return pqe(ψ1)U pqe(ψ2)
25: end case
26: end procedure

Lemma 7 Let � be any formula in L
HDMAS

, then PQE(�) ≡ �.

Proof By induction on the structure of � (using the modified grammar), following the
recursive definition of PQE . The only non-trivial cases are those in lines 12–19 and they
use the equivalences in Lemma 6. For instance, let � = ∀y1⟨⟨y1, t⟩⟩ � . By definition,
PQE(∀y1⟨⟨y1, t⟩⟩ �) = ⟨⟨0, t⟩⟩ PQE(�)[0∕y1] and by inductive hypothesis PQE(�) ≡ � , thus
we get ⟨⟨0, t⟩⟩ PQE(�)[0∕y1] ≡ ⟨⟨0, t⟩⟩ �[0∕y1] . The claim now follows from case 1. in
Lemma 6. All other cases are proved analogously. ◻

Lemma 8 Let � be any formula in L��
HDMAS

, then PQE(�) = �.

Proof Again, induction on the structure of � in normal form, following the recursive defi-
nition of PQE . Note, that the only cases that apply to formulae in normal form are those in
lines 5–9, 20 and 22–24, which do not modify � . ◻

Note that after applying PQE , the resulting formula satisfies condition (NF1) in the defi-
nition of normal form.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 19 of 34 34

3.3 Transformation to normal forms and fixpoint equivalences

Next, we show that quantification can always be distributed, up to equivalence in the
finite, over conjunctions and disjunctions and pushed inside subformulae so that every
bound variable is immediately preceded by a quantifier that binds it, which will be used
further for transformations of L

HDMAS
 formulae to normal form.

We define by recursion a 2-argument function PUSH , applied to pairs consisting of an
admissible quantifier prefix Q and a formula � in L

HDMAS
 , such that PUSH(Q,�) is a for-

mula in L
HDMAS

 which satisfies conditions (NF2) and (NF3) of the definition of normal
form, and which we will prove to be equivalent to Q� . For the purpose of defining PUSH
as described, we will need to define it on a wider scope, viz. applied to any state or path
formula � , even though Q� may not be a legitimate formula of L

HDMAS
.

In what follows, we denote by Q the swap of the quantifiers in the prefix Q with their
duals, i.e. ∃ with ∀ and vice versa.

1: Input: a quantifier prefix Q and a (state or path) formula ξ of Lhdmas
2: Output: ξ , a (state or path) formula of Lhdmas
3: procedure push(Q, ξ)
4: case ξ of
5: p: return ξ

6: ¬ψ : return ¬push(Q, ψ)
7: ψ1 ∧ ψ2: return push(Q, ψ1) ∧ push(Q, ψ2)
8: ψ1 ∨ ψ2: return push(Q, ψ1) ∨ push(Q, ψ2)
9: t1, t2 χ :
10: case Q of
11: Qyi , where ti = yi , for i = 1 or i = 2:
12: or Qy1Q y2 or Q y2Qy1, where t1 = y1, t2 = y2:

return Q t1, t2 push(Q, χ)
13: Qyi , where ti = yi , for i = 1 or i = 2:
14: or Qy1Q y2 or Q y2Qy1, where t1 = y1, t2 = y2:

return t1, t2 push(Q, χ)
15: Qy1Q y2 or Q y2Qy1, where t1 = y1, t2 = y2:

return Qy1 t1, t2 push(Q, χ)
16: Qy1Q y2 or Q y2Qy1, where t1 = y1, t2 = y2:

return Q y2 t1, t2 push(Q, χ)
17: end case
18: Q ykψ :
19: case Q of
20: Qyi , where i = k: return push(Q yk, ψ)
21: Qyi , where i = k: return push(QyiQ yk, ψ)
22: QyiQ y j , where i = k: return push(Q y jQ yk, ψ)
23: QyiQ y j , where j = k: return push(QyiQ yk, ψ)
24: end case
25: Xψ : return X push(Q, ψ)
26: Gψ : return G push(Q, ψ)
27: ψ1 Uψ2: return push(Q, ψ1)U push(Q, ψ2)
28: end case
29: end procedure

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 20 of 34

It is quite easy to see that PUSH(Q,�) is a formula in L
HDMAS

 whenever Q� is a for-
mula in L

HDMAS
 . Intuitively, the function PUSH recursively pushes the quantifier prefix Q

inside the formula by either swapping it when negation occurs or by distributing it over
the others boolean connectives until it vanishes. When a strategic operator, possibly
with variables as arguments that are quantified by Q is reached, then Q is placed in front
of the strategic operator and is also distributed in its temporal objective, but the vacuous
quantification occurring in the process is removed. Lastly, when the formula begins with
another quantifier �′′yk , then it is prefixed by Q , the resulting vacuous quantification, if
any, is removed, and the resulting prefix is pushed inside.

Example 4 Let � ∈ L
HDMAS

 be

where p1, p2, p3 ∈ � . Then PUSH(∀y1,�) =

Theorem 1 Let Q be an admissible quantifier prefix and let Q� be a formula of L
HDMAS

.
Then PUSH(Q,�) is logically equivalent in the finite to Q�.

Proof We prove the claim by induction on the nesting depth ��(�) of strategic operators
in the state formula � , defined as expected.

When ��(�) = 0 the claim is straightforward because any quantification over � is vacu-
ous, hence Q� ≡ � and PUSH(Q,�) = � . Suppose now that ��(𝜑) > 0 and the claim holds
for all state formulae of L

HDMAS
 with lower nesting depth. We will do a nested induction on

the structure of � , following the recursive definition of PUSH .

1. 𝜑 = ⊤ ∣ p . This case does not apply now, but it is, anyway, trivial for every Q.
2. � = ¬� follows from FOL and the inductive hypothesis (IH) for �.
3. � = �1 ∧ �2 .

(a) When Q = ∀yi , the claim follows immediately from the valid equivalence (proved
just like in FOL) ∀yi(�1 ∧ �2) ≡ ∀yi�1 ∧ ∀yi�2 and the IH for each of �1 and �2.

(b) When Q = ∃yi , it suffices to prove that ∃yi(�1 ∧ �2) ≡� �� ∃yi�1 ∧ ∃yi�2 , and then
use the IH for each of �1 and �2 . The implication from left to right is by the
validity of the implication ∃yi(�1 ∧ �2) → ∃yi�1 ∧ ∃yi�2 . To prove the converse
implication, first note that, since ∃yi(�1 ∧ �2) is a formula of L

HDMAS
 , all free

occurrences of yi in �1 and in �2 must be positive. Now, suppose first that i = 1
and let M, s, 𝜃 ⊧ ∃y1𝜓1 ∧ ∃y1𝜓2 for some finite M . Then, M, s, 𝜃 ⊧ 𝜓1[C1∕y1]
and M, s, 𝜃 ⊧ 𝜓2[C2∕y1] for some C1,C2 ∈ ℕ . Let C = max(C1,C2) . By the mono-
tonicity property (C-mon)+ from Lemma 5, we obtain that M, s, 𝜃 ⊧ 𝜓1[C∕y1]
and M, s, 𝜃 ⊧ 𝜓2[C∕y1] . Therefore, M, s, 𝜃 ⊧ (𝜓1 ∧ 𝜓2)[C∕y1] , hence
M, s, 𝜃 ⊧ ∃y1(𝜓1 ∧ 𝜓2) . This proves the validity of the converse implication
(∃y1�1 ∧ ∃y1�2) → ∃y1(�1 ∧ �2) . The proof of the case where i = 2 is analogous,
using the monotonicity property (N-mon)+ from Lemma 5.

∀y1
�
⟨⟨y1, 5⟩⟩ (∀y2⟨⟨y1, y2⟩⟩� p1) � (∃y2⟨⟨y1, y2⟩⟩ � p2) ∨

∃y1(∀y2⟨⟨y1, y2⟩⟩ � p3 ∧ ¬∀y2⟨⟨3, y2⟩⟩� p1)
�

∀y1⟨⟨y1, 5⟩⟩
�
(∀y1∀y2⟨⟨y1, y2⟩⟩� p1) � (∀y1∃y2⟨⟨y1, y2⟩⟩ � p2)

�
∨

(∃y1∀y2⟨⟨y1, y2⟩⟩ � p3 ∧ ¬∀y2⟨⟨3, y2⟩⟩� p1)

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 21 of 34 34

(c) Lastly, the case when Q = �yi�
�yj is readily reducible to the previous 2 cases, by

distributing first �′yj and then �yi.

4. � = �1 ∨ �2 . This case is dually analogous to the previous one.

(a) When Q = ∃yi , the claim follows immediately from the valid equivalence
∃yi(�1 ∨ �2) ≡ ∃yi�1 ∨ ∃yi�2 and the IH for each of �1 and �2.

(b) When Q = ∀yi , it suffices to prove that ∀yi(�1 ∨ �2) ≡� �� ∀yi�1 ∨ ∀yi�2 ,
and then use the IH for each of �1 and �2 . The implication from right to left
(∀yi�1 ∨ ∀yi�2) → ∀yi(�1 ∨ �2) is a validity, proved just like in FOL. For the
converse implication, suppose first that i = 1 and let M, s, 𝜃 ⊧ ∀y1(𝜓1 ∨ 𝜓2) for
some finite M . Then, M, s, 𝜃 ⊧ (𝜓1 ∨ 𝜓2)[0∕y1] , hence M, s, 𝜃 ⊧ 𝜓1[0∕y1] or
M, s, 𝜃 ⊧ 𝜓2[0∕y1] . Suppose w.l.o.g. the former. Then, by the monotonicity prop-
erty (C-mon)+ from Lemma 5, we obtain that M, s, 𝜃 ⊧ 𝜓2[C∕y1] for any C ∈ ℕ ,
hence M, s, 𝜃 ⊧ ∀y1𝜓1 , so M, s, 𝜃 ⊧ ∀y1𝜓1 ∨ ∀y1𝜓2.

 For the case that i = 2 , assuming that M, s, 𝜃 ⊧ ∀y2(𝜓1 ∨ 𝜓2) , it follows that
at least one of M, s, 𝜃 ⊧ 𝜓1[N∕y2] and M, s, 𝜃 ⊧ 𝜓2[N∕y2] holds for infinitely
many values of N ∈ ℕ . Suppose w.l.o.g. the former. Then, by the monotonicity
property (N-mon)+ from Lemma 5, we obtain that M, s, 𝜃 ⊧ 𝜓1[N∕y2] for any
N ∈ ℕ , hence M, s, 𝜃 ⊧ ∀y2𝜓1 , so M, s, 𝜃 ⊧ ∀y2𝜓1 ∨ ∀y2𝜓2.

(c) Lastly, the case when Q = �yi�
�yj is readily reducible to the previous 2 cases, by

distributing first �′yj and then �yi.

5. � = ���yk�.Again, we consider the subcases depending on Q.

(a) Q = �yi , where i = k.
 We are to show that �yi���yi� ≡� �� PUSH(���yi,�) , which follows from

�yi�
′′yi� ≡ �′′yi� and the IH.

(b) Q = �yi , where i ≠ k.
 We are to show that �yi���yk� ≡� �� PUSH(�yi�

��yk,�) , which follows from the
IH for Q = �yi�

��yk and �.
(c) Q = �yi�

�yj , where i = k.
 We are to show that �yk��yj�

��yk� ≡� �� PUSH(��yj�
��yk,�) , which follows

from �yk�′yj�
′′yk� ≡ �′yj�

′′yk� and the IH.
(c) The case Q = �yi�

�yj , where j = k , is analogous.

6. � = ⟨⟨t1, t2⟩⟩ �.
 This inductive case—for both inductions, the external one, on ��(�) , and for the

nested one, on the structure of �—is the most involved case, where the finiteness of
the models over which we prove the equivalence is used essentially. There are several
subcases, depending on Q and on the main temporal connective of � . The proof for
each case is technical and some cases are longer than others, but they all use a similar
approach, that essentially hinges on the finiteness of the model and the monotonicity
properties from Lemma 5. These will allow us to obtain uniformly large enough values
of the quantified variables, beyond which the truth values of all strategic subformulae
stabilise, and thus to establish the truth of the non-trivial implications.

 We will provide a representative selection of proofs for some of the cases and will
leave out the rest, which are essentially analogous, though possibly even longer.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 22 of 34

(a) Q = �yi , where ti = yi , for i = 1 or i = 2.
 We are to show that �yi⟨⟨t1, t2⟩⟩ � ≡� �� �yi⟨⟨t1, t2⟩⟩ PUSH(�yi,�) , assuming the

inductive hypothesis for the main state subformulae of � . We consider the sub-
cases depending on � , i, and the main temporal connective of �.

 Case (∀y1�): to prove ∀y1⟨⟨y1, t⟩⟩�� ≡� �� ∀y1⟨⟨y1, t⟩⟩� PUSH(∀y1,�).
 By the IH for � , we have that ∀y1� ≡� �� PUSH(∀y1,�).
 So, it suffices to prove that ∀y1⟨⟨y1, t⟩⟩�� ≡� �� ∀y1⟨⟨y1, t⟩⟩�∀y1� . By Lemma 6,

∀y1⟨⟨y1, t⟩⟩�� ≡ ⟨⟨0, t⟩⟩��[0∕y1] and ∀y1⟨⟨y1, t⟩⟩�∀y1� ≡ ⟨⟨0, t⟩⟩�∀y1�.
 So, we have to prove that ⟨⟨0, t⟩⟩��[0∕y1] ≡ ⟨⟨0, t⟩⟩�∀y1� , which follows

immediately, since ∀y1� ≡ �[0∕y1] , by (C-mon)+ from Lemma 5.
 Case (∃y1�): to prove ∃y1⟨⟨y1, t⟩⟩�� ≡� �� ∃y1⟨⟨y1, t⟩⟩� PUSH(∃y1,�).
 By the IH for � , we have that ∃y1� ≡� �� PUSH(∃y1,�) . So, it suffices to prove

that ∃y1⟨⟨y1, t⟩⟩�� ≡� �� ∃y1⟨⟨y1, t⟩⟩�∃y1� . Since ⊧ 𝜓 → ∃y1𝜓 , we obtain validity
of the implication ∃y1⟨⟨y1, t⟩⟩𝖦� → ∃y1⟨⟨y1, t⟩⟩𝖦∃y1�.

 For the converse, suppose M, s, 𝜃 ⊧ ∃y1⟨⟨y1, t⟩⟩�∃y1𝜓 for some finite
M with state space S , assignment � and s ∈ S . Fix any C ∈ ℕ such that
M, s, 𝜃 ⊧ ⟨⟨C, t⟩⟩�∃y1𝜓 . Since � fixes the values of all terms, we can treat ∃y1�
as a closed formula. Note that, according to the syntax of L

HDMAS
 , all occurrences

of y1 in � are positive. Let W = [[∃y1�]]�
M

 be its extension in M (which depends
on �) and let w ∈ W . Let f ∶ W → ℕ be a mapping assigning to every u ∈ W
a number f (u) such that M, u, 𝜃 ⊧ 𝜓[f (u)∕y1] . Now, let9 f ∗ ∶= maxu∈W f (u)
and C∗ ∶= max(f ∗,C) . Then, by (C-mon)+ from Lemma 5, we obtain that
M, u, 𝜃 ⊧ 𝜓[C∗∕y1] for each u ∈ W , hence M, s, 𝜃 ⊧ ⟨⟨C∗, t⟩⟩�𝜓[C∗∕y1] . There-
fore, M, s, 𝜃 ⊧ ∃y1⟨⟨y1, t⟩⟩�𝜑 . Thus, ∃y1⟨⟨y1, t⟩⟩𝖦∃y1� → ∃y1⟨⟨y1, t⟩⟩𝖦� is valid
in the finite, whence the claim.

 Case (∀y2�): to prove ∀y2⟨⟨t, y2⟩⟩�� ≡� �� ∀y2⟨⟨t, y2⟩⟩� PUSH(∀y2,�).
 By the IH for � , we have that ∀y2� ≡� �� PUSH(∀y2,�) . So, it suf-

fices to prove that ∀y2⟨⟨t, y2⟩⟩�� ≡� �� ∀y2⟨⟨t, y2⟩⟩�∀y2� . The implication
⊧ ∀y2⟨⟨t, y2⟩⟩𝖦∀y2𝜓 → ∀y2⟨⟨t, y2⟩⟩𝖦𝜓 follows from ⊧ ∀y2𝜓 → 𝜓 , proved just
like in FOL. For the converse, suppose M, s, 𝜃 ⊧ ∀y2⟨⟨t, y2⟩⟩�𝜓 for some finite
M with state space S , assignment � and s ∈ S . Then, for every N ∈ ℕ , it holds
that M, s, 𝜃 ⊧ ⟨⟨t,N⟩⟩�𝜓[N∕y2] , i.e., there is an abstract positional joint strategy
�N for �(t) many controllable agents, such that � is true at every state on every
outcome play enabled by �N against N uncontrollable agents. Since there are
only finitely many abstract positional joint strategies for �(t) controllable agents
in M , there is at least one such joint strategy which works for infinitely many
values of N, and therefore, by (N-mon), it will work for all N ∈ ℕ . Let us fix such
strategy �� . We will show that M, s, 𝜃 ⊧ ∀y2⟨⟨t, y2⟩⟩�∀y2𝜓 by proving that, for
every N ∈ ℕ , if �� is played by �(t) many controllable agents it ensures the truth
of M, s, 𝜃 ⊧ ⟨⟨t,N⟩⟩�∀y2𝜓 . Suppose this is not the case for some N� ∈ ℕ . Then,
there is an abstract positional joint strategy �� for N′ uncontrollable agents that
guarantees reaching a state w where ∀y2� fails on the unique play � generated by
the pair of joint strategies (��, ��) . Thus, M,w, 𝜃 ⊧ ∀y2𝜓 , i.e., M,w, 𝜃 ⊧ ¬∀y2𝜓 .
Therefore, M,w, 𝜃 ⊧ ¬𝜓[N��∕y2] for some N�� ∈ ℕ . Let N∗ ∶= max(N�,N��) .
Then, by (N-mon)− from Lemma 5, we have that M,w, 𝜃 ⊧ ¬𝜓[N∗∕y2] . Fur-

9 This is where we use the finiteness of the model.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 23 of 34 34

thermore, the strategy �� can be trivially extended to ��∗ for N∗ uncontrollable
agents (by letting the extra N∗ − N� uncontrollable agents idle), hence the play �
is still generated by the resulting pair of joint strategies (��, ��∗) and the state w
as above will still be reached on it. On the other hand, by the choice of �� , when it
is played by the �(t) many controllable agents against N∗ uncontrollable agents it
guarantees maintaining forever the truth of � , i.e., M, s, 𝜃 ⊧ ⟨⟨t,N∗⟩⟩�𝜓[N∗∕y2] .
In particular, that implies M,w, 𝜃 ⊧ 𝜓[N∗∕y2] —a contradiction. Therefore, the
assumption that such N′ exists is wrong, whence the claim.

 Case (∃y2�): to prove ∃y2⟨⟨t, y2⟩⟩�� ≡� �� ∃y2⟨⟨t, y2⟩⟩� PUSH(∃y2,�).
 This case is quite analogous to Case (∀y1�) and is proved by using

the IH for � , the equivalences ∃y2⟨⟨t, y2⟩⟩�� ≡ ⟨⟨t, 0⟩⟩��[0∕y2] and
∃y2⟨⟨t, y2⟩⟩�∃y2� ≡ ⟨⟨t, 0⟩⟩�∃y2� from Lemma 6, and the monotonicity prop-
erties (C − mon) from Lemma 5.

 Cases (�yi�) are analogous, but a little simpler than those above.
 Cases (�yi �) are analogous, though a little longer than those above.
(b) Q = �yi , where t1 ≠ yi and t2 ≠ yi.
 We are to show that �yi⟨⟨t1, t2⟩⟩ � ≡� �� ⟨⟨t1, t2⟩⟩ PUSH(�yi,�) , assuming the IH

for the main state subformulae of � . For that, it suffices to prove that the quanti-
fier � can be equivalently pushed inside through ⟨⟨t1, t2⟩⟩ and the main temporal
connective of � , e.g., that �yi⟨⟨t1, t2⟩⟩�� ≡� �� ⟨⟨t1, t2⟩⟩�yi�� . The non-trivial
implications follow from the fact that there are only finitely many abstract posi-
tional strategies for the controllable agents in any given finite model, plus the
monotonicity properties from Lemma 5. The argument for that is essentially the
same as that in the proof of Case (∀y2�) above.

(c) Q = �y1�
�y2 , where t1 ≠ y1 and t2 ≠ y2.

 We are to show that �y1��y2⟨⟨t1, t2⟩⟩ � ≡� �� ⟨⟨t1, t2⟩⟩ PUSH(�y1�
�y2,�) , assum-

ing the IH for all state formulae of lower nesting depth, including the main state
subformulae of �.

 This equivalence follows by applying case (b) twice, first for Q = ��y2 and then
for Q = �y1 (the IH on the nesting of strategic operators is used here), and each
time using the IH.

 The case Q = ��y2�y1 , where t1 ≠ y1 and t2 ≠ y2 is completely analogous.
(d) Q = �y1�

�y2 , where t1 = y1 and t2 ≠ y2.
 We are to show that

 assuming the IH for all state formulae of lower nesting depth, incl. the main
state subformulae of �.
E .g . , when � = �� , we a re to p rove �y

1
�′y

2
⟨⟨y

1
, t
2
⟩⟩�� ≡� ��

�y
1
⟨⟨y

1
, t
2
⟩⟩� PUSH(�y

1
��y

2
,�) . By the IH, PUSH(�y

1
��y

2
,�)≡� �� �y1�

′y
2
� ,

so we are to prove that �y1�′y2⟨⟨y1, t2⟩⟩�� ≡� �� �y1⟨⟨y1, t2⟩⟩��y1�
′y2�.

This follows by first applying case (b) for Q = ��y2 and the IH to obtain
 ��y2⟨⟨y1, t2⟩⟩�� ≡� �� ⟨⟨y1, t2⟩⟩� PUSH(��y2,�) ≡� �� ⟨⟨y1, t2⟩⟩���y2� , and then

applying �y1 to both sides, then case (a) for Q = �y1 , and again the IH.
(e) The case Q = ��y2�y1 , where t1 = y1 and t2 ≠ y2 is similar.
(f) The cases Q = �y1�

�y2 and Q = ��y2�y1 where t1 ≠ y1 and t2 = y2 are completely
analogous.

(g) Q = �y1�
�y2 , where t1 = y1 and t2 = y2.

�y1�
�y2⟨⟨t1, t2⟩⟩ � ≡� �� �y1⟨⟨t1, t2⟩⟩ PUSH(�y1�

�y2,�),

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 24 of 34

 We have to prove �y1��y2⟨⟨y1, y2⟩⟩ � ≡� �� �y1�
�y2⟨⟨y1, y2⟩⟩ PUSH(�y1�

�y2,�) ,
assuming the IH for all state formulae of lower nesting depth, incl. the main state
subformulae of �.

 E .g . , when � = �� , we a re to p rove �y
1
�′y

2
⟨⟨y

1
, y

2
⟩⟩��

≡� �� �y1�
�y

2
⟨⟨y

1
, y

2
⟩⟩� PUSH(�y

1
��y

2
,�).

 By the IH, PUSH(�y1�
�y2,�) ≡� �� �y1�

�y2� , so we are to prove that
 �y1�

′y2⟨⟨y1, y2⟩⟩�� ≡� �� �y1�
′y2⟨⟨y1, y2⟩⟩��y1�

′y2�.
 By case (a), we have already shown that
 �′y2⟨⟨y1, y2⟩⟩�� ≡� �� �

′y2⟨⟨y1, y2⟩⟩��′y2�.
 By applying �y1 to both sides we obtain
 �y1�

′y2⟨⟨y1, y2⟩⟩�� ≡� �� �y1�
′y2⟨⟨y1, y2⟩⟩��′y2� , so it remains to prove

 �y1�
′y2⟨⟨y1, y2⟩⟩��′y2� ≡� �� �y1�

′y2⟨⟨y1, y2⟩⟩��y1�
′y2�.

 For each case of � the argument for the non-trivial implication uses the mono-
tonicity properties from Lemma 5 and is respectively similar to that in the proof
of Case (∃y2�) and Case (∀y2�) above.

 The other cases for � are similar.
(h) The case Q = ��y2�y1 , where t1 = y1 and t2 = y2 is completely analogous to the

previous one.

 This completes the proof for all cases in the definition of PUSH(Q, ⟨⟨t1, t2⟩⟩ �) and,
therefore, the last inductive case in both inductions.

 ◻

Now we will define a recursive function nf that transforms any state or path formula
� of L

HDMAS
 respectively into a state or path formula ��� in L��

HDMAS
 , while preserving

equivalence in the finite.

1: Input: ξ , a state or path formula of Lhdmas
2: Output: ξNF, a state or path formula of LNF

hdmas
3: procedure nf(ξ)
4: case ξ of
5: p: return ξ

6: ¬ψ : return ¬nf(ψ)
7: ψ1 ∧ ψ2: return nf(ψ1) ∧ nf(ψ2)
8: ψ1 ∨ ψ2: return nf(ψ1) ∨ nf(ψ2)
9: t1, t2 χ : return t1, t2 nf(χ)
10: Qψ : return pqe(push(Q,nf(ψ)))
11: Xψ : return X nf(ψ)
12: Gψ : return Gnf(ψ)
13: ψ1 Uψ2: return nf(ψ1)Unf(ψ2)
14: end case
15: end procedure

Intuitively, NF transforms the input formula by first applying PUSH and then PQE when-
ever a quantifier prefix is to be applied, thus producing a formula in a normal form.

Example 5 Let � be as in Example 4. Then NF(�) is:

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 25 of 34 34

Lemma 9 Let � a state formula of L��
HDMAS

. For every admissible quantifier prefix Q, if the
variables occurring in Q do not occur free in �, then PUSH(Q,�) = �.

Proof The argument is by structural induction on � in normal form, by following the recur-
sive definition of PUSH . The non-trivial cases are those involving quantifiers. We consider
∃y1⟨⟨y1, t2⟩⟩ � and Q = �y1�

�y2 , the other cases are proved analogously. Since � ∈ L
��
HDMAS

by hypothesis, we have that t2 ≠ y2 , thus by definition PUSH(�y1�

�y2,∃y1⟨⟨y1, t2⟩⟩ �) =
PUSH(��y2∃y1, ⟨⟨y1, t2⟩⟩ �) = ∃y1⟨⟨y1, t2⟩⟩ PUSH(��y2∃y1,�) . By hypothesis y2 is not
free in � , which entails that y2 is not free in � and the same holds for y1 by (NF2) in the
definition of normal form. We can therefore apply the inductive hypothesis on � to get
∃y1⟨⟨y1, t2⟩⟩ PUSH(��y2∃y1,�) = ∃y1⟨⟨y1, t2⟩⟩ � . ◻

Lemma 10 If � ∈ L
��
HDMAS

 . then NF(�) = �.

Proof By induction on the structure of � in normal form, following the recursive defini-
tion of NF . All cases are straightforward, except � = Q� . We consider � = ∃y1⟨⟨y1, t2⟩⟩ � ,
all other cases being analogous. By the IH, NF(⟨⟨y1, t2⟩⟩ �) = ⟨⟨y1, t2⟩⟩ � . Also, note that y1
does not occur free in � since � ∈ L

��
HDMAS

 . Therefore, using Lemmas 9 and 8, we succes-
sively obtain:

 ◻

Theorem 2 Let � be any formula in L
HDMAS

 . Then:

1. NF(�) ∈ L
��
HDMAS

.
2. NF(�) ≡� �� �.
3. NF(�) can be computed effectively and has length linearly bounded above by |�|.

Proof The first claim follows by straightforward induction on the structure of � , or just by
direct inspection of the function NF.

Claim 2. is proved by induction on the structure of � , following the cases of the recur-
sive definition of NF . The only non-trivial case is � = Q� , which follows immediately
from the IH, Theorem 1, and Lemma 8.

Lastly, Claim 3. follows by direct inspection of all cases in the definitions of the func-
tions PQE , PUSH and NF . ◻

We conclude the section by presenting the fixpoint characterizations of formulae
in (1), which provide an effective procedure for the model checking algorithm.

Theorem 3 For every terms t, t�, t�� ∈ T the following equivalences hold, where the for-
mulae on the left are in L��

HDMAS
 .

⟨⟨0, 5⟩⟩
�
(∀y2⟨⟨0, y2⟩⟩� p1) � (∀y2⟨⟨0, y2⟩⟩ � p2)

�
∨

(∃y1∀y2⟨⟨y1, y2⟩⟩ � p3 ∧ ¬∀y2⟨⟨3, y2⟩⟩� p1)

NF(�) =NF(∃y1⟨⟨y1, t2⟩⟩ �) = PQE(PUSH(∃y1, NF(⟨⟨y1, t2⟩⟩ �)))
=PQE(PUSH(∃y1, ⟨⟨y1, t2⟩⟩ �)) = PQE(∃y1⟨⟨y1, t2⟩⟩ �) = ∃y1⟨⟨y1, t2⟩⟩ � = �.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 26 of 34

 1. ⟨⟨t�, t��⟩⟩�� ≡ � ∧ ⟨⟨t�, t��⟩⟩� ⟨⟨t�, t��⟩⟩��

 2. ⟨⟨t�, t��⟩⟩� �� ≡ � ∨ (� ∧ ⟨⟨t�, t��⟩⟩� ⟨⟨t�, t��⟩⟩� ��)

 3. ∃y1⟨⟨y1, t⟩⟩�� ≡� �� � ∧ ∃y1⟨⟨y1, t⟩⟩�∃y1⟨⟨y1, t⟩⟩��

 4. ∀y2⟨⟨t, y2⟩⟩�� ≡� �� � ∧ ∀y2⟨⟨t, y2⟩⟩�∀y2⟨⟨t, y2⟩⟩��

 5. ∃y1⟨⟨y1, t⟩⟩� �� ≡� �� � ∨ (� ∧ ∃y1⟨⟨y1, t⟩⟩�∃y1⟨⟨y1, t⟩⟩� ��)

 6. ∀y2⟨⟨t, y2⟩⟩� �� ≡� �� � ∨ (� ∧ ∀y2⟨⟨t, y2⟩⟩�∀y2⟨⟨t, y2⟩⟩� ��)

 7. ∀y2∃y1⟨⟨y1, y2⟩⟩�� ≡� �� � ∧ ∀y2∃y1⟨⟨y1, y2⟩⟩�∀y2∃y1⟨⟨y1, y2⟩⟩��.
 8. ∃y1∀y2⟨⟨y1, y2⟩⟩�� ≡� �� � ∧ ∃y1∀y2⟨⟨y1, y2⟩⟩�∃y1∀y2⟨⟨y1, y2⟩⟩��.
 9. ∀y2∃y1⟨⟨y1, y2⟩⟩� �� ≡� �� � ∨ (� ∧ ∀y2∃y1⟨⟨y1, y2⟩⟩�∀y2∃y1⟨⟨y1, y2⟩⟩� ��).
 10. ∃y1∀y2⟨⟨y1, y2⟩⟩� �� ≡� �� � ∨ (� ∧ ∃y1∀y2⟨⟨y1, y2⟩⟩�∃y1∀y2⟨⟨y1, y2⟩⟩� ��).

Proof

1. Follows directly from the semantics, just like the respective fixpoint equivalence for
⟨⟨A⟩⟩� in ATL, cf. [8].

2. Likewise, just like the respective fixpoint equivalence for ⟨⟨A⟩⟩� in ATL.
3. First, note that y1 does not occur free in � since ∃y1⟨⟨y1, t⟩⟩�� ∈ L

��
HDMAS

.
 Now, we take the equivalence 1, where t� = y1 , and quantify both sides with ∃y1 ,

obtaining:
 ∃y1⟨⟨y1, t⟩⟩�� ≡ ∃y1(� ∧ ⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��) ≡ � ∧ ∃y1⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��.
 By applying Theorem 2 to both sides above and then using Lemmas 9, 10 and 8 we

obtain:

 The other cases are analogous.
 ◻

4 Model checking

In this section we develop an algorithm for model checking the fragment L��
HDMAS

 . By virtue of
Theorem 2, it will provide a model checking procedure for the whole L

HDMAS
.

Let � be any state formula of L
HDMAS

 , M be a hdmas, s a state and � an assignment in M .
The local model checking problem is the problem of deciding whether M, s, 𝜃 ⊧ 𝜑 , while
the global model checking problem is the computational problem that returns the set of

∃y1⟨⟨y1, t⟩⟩��

≡� �� NF(� ∧ ∃y1⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��)

= NF(�) ∧ NF(∃y1⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��)

= � ∧ PQE(PUSH(∃y1, NF(⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��)))

= � ∧ PQE(PUSH(∃y1, ⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩�NF(�)))

= � ∧ PQE(PUSH(∃y1, ⟨⟨y1, t⟩⟩� ⟨⟨y1, t⟩⟩��))

= � ∧ PQE(∃y1⟨⟨y1, t⟩⟩ PUSH(∃y1,� ⟨⟨y1, t⟩⟩��))

= � ∧ PQE(∃y1⟨⟨y1, t⟩⟩�∃y1⟨⟨y1, t⟩⟩ PUSH(∃y1,��))

= � ∧ PQE(∃y1⟨⟨y1, t⟩⟩�∃y1⟨⟨y1, t⟩⟩��)

≡ � ∧ ∃y1⟨⟨y1, t⟩⟩�∃y1⟨⟨y1, t⟩⟩��.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 27 of 34 34

states in M where the input formula � is satisfied, i.e. it is the problem of computing the state
extension of � in M given � , formally defined as:

For closed formulae � , [[�]]�
M

 does not depend on the assignment � , so we omit it and write
[[�]]

M
.

Algorithm 4 presented here solves the global model checking problem for all L��
HDMAS

formulae. The core sub-procedure of the algorithm is the function PREIMG which, given
a set Q of states in S and C,N ∈ ℕ , returns the set of states from which C controlla-
ble agents have a joint action, which, when played against any joint action of other N
uncontrollable agents produces an outcome state in Q . We will call that set the (C, N)-
controllable pre-image of Q . Often we will omit (C, N), when unspecified or fixed in
the context, and will write simply “the controllable pre-image of Q ”. We also extend
that notion to “ (t1, t2)-controllable pre-image”, for any terms t1, t2 , the values of which
are given by the assignment. When Q = [[�]]�

M
 , it computes the state extension of

⟨⟨t1, t2⟩⟩�� which is parameterised by terms t1, t2 (by means of their values �(t1) and
�(t2)). We then extend that further to quantified extensions of ⟨⟨t1, t2⟩⟩�� , by adding the
respective quantification to the result. In all cases, we reduce the problem of computing
the controllable pre-images to checking the truth of Presburger formulae.

We now proceed with some technical preparation. Recall that X+ is the set of n + 1
action counters. We will also be using auxiliary integer variables k1,… , kn, k� and
�1,… ,�n,��

 not contained in X+ . Each ki (respectively, �i) represents the number of
controllable (respectively, uncontrollable) agents performing action acti ; likewise for k

�

(resp., �
�
) for the number of controllable (resp., uncontrollable) agents performing the

idle action. Also, for each s in S and i ∈ {1,… , n} we introduce an auxiliary proposi-
tional constant di

s
 which is true if and only if action acti is available in s , i.e., acti ∈ d(s).

Definition 14 Given a hdmas M with a finite state space S , state s in S , a subset Q of S ,
and terms t1 , t2 , we define the following Presburger formulae:

The formula ���(M, s, t1, t2,Q) intuitively says that there is a tuple of available
actions at s such that when played by t1 many (controllable) agents and combined with
any tuple of available actions for t2 many (uncontrollable) agents, it satisfies a guard
of a transition leading to a state in Q. (The formula can be shortened somewhat, if the
quantification is restricted only to k− and �−variables that correspond to action counters
that appear in the guard gs

Q
 , which would improve the complexity estimates, as shown in

Sect. 5.) That formula and its extensions with quantifiers over t1 (when equal to y1) and
t2 (when equal to y2) will be used by the global model checking algorithm to compute
the controllable pre-images of state extensions.

[[𝜑]]𝜃
M

= {s ∈ S ∣ M, s, 𝜃 ⊧ 𝜑}.

gs
Q
(x1,… , xn) ∶=

⋁

s�∈Q

�(s, s�)(x1,… , xn).

𝖯𝗋𝖥(M, s, t1, t2,Q) ∶= ∃k1 …∃kn ∃k�

(n⋀

i=1

(ki ≠ 0 → di
s
) ∧

n∑

i=1

ki + k
�
= t1 ∧

∀�1 …∀�n ∀��

((n⋀

i=1

(�i ≠ 0 → di
s
) ∧

n∑

i=1

�i + �
�
= t2

)
→ gs

Q

(
(k1 + �1),… , (kn + �n)

)))

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 28 of 34

Example 6 Let us compute the state extension of the formula
� = ∃y1∀y2⟨⟨y1, y2⟩⟩� (p ∨ q) in the model M of Example 2. First, we compute

[[p ∨ q]]
M

= {s2, s3, s4, s5, s6} . Then, for each state s ∈ M we check the truth of the closed
Presburger formula ∃y1∀y2���(M, s, y1, y2, [[p ∨ q]]

M
) in M.

• ∃y1∀y2 ���(M, s1, y1, y2, [[p ∨ q]]
M
) is false, thus s1 does not belong to the ∃y1∀y2(y1, y2)

-controllable pre-image of [[p ∨ q]]
M

 . Indeed 11 uncontrollable agents can force the sys-
tem to stay in s1 when they all perform act3;

• ∃y1∀y2 ���(M, s2, y1, y2, [[p ∨ q]]
M
) is true, hence s2 belongs to the ∃y1∀y2(y1, y2)-con-

trollable pre-image of [[p ∨ q]]
M

 trivially because all outgoing transitions from s2 lead
to states in [[p ∨ q]]

M
;

• checking all other states likewise produces the final result:
 [[�]]

M
= {s2, s4, s5, s6}.

Algorithm 1Computing the controllable by t1 agents pre-image of Q against t2 agents (with
t1, t2 possibly quantified).
1: Inputs: hdmasM, t1, t2,∈ T , Q ⊆ S, assignment θ and prefix pfix
2: Output: the (t1, t2)-controllable pre-image Z ⊆ S of Q
3: procedure preImg(M, t1, t2, Q, θ,pfix)
4: if t1 = y1 does not appear in pfix then
5: t1 ← θ (t1)
6: end if
7: if t2 = y2 does not appear in pfix then
8: t2 ← θ (t2)
9: end if
10: Z ← ∅
11: for all s ∈ S do
12: if pfix PrF(M, s, t1, t2, Q) true then Z ← Z ∪ {s}
13: end if
14: end for
15: return Z
16: end procedure

Algorithm 2 Global model checking algorithm for closed formulae of the type
pfix t1, t2 Gψ .
1: Inputs: hdmasM, t1, t2 ∈ T , formula ψ , assignment θ and prefix pfix
2: Output: the set of states Z = [[pfix t1, t2 Gψ]]θM
3: procedure G- fixpoint(M, t1, t2, ψ, θ, pfix)
4: Q ← globalMC(M, ψ, θ)
5: W ← S
6: Z ← Q
7: while W Z do
8: W ← Z
9: Z ← preImg(M, t1, t2, pfix,W) ∩ Q
10: end while
11: return Z
12: end procedure

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 29 of 34 34

Algorithm 3 Global model checking algorithm for closed formulae of the type
pfix t1, t2 ψ1 Uψ2.
1: Inputs: hdmasM, t1, t2 ∈ T , formulae ψ1, ψ2, assignment θ and prefix pfix
2: Output: the set of states Z = [[pfix t1, t2 ψ1 Uψ2]]

θ
M

3: procedure U- fixpoint(M, t1, t2, ψ1, ψ2, θ,pfix)
4: Q1 ← globalMC(M, ψ1, θ)
5: Q2 ← globalMC(M, ψ2, θ)
6: W ← ∅
7: Z ← Q2
8: while Z W do
9: W ← Z
10: Z ← Q2 ∪ (preImg(M, t1, t2, pfix,W) ∩ Q1)
11: end while
12: return Z
13: end procedure

Algorithm 4 Global model checking algorithm for Lhdmas-formulae.
1: Inputs: hdmasM, formula ϕ and assignment θ
2: Output: the set of states Z = [[ϕ]]θM
3: procedure globalMC(M, ϕ, θ)
4: case ϕ of
5: p:
6: return {s ∈ S | p ∈ λ(s)}
7: ¬ψ :
8: return S \ globalMC(M, ψ, θ)
9: ψ1 ∧ ψ2:
10: Q1 ← globalMC(M, ψ1, θ)
11: Q2 ← globalMC(M, ψ2, θ)
12: return Q1 ∩ Q2
13: ψ1 ∨ ψ2:
14: Q1 ← globalMC(M, ψ1, θ)
15: Q2 ← globalMC(M, ψ2, θ)
16: return Q1 ∪ Q2
17: pfix t1, t2 Xψ :
18: Q ← globalMC(M, ψ, θ)
19: return preImg(M, t1, t2, Q, θ,pfix)
20: pfix t1, t2 Gψ :
21: return G- fixpoint(M, t1, t2, ψ, θ, pfix)
22: pfix t1, t2 ψ1 Uψ2:
23: return U- fixpoint(M, t1, t2, ψ1, ψ2, θ, pfix)
24: end case
25: end procedure

We now present the global model checking Algorithm 4. From here on, we denote by
�� �� any string from the set {�,∃y1,∀y2,∃y1∀y2,∀y2∃y1} , where � is the empty string. In
each of the cases of the algorithms, �� �� is assumed to be the longest quantifier prefix that
matches the input (sub)-formula.

1. The base case in Algorithm 4 (line 3) of � being an atomic proposition p simply returns
the set of states, the labels of which contain p.

2. The boolean cases are straightforward.
3. In the case of Nexttime formula �� ��⟨⟨t1, t2⟩⟩�� , the algorithm first computes the state

extension Q of the subformula � with a recursive call, and then the controllable pre-

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 30 of 34

image of Q . The computation of the respective controllable pre-image is shown in
Algorithm 1. First, if any of t1 and t2 is not a variable that appears (i.e., is bound) in
the quantifier prefix �� �� , the assignment � is applied to assign its value. Then, for each
state s , if the formula �� �� ���(M, s, t1, t2,Q) is true, the algorithm adds s to the set of
controllable states to be returned.

4. Algorithms 2 and 3 compute the extension of closed formulae of the type �� ��⟨⟨t1, t2⟩⟩ �
with temporal objective � starting with � and � respectively. Their structure is similar
to that for global model checking of such formulae in ATL (cf. e.g. the algorithm pre-
sented in [8, Chapter 9]). They apply the iterative procedures‘ of computing control-
lable pre-images that the fixpoint characterizations of the temporal operators � and �
yield (ibid.). This is possible for quantified formulae as the quantifiers in formulae from
L
��
HDMAS

 are propagated inside the temporal operators according to the respective fixpoint
equivalences, proved in Theorem 3.

Theorem 4 Let M be a hdmas, � a L��
HDMAS

-formula and � an assignment. Then

Proof By induction on the structure of L��
HDMAS

 formulae. The boolean cases are straight-
forward. For nexttime formulae �� ��⟨⟨t1, t2⟩⟩�� the claim immediately follows from the
correctness of Algorithm 1, implied by the semantics of ���(M, t1, t2, �� ��, [[�]]

M
) . For

formulae of the type �� ��⟨⟨t1, t2⟩⟩�� and �� ��⟨⟨t1, t2⟩⟩�1 ��2 , it follows from the correct-
ness of Algorithms 2 and 3, justified by Theorem 3. ◻

For model checking of the full language L
HDMAS

 , Algorithm 4 is combined with func-
tion NF , transforming constructively any L

HDMAS
-formula � to ��� in L��

HDMAS
 , equivalent

in the finite to � by virtue of Theorem 2.

Example 7 We illustrate Algorithm 4 by sketching its application to the formula
� = ⟨⟨7, 4⟩⟩� (∀y2∃y1⟨⟨y1, y2⟩⟩� p) in the hdmas model M in Fig. 2. We fix any assign-
ment � (it does not play any role, since � is closed). The outer formula is a � formula,
thus line 18 calls recursively the global model checking on the subformula in the temporal
objective. Line 4 of G-FIXPOINT initializes Z ← {s2, s3, s4} , viz., states labeled with p and
W ← S = {s1,… , s6} . Since W ⊈ Z , we enter the while cycle computing the fixpoint. In
the numbered list below, each item i) correspond to the ith iteration cycle.

1. • W ← {s2,s3,s4};
• PREIMG(M,y1,y2,{s2,s3,s4},�,∀y2∃y1)={s2,s4,s5};
• Z ← {s2, s4, s5} ∩ {s2, s3, s4} = {s2, s4}.

2. • W ← {s2, s4};
• PREIMG(M,y1,y2,{s2,s4}, �,∀y2∃y1) = {s2,s4,s5};
• Z ← {s2, s4, s5} ∩ {s2, s3, s4} = {s2, s4}.

 Now W ← Z then the fixpoint is reached.

[[�]]�
M

= GLOBALMC(M,�, �)

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 31 of 34 34

The set Z is then returned, so [[∀y2∃y1⟨⟨y1, y2⟩⟩� p]]
M

= {s2, s4} . We now move to the
outer next formula for which line 19 of globalmC algorithm calls the preImg procedure.
For each s ∈ S the truth of formula ���(M, s, 7, 4, {s2, s4}) is called. The final result is
[[�]]

M
= {s4, s5}.

Example 8 Consider � = ⟨⟨6, 3⟩⟩�
�
∃y1⟨⟨y1,10⟩⟩(∀y2∃y1⟨⟨y1, y2⟩⟩� p)�(∀y2⟨⟨0, y2⟩⟩�q)

�
 . We

start by computing the extension of ∀y2⟨⟨0, y2⟩⟩� q , following Algorithm 2.
From lines 4 − −6 : Q ← [[q]]

M
= {s5, s6} ; W ← {s1,… , s6} , and Z ← {s5, s6}.

Since W ⊈ Z , we enter the iteration cycle:

1. • W ← {s5, s6};
• PREIMG(M, 0, y2, {s5, s6}, �,∀y2) = {s6}

• Z ← {s6} ∩ {s5, s6} = {s6}.

2. • W ← {s6};
• PREIMG(M, 0, y2, {s6}, �,∀y2) = {s6};
• Z ← {s6} ∩ {s5, s6} = {s6}.

 The fixpoint is reached and [[∀y2⟨⟨0, y2⟩⟩� q]]
M

= {s6}.

From Example 7 we get [[∀y2∃y1⟨⟨y1, y2⟩⟩� p]]
M

= {s2, s4} . We then move to computing
the extension of the until formula, following Algorithm 3. From lines 4 − −7:

Q1 ← {s2, s4} ; Q2 ← {s6} ; W ← ∅ and Z ← {s6}.
Since Z ⊈ W , we enter the iteration cycle:

1. • W ← {s6};
• PREIMG(M, y1, 10, {s6}, �,∃y1) = {s4, s6}.
 Indeed, from s4 , e.g., 40 controllable agents performing act1 guarantee that guard

g4 is satisfied.
• Z ← {s6} ∪ ({s4, s6} ∩ {s2, s4}) = {s4, s6}.

2. • W ← {s4, s6};
• PREIMG(M, y1, 10, {s4, s6}, �,∃y1) = {s2, s4, s6};
• Z ← {s6} ∪ ({s2, s4, s6} ∩ {s2, s4}) = {s2, s4, s6}.

3. • W ← {s2, s4, s6};
• PREIMG(M,y1,10,{s2,s4,s6},�,∃y1) = {s2,s4,s5,s6};
• Z ← {s6} ∪ ({s2, s4, s5, s6} ∩ {s2, s4}) = {s2, s4, s6}.

 The fixpoint is reached. Thus:

Lastly, we call PREIMG(M, 6, 3, {s2, s4, s6}, �, �) to compute [[�]]
M

= {s1, s4, s5, s6}.

[[∃y1⟨⟨y1,10⟩⟩(∀y2∃y1⟨⟨y1, y2⟩⟩� p)�(∀y2⟨⟨0, y2⟩⟩�q)]]M = {s2, s4, s6}.

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 32 of 34

5 Complexity estimates

As well-known from [1], the time complexity of model checking of ATL formulae is lin-
ear in both the size of the model10 and the length of the formula. Note that in standard
concurrent game models the number of agents is fixed and the transition relation is repre-
sented explicitly, by means of transitions from each state labelled with each action profile.
In hdmas models, however, the transitions are represented symbolically, in terms of the
guards that determine them. An explicit representation would be infinite, in general. Thus,
the question of how to measure the size of hdmas models arises. Given a hdmas M , we
consider the following parameters: the size |S| of the state space; the size n of the action
set Act , and the size |�| of the symbolic transition guard function. The latter is defined as
the sum of the length of all guards appearing in � , where we assume a binary encoding of
numbers.

Given a L��
HDMAS

 formula � and a hdmas M , the number of fixpoint computations in the
global model checking algorithm is bounded by the length of |�| . Each computation exe-
cutes the while cycle at most |S| times, and at each iteration, the function PREIMAGE is
called. The pre-image algorithm cycles through all states again and invokes model check-
ing of a ��� formula ��� each time. In the worst case |���| = |�| , as gs

Q
 could be the dis-

junction of almost all guards in M . The complexity of checking the truth of a ���-formula
depends not just on its size, but more precisely on the numbers of quantifier alternations
and of quantified variables in any quantifier block (cf. [12]). In our case, the maximum
number of quantifier alternations is 4, while the number of variables in any quantifier block
is at most n + 1 . By applying results from [11] (cf. also [12]), these yield a worst case com-
plexity ����

3
 , or more precisely STA(∗, 2|�|O(1) , 3) when the model is not fixed, or at least n

is unbounded, but it is down to STA(∗, |�|O(1), 3) when n is fixed.
Thus, the number of variables and quantifier alternation depth in ���-formulas crucially

affect the complexity of model checking of L��
HDMAS

 - formulae. We can distinguish the fol-
lowing cases of lower complexity bounds:

1. When no quantifier patterns ∃y1∀y2 occur, the maximal alternation depth is 3, hence the
complexity is reduced to STA(∗, 2|�|O(1) , 2) , respectively STA(∗, |�|O(1), 2).

2. If no quantification ∀y2 is allowed, but the number of uncontrollable agents is a
parameter, the maximal alternation depth is 2, hence the complexity is reduced to
STA(∗, 2|�|

O(1)

, 1) , respectively STA(∗, |�|O(1), 1).
3. In the case when the number of either controllable or uncontrollable agents is fixed or

bounded, the resulting ���-formulas become either existential or universal (by replacing
the quantifiers over the actions of the bounded set of agents with conjunctions, resp.
disjunctions), In these cases, the complexity drops to NP-complete if the number of
actions is unbounded, resp. P-complete if that number is fixed or bounded.

6 Concluding remarks

We have proposed and explored a new, generic framework for modelling, formal specifi-
cation and verification of dynamic multi-agent systems, where agents can freely join and
leave during the evolution of the system. We consider indistinguishable agents and there-
fore the system evolution is affected only by the number of agents performing actions. As

10 The simplified algorithm presented here works in quadratic time.

Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

Page 33 of 34 34

neither of the currently available logics are well-suited for expressing properties of such
dynamic models, we have devised a variation of the alternating time temporal logic ATL
to specify strategic abilities of coalitions of controllable versus non-controllable of agents.

The framework and results presented here are amenable to various extensions, e.g.
allowing any ���-formulae as guards in hdmas models; allowing more expressive lan-
guages, e.g. with arbitrary LTL or parity objectives, with somewhat more liberal quantifi-
cation patterns in L

HDMAS
 (i.e., formulae of the type ∀y⟨⟨y, y⟩⟩�� and ∃y⟨⟨y, y⟩⟩�� can be

added easily), adding several super-agents with controllable sets of agents, etc. The main
technical challenge for some of these extensions would be to lift or extend the model check-
ing procedure for them. Still, in particular, extending the present framework to include
any finite number of different agent “types”, with each type having a different protocol,
is rather straightforward, as follows. Let us fix a set of agent types {T1,… , Tm} . Now each
agent belong to one specific type. Definition 4 will then have d1,… , dm action availability
functions, one for each type, so that agents belonging to the same type have the same set
of available actions in each system state, but agents belonging to different types might have
different available actions. Lastly the logic will now involve m variables for the control-
lable agents of each type, and m other variables for the non-controllable ones of each type.
The same restrictions on the use of these variables will apply in this extended logic and the
notion of normal form, the technical results related to it, and the model checking algorithm
for formulae in normal form, extend as expected to the multi-type case.

Of the numerous possible applications we only mention a natural link with the Colo-
nel Blotto games [5, 20], where two players simultaneously distribute military force units
across n battlefields, and in each battlefield the player (if any) that has allocated the higher
number of units wins. As suggested by our fortress example, our framework can be readily
applied to model and solve algorithmically multi-player and multiple-round extensions of
Colonel Blotto games, which we leave to future work. More generally, dynamic resource
allocation games [3] as well as verification of parameterised fault-tolerance in multi-agent
systems [16] seem naturally amenable to applications of the present work.

Acknowledgements Open access funding provided by Stockholm University. This work was supported by
research Grant 2015-04388 of the Swedish Research Council. We thank the reviewers for constructive com-
ments and suggestions for improvement of the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the
ACM, 49(5), 672–713.

 2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M. J., & Peralta, R. (2004). Computation in networks
of passively mobile finite-state sensors. In Proceedings of the twenty-third ACM PODC St. John’s,
Canada (pp. 290–299).

 3. Avni, G., Henzinger, T. A., & Kupferman, O. (2016). Dynamic resource allocation games. In M. Gair-
ing & R. Savani (Eds.), Algorithmic game theory (pp. 153–166). Berlin: Springer.

http://creativecommons.org/licenses/by/4.0/

 Autonomous Agents and Multi-Agent Systems (2020) 34:34

1 3

 34 Page 34 of 34

 4. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., et al. (2016). Decidability in
parameterized verification. SIGACT News, 47(2), 53–64.

 5. Borel, E. (1953). The theory of play and integral equations with skew symmetric kernels. Economet-
rica: Journal of the Econometric Society, 21, 97–100.

 6. Bulling, N., Goranko, V., & Jamroga, W. (2015). Logics for reasoning about strategic abilities in multi-
player games. In J. van Benthem, S. Ghosh, & R. Verbrugge (Eds.), Models of strategic reasoning:
Logics, games, and communities (pp. 93–136). Berlin: Springer.

 7. De Giacomo, G., Vardi, M. Y., Felli, P., Alechina, N., & Logan, B. (2018). Synthesis of orchestrations
of transducers for manufacturing. In Proceedings of AAAI-18, New Orleans, USA (pp. 6161–6168).

 8. Demri, S., Goranko, V., & Lange, M. (2016). Temporal Logics in Computer Science. Cambridge Tracts
in Theoretical Computer Science. Cambridge: Cambridge University Press.

 9. Esparza, J., Ganty, P., Leroux, J., & Majumdar, R. (2016). Model checking population protocols. In
36th IARCS annual conference on FSTTCS, Chennai, India (pp. 27:1–27:14).

 10. German, S. M., & Sistla, A. P. (1992). Reasoning about systems with many processes. Journal of the
ACM, 39(3), 675–735.

 11. Haase, C. (2014). Subclasses of Presburger arithmetic and the weak EXP hierarchy. In Proceedings of
CSL-LICS’14 (pp. 47:1–47:10).

 12. Haase, C. (2018). A survival guide to Presburger arithmetic. SIGLOG News, 5(3), 67–82.
 13. Jamroga, W., Ågotnes, T. (2007). Modular interpreted systems. In Proceedings of AAMAS (pp. 131:1–

131:8). ACM
 14. Jamroga, W., Knapik, M., & Kurpiewski, D. (2018). Model checking the SELENE e-voting protocol

in multi-agent logics. In Proceedings of the third international joint conference on electronic voting,
E-Vote-ID 2018. Lecture notes in computer science (Vol. 11143, pp. 100–116). Springer.

 15. Kouvaros, P., & Lomuscio, A. (2016). Parameterised verification for multi-agent systems. Artificial
Intelligence, 234, 152–189.

 16. Kouvaros, P., & Lomuscio, A. (2017). Verifying fault-tolerance in parameterised multi-agent systems.
Proceedings of IJCAI, 2017, 288–294.

 17. Kouvaros, P., Lomuscio, A., Pirovano, E., & Punchihewa, H. (2019). Formal verification of open
multi-agent systems. In Proceedings of AAMAS’19 (pp. 179–187).

 18. Pedersen, T., & Dyrkolbotn, S. K. (2013). Agents homogeneous: A procedurally anonymous semantics
characterizing the homogeneous fragment of ATL. In Proceedings of PRIMA (Vol. 2013, pp. 245–259).

 19. Raskin, J., Samuelides, M., & Begin, L. V. (2005). Games for counting abstractions. Electronic Notes
in Theoretical Computer Science, 128(6), 69–85.

 20. Roberson, B. (2006). The Colonel Blotto game. Economic Theory, 29(1), 1–24.
 21. Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2011). A survey on sensor networks from a

multiagent perspective. The Computer Journal, 54(3), 455–470. https ://doi.org/10.1093/comjn l/bxq01 8.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1093/comjnl/bxq018

	Logic-based specification and verification of homogeneous dynamic multi-agent systems
	Abstract
	1 Introduction
	1.1 The framework
	1.2 Structure and content of the paper
	1.3 Related work

	2 Preliminaries and modelling framework
	3 Logic for specification and verification of HDMAS
	3.1 Formal syntax and semantics
	3.2 Normal form and monotonicity properties
	3.3 Transformation to normal forms and fixpoint equivalences

	4 Model checking
	5 Complexity estimates
	6 Concluding remarks
	Acknowledgements
	References

