
V Goranko

ESSAI 2024 course: Logic-based specification
and verification of multi-agent systems

Lecture 1: Introduction. Multi-agent transition
systems and concurrent game models.

The alternating time temporal logic ATL

Valentin Goranko
Stockholm University

2nd European Summer School on Artificial Intelligence
ESSAI 2024

Athens, July 15-19, 2024

1 of 34

V Goranko

Overview of the lecture

I Introduction: agents and multi-agent systems (MAS),

I Multi-agent transition systems and concurrent game models

I The temporal logic ATL for reasoning about strategic abilities in multi-agent
systems

I Logical decision problems for ATL and their algorithmic solutions.

I Solving the model checking problem for ATL.

2 of 34

V Goranko

Introduction: agents and multi-agent systems

3 of 34

V Goranko

Introduction: (intelligent) agents

4 of 34

V Goranko

Introduction: multi-agent systems (MAS)

Multi-agent
systems

5 of 34

V Goranko

Introduction: Agents and multi-agent systems

I Agents:

� relatively autonomous.

� have knowledge/information: about the system, themselves, and the other
agents (incl. the environment).

� have abilities to perform certain actions.

� have goals, and can act in their pursuit.

� can plan their actions ahead and can execute plans (strategies).

� Can communicate, i.e. exchange information and cooperate with other agents.

I Multi-agent system (MAS): a set of agents acting in a common framework
(’system’), in pursuit of their goals, by following individual or collective strategies.

Examples: open systems, distributed systems, concurrent processes, computer
networks, social networks, stock markets, etc.

6 of 34

V Goranko

Why using logic for multi-agent systems?

Formal logic provides a generic and uniform framework for:

I Formal representation and modelling of multi-agent systems.

I Formal specification of properties of MAS in logical languages.

I Conceptual analysis of multi-agent systems and the interaction of rational
agents in them.

I Formal logical reasoning about multi-agent systems,
using systems of deduction and logical decision procedures.

I Formal verification of properties of MAS by model checking.
Applications e.g. to automated design of agents’ strategies.

I Applications of constructive satisfiability testing to synthesis of agents,
communication protocols, controllers, or entire multi-agent systems
satisfying formally specified behavior or objectives.

7 of 34

V Goranko

Modelling multi-agent strategic interaction:

Multi-agent transition systems / concurrent game models

8 of 34

V Goranko

Multi-agent transition systems intuitively

� Agents (players) act in a common environment (the “system”)
by taking actions in a discrete succession of rounds.

� At any moment the system is in a current state.

� At the current state all players take simultaneously actions, each choosing
from a set of available actions.

� The resulting collective action effects a transition to a successor state,
where the same happens, resulting in a new transition, etc.

This dynamics is captured by a multi-player transition system.

9 of 34

V Goranko

Concurrent Game Models formally

〈A,States,Act, act, out,Prop, L〉
where:

I A is a finite set of agents (players);

I States is a set of system states;

I Act is a set of possible actions. An action profile is a mapping
σ : A→ Act, i.e. a tuple of actions, one for each agent.

I act : A× States→ P(Act) – mapping assigning to every agent i and state s
a non-empty set act(i, s) of actions available to i at s.

An action profile σ is available at s if σ(i) ∈ act(i, s), for each i ∈ A.

I out : States→ (ActA− → States) is a global outcome (partial) function,
assigning for every s ∈ States and an available action profile σ the successor
(outcome) state out(s, σ).

I Prop is the set of atomic propositions;

I L : States→ P(Prop) is the labeling (state description) function.

10 of 34

V Goranko

Example: a two-agent transition system

Two robots, Yin and Yang, are pushing a trolley along tracks.
Usually Yin pushes clockwise and Yang pushes anticlockwise, with the same force.
Exception: when both push at either state s1 or s2 the trolley moves to s5.

s0
{}

s5
{Goal}

s2
{}

s1
{}

s4
{Park}

s3
{Park}

(push,wait)

(wait,
push)

(wait,wait)
(push,push)

(wait,
push)

(push,wait)

(wait,wait)

(wait,wait)

(park,push)
(park,wait)

(push,push)

(wait,push)

(push,wait)

(wait,wait)

(wait,wait)
(wait,wait)

(push,push)

(push,park)
(wait,park)

I A={Yin,Yang}; States ={s0, s1, s2, s3, s4, s5}; Act = {push,wait, park}.
I Action function: as on the figure. Outcome function: as on the figure.

I Prop={Goal,Park}. L : States→ P(Prop) defined as on the figure:
L(s0) = L(s1) = L(s2) = ∅, L(s5) = {Goal}, L(s3) = L(s4) = {Park}.

11 of 34

V Goranko

Plays and strategies in concurrent game models

Given a CGM M = 〈A,States,Act, act, out,Prop, L〉 and a state s ∈ States:

I A state s ′ in M is a successor of the state s if there is an available action
profile (σ1, ..., σn) ∈ Σs such that s ′ = out(s;σ1, ..., σn).

The set of successors of s: succ(s).

I A play in M: an infinite sequence s0, s1, ..., such that si+1 ∈ succ(si).

I A (perfect recall) strategy in M for an agent i ∈ A:
a mapping fi : States+ → Act that assigns to every finite sequence of states
s0, ..., sn an action fi(〈s0, ..., sn〉) ∈ act(sn, i).

A no recall (memoryless, positional) strategy is one that prescribes actions
only depending on the current state.

I A collective strategy in M for a set (coalition) of agents C:
a family of strategies fC = {fi}i∈C.

I A collective strategy fC enables a play λ if that play can occur
as a result of the players in C following their strategies in fC.

12 of 34

V Goranko

The multi-agent logic of strategic reasoning ATL(*)

13 of 34

V Goranko

The multi-agent logic of strategic reasoning ATL(*)

Alternating-time Temporal Logic ATL(*): introduced by Alur, Henzinger, and
Kupferman, during 1997-2002. Extends propositional logic PL with:

I Temporal operators: X (next time), G (forever), U (until)

I Coalitional strategic path operators: 〈〈A〉〉 for any group of agents A. We
will write 〈〈i〉〉 instead of 〈〈{i}〉〉.

Syntax of the full version ATL∗:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈A〉〉ϕ | Xϕ | Gϕ | ϕ1 U ϕ2

Syntax of the restricted version ATL:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕ1 U ϕ2

Remark: the computation tree logic CTL(*) can be regarded as a fragment of
ATL(*), where:
- the existential path quantifier E is identified with 〈〈A〉〉,
- the universal path quantifier A is identified with 〈〈∅〉〉.
One agent suffices.

14 of 34

V Goranko

Semantics of ATL intuitively

〈〈A〉〉ϕ: “The coalition A has a collective strategy to guarantee the satisfaction of
the goal ϕ on every play enabled by that strategy.”

In particular:

I 〈〈A〉〉Xϕ: ‘The coalition A has a collective action that ensures an outcome
(state) satisfying ϕ’,

I 〈〈A〉〉Gϕ: ‘The coalition A has a collective strategy to maintain forever
outcomes satisfying ϕ’,

I 〈〈A〉〉ψ U ϕ: ‘The coalition A has a collective strategy to eventually reach an
outcome satisfying ϕ, while meanwhile maintaining the truth of ψ’.

Definable operators:

I 〈〈A〉〉Fϕ :=〈〈A〉〉>U ϕ, meaning ‘The coalition A has a collective strategy to
eventually reach an outcome satisfying ϕ’.

I [[A]]ϕ := ¬〈〈A〉〉¬ϕ, meaning:
‘The coalition A cannot prevent the satisfaction of ϕ’.

15 of 34

V Goranko

Expressing properties in ATL: some examples

〈〈Yin〉〉F Park→ [[Yang]]F Park

If Yin has a strategy to eventually park the trolley,
then Yang cannot prevent the parking of the trolley.

¬〈〈Yin〉〉X Goal ∧ ¬〈〈Yang〉〉X Goal ∧ 〈〈{Yin,Yang}〉〉X Goal

Neither Yin nor Yang has has an action ensuring an outcome satisfying Goal,
but they both have a collective action ensuring such outcome.
(True at states s1 and s2 in the example.)

(〈〈Yin〉〉G Safe ∧ 〈〈Yin〉〉F Goal)→〈〈Yin〉〉(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and has a strategy to

eventually achieve its goal, then Yin has a strategy to keep the system in safe states

until it achieves its goal.

(〈〈Yin〉〉G Safe ∧ 〈〈Yang〉〉F Goal)→〈〈Yin,Yang〉〉(Safe U Goal)

If Yin has a strategy to keep the system in safe states forever and Yang has a strategy

to eventually reach a goal state, then Yin and Yang together have a strategy to stay in

safe states until a goal state is reached.

16 of 34

V Goranko

ATL semantics: formally

Truth of a formula ψ at a state s of a CGM M:

M, s � ψ

Defined by structural induction on formulae, via the clauses:

I M, s � 〈〈A〉〉Xϕ iff there exists a collective strategy FA = {fi}i∈A such that
M, s1 � ϕ for every s-play s, s1, ... enabled by FA.

I M, s � 〈〈A〉〉Gϕ iff there exists a collective strategy FA = {fi}i∈A such that
M, si � ϕ for every s-play s, s1, ... enabled by FA and i ≥ 0.

I M, s � 〈〈A〉〉ϕU ψ iff there exists a collective strategy FA = {fi}i∈A such that
for every s-play s, s1, ... enabled by FA there is i ≥ 0 for which M, si � ψ
and for all j such that 0 ≤ j < i ,M, sj � ϕ.

For the semantics of ATL memoryless strategies suffice.

17 of 34

V Goranko

Deciding the truth of ATL formulae in a CGM: examples

s0
{pos0}

s5
{Goal}

s2
{pos2}

s1
{pos1}

s4
{Park}

s3
{Park}

(push,wait)

(wait,
push)

(wait,wait)
(push,push)

(wait,
push)

(push,wait)

(wait,wait)

(wait,wait)

(park,push)
(park,wait)

(push,push)

(wait,push)

(push,wait)

(wait,wait)

(wait,wait)

(wait,wait)

(push,push)

(push,park)
(wait,park)

M, s0

?

|= 〈〈Yin〉〉X pos1 N M, s0

?

|= 〈〈Yin,Yang〉〉X pos1 Y

M, s0

?

|= 〈〈Yin,Yang〉〉F Goal Y M, s0

?

|= 〈〈Yin〉〉G ¬Park Y

M, s0

?

|=〈〈Yin,Yang〉〉((¬pos1) U Park) Y; M, s0

?

|= 〈〈Yin〉〉F 〈〈Yang〉〉F Park N

M, s0

?

|= 〈〈Yin,Yang〉〉G(¬pos1 ∧ 〈〈Yin,Yang〉〉Xpos1) Y
18 of 34

V Goranko

Deciding the truth of ATL formulae: exercises

Two agents: 1 and 2. Two types of actions: a, b.

s1

{p}

s2

{p,q}
s3

{q}

s4

{}

(a,a)

(a,b)
(b,a)

(b,b)

(b,a)

(b,b)

(a,a)
(a,b)

(b,a)
(b,b)

(a,a)
(a,b)

(b,a)
(a,a)(a,b)(b,b)

M, s1

?

|= 〈〈1〉〉Fq ∨ 〈〈2〉〉G¬q No M, s1

?

|= 〈〈1〉〉Gp ∧ 〈〈2〉〉Gp No

M, s3

?

|= 〈〈∅〉〉F〈〈2〉〉Xp Yes M, s2

?

|= 〈〈1〉〉G〈〈1, 2〉〉(¬qUp) Yes

19 of 34

V Goranko

Extending the semantics of ATL*

Two types of formulae in ATL*:

State formulae ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, where A ⊆ A and p ∈ Prop.

Path formulae: γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | Gγ | γ U γ

The semantics of state formulae: as in ATL.

The semantics of path formulae: defined on paths (plays), as in LTL.

ATL* is much more expressive and has more complex semantics.

Strategies generally need memory. Example: 〈〈a〉〉(Fp ∧ Fq).
(Exercise: find a simple model where this is true at some state if memory-based
strategies are used, but false if only positional strategies are allowed.)

Nesting of strategic operators causes higher complexity and also some problems
with the semantics.

20 of 34

V Goranko

Logical decision problems in ATL

21 of 34

V Goranko

Validity and satisfiability in ATL

An ATL formula φ is:

I (logically) valid if M, s � φ for every CGM M and a state s ∈M.

I satisfiable if M, s � φ for some CGM M and a state s ∈M.

22 of 34

V Goranko

Axiomatizing the validities of ATL: local axioms

Pauly (2000) introduced the Coalition Logic CL, which is essentially the
〈〈〉〉X -fragment of ATL. Pauly’s complete axiomatization of CL extends the
classical propositional logic with the following axioms and rule:

I A-Maximality: ¬〈〈∅〉〉X¬ϕ→ 〈〈A〉〉Xϕ

I Safety: ¬〈〈C 〉〉X⊥

I Liveness: 〈〈C 〉〉X>

I Superadditivity: for any C1,C2 ⊆ A such that C1 ∩ C2 = ∅:

(〈〈C1〉〉Xϕ1 ∧ 〈〈C2〉〉Xϕ2)→ 〈〈C1 ∪ C2〉〉X (ϕ1 ∧ ϕ2)

I 〈〈C 〉〉X -Monotonicity Rule:

ϕ1 → ϕ2

〈〈C 〉〉Xϕ1 → 〈〈C 〉〉Xϕ2

23 of 34

V Goranko

Axiomatizing the validities of ATL: fixpoint axioms

The axiomatization of CL extends to one for ATL with the following fixed point
axioms and rules for G and U :

(FPG) 〈〈C 〉〉Gϕ↔ ϕ ∧ 〈〈C 〉〉X 〈〈C 〉〉Gϕ.

(GFPG) 〈〈∅〉〉G(θ → (ϕ ∧ 〈〈C 〉〉X θ))→ 〈〈∅〉〉G(θ → 〈〈C 〉〉Gϕ),

(FPU) 〈〈C 〉〉ψ U ϕ↔ ϕ ∨ (ψ ∧ 〈〈C 〉〉X 〈〈C 〉〉ψ U ϕ),

(LFPU) 〈〈∅〉〉G((ϕ ∨ (ψ ∧ 〈〈C 〉〉X θ))→ θ)→ 〈〈∅〉〉G(〈〈C 〉〉ψ U ϕ→ θ),

plus the rule 〈〈∅〉〉G-Necessitation:

ϕ

〈〈∅〉〉Gϕ
.

Completeness: VG and G. van Drimmelen (TCS’2006).

24 of 34

V Goranko

Logical decision problems in ATL

I Local model checking: given an ATL formula ψ, a finite CGM M and a state
s ∈M, determine whether M, s � ψ.

I Global model checking: given an ATL formula ψ and a finite CGM M,
determine the set ‖ψ‖M of states in M where ψ is true.

Used for automated verification of formal specifications in open and multi-agent
systems and synthesis of strategies and protocols.

I Satisfiability testing: given an ATL formula ψ, determine whether ψ is
satisfiable, i.e., whether M, s � ψ for some CGM M and a state s ∈M.

I Constructive satisfiability testing: given an ATL formula ψ, determine whether
ψ is satisfiable, and if so, construct a CGM M and a state s ∈M such that
M, s � ψ.

Used for synthesis of multi-agent systems and controllers from formal
specifications.

25 of 34

V Goranko

Solving the model checking problem for ATL

I Alur, Henzinger, and Kupferman [JACM’2002] extend the labeling algorithm
for model checking for CTL to ATL and show that the model checking of ATL is
PTIME-complete.

I They also extend the method to Fair ATL (ATL with fairness constraints) and
to the full ATL∗ and show that:

- model checking of Fair ATL is PSPACE-complete

- model-checking ATL∗ is 2EXPTIME-complete
(even in the special case of turn-based synchronous models).

I Furthermore, under assumptions of incomplete information and perfect
memory, model checking of ATL becomes undecidable.

26 of 34

V Goranko

Solving the satisfiability problem for ATL

VG and G. van Drimmelen [TCS’2006]: an algorithm for deciding SAT, using
alternating tree automata and bounding-branching model property.

I VG and D. Shkatov [ToCL’2010]: constructive and practically usable
tableau-based method for deciding for ATL in EXPTIME.

I VG, S. Cerrito, and A. David [ToCL’2014]: extended to ATL+

(with goals being boolean combinations of ATL goals).

Extended to ATL* and implemented in 2013-2015 by Amélie David (Univ.
d’Evry Val d’Essonne). Links:

for ATL: http://atila.ibisc.univ-evry.fr/tableau_ATL

for ATL*: https://atila.ibisc.univ-evry.fr/tableau_ATL_star

Sven Schewe [ICALP’2008]: SAT for ATL∗ is 2EXPTIME-complete. Uses
automata on infinite trees. Implementation?

27 of 34

http://atila.ibisc.univ-evry.fr/tableau_ATL
https://atila.ibisc.univ-evry.fr/tableau_ATL_star

V Goranko

Addendum:

Solving the model checking problem for ATL

28 of 34

V Goranko

The operator Pre

Given a CGM M = 〈A,S ,Act, d , out,Prop, L〉 a coalition C ⊆ A and a set
X ⊆ S , we define Pre(M,C ,X) as the set of states from which the coalition C
has a collective action that guarantees the outcome to be in X , no matter how
the remaining agents act.

Formally:

Pre(M,C ,X) := {s ∈ S | ∃αC∀αA\Cout(s, αC , αA\C) ∈ X}

where αC denotes a vector of moves for the set of agents C .

In particular, Pre(M,C , ‖ϕM‖) is precisely the set of states in M where the
formula 〈〈C 〉〉Xϕ is true.

29 of 34

V Goranko

The temporal operators as fixed points: 〈〈C 〉〉G

The validity 〈〈C 〉〉Gϕ↔ ϕ ∧ 〈〈C 〉〉X 〈〈C 〉〉Gϕ

means that ‖〈〈C 〉〉Gϕ‖M is a fixed point of the operator

GC ,ϕ(Z) := ‖ϕ‖M ∩ Pre(M,C ,Z)

The validity 〈〈∅〉〉G(θ → (ϕ ∧ 〈〈C 〉〉X θ))→ 〈〈∅〉〉G(θ → 〈〈C 〉〉Gϕ)

means that ‖〈〈C 〉〉Gϕ‖M is the greatest (post)-fixed point of GC ,ϕ.

Therefore: ‖〈〈C 〉〉Gϕ‖M can be computed by starting from Z = States and
iteratively applying GC ,ϕ until stabilization.

It suffices to reach a stage where Z ⊆ GC ,ϕ(Z).

Then GC ,ϕ(Z) = Z will hold.

30 of 34

V Goranko

The temporal operators as fixed points: 〈〈C 〉〉 U

The validity 〈〈C 〉〉ψ U ϕ↔ ϕ ∨ (ψ ∧ 〈〈C 〉〉X 〈〈C 〉〉ψ U ϕ)

means that ‖〈〈C 〉〉ψ U ϕ‖M is a fixed point of the operator

UC ,ϕ,ψ(Z) := ‖ϕ‖M ∪ (‖ψ‖M ∩ Pre(M,C ,Z))

The validity 〈〈∅〉〉G((ϕ ∨ (ψ ∧ 〈〈C 〉〉X θ))→ θ)→ 〈〈∅〉〉G(〈〈C 〉〉ψ U ϕ→ θ)

means that ‖〈〈C 〉〉ψ U ϕ‖M is the least (pre)-fixed point of UC ,ϕ,ψ.

Therefore: ‖〈〈C 〉〉ψ U ϕ‖M can be computed by starting from Z = ∅ and
iteratively applying UC ,ϕ,ψ until stabilization.

It suffices to reach a stage where UC ,ϕ,ψ(Z) ⊆ Z .

Then UC ,ϕ,ψ(Z) = Z will hold.

31 of 34

V Goranko

Algorithm for global model checking of ATL formulae

1: procedure GlobalMC(ATL)(M, ϕ)
2: case ϕ = p ∈ Prop : return {s ∈ States | p ∈ L(s)}
3: case ϕ = ¬ψ : return S \ ‖ψ‖M
4: case ϕ = ψ1 ∨ ψ2 : return ‖ψ1‖M ∪ ‖ψ2‖M
5: case ϕ = 〈〈A〉〉Xψ : return Pre(M,A, ‖ψ‖M)
6: case ϕ = 〈〈A〉〉Gψ: ρ← States; τ ← ‖ψ‖M;
7: while ρ 6⊆ τ do
8: ρ← τ ; τ ← Pre(M,A, ρ) ∩ ‖ψ‖M
9: end while; return ρ

10: end case
11: case ϕ = 〈〈A〉〉ψ1 U ψ2: ρ← ∅; τ ← ‖ψ2‖M;
12: while τ 6⊆ ρ do
13: ρ← τ ; τ ← ‖ψ2‖M ∪ (Pre(M,A, ρ) ∩ ‖ψ1‖M)
14: end while; return ρ
15: end case
16: end procedure

32 of 34

V Goranko

Global model checking of ATL formulae: exercises

s1

{p}

s2

{p,q}
s3

{q}

s4

{}

(a,a)

(a,b)
(b,a)

(b,b)

(b,a)

(b,b)

(a,a)
(a,b)

(b,a)
(b,b)

(a,a)
(a,b)

(b,a)
(a,a)(a,b)(b,b)

‖〈〈1〉〉Gp‖M = {s1, s2} ‖〈〈2〉〉Gp‖M = ∅

‖〈〈∅〉〉(¬qUp)‖M = {s1, s2} ‖〈〈2〉〉(¬qUp)‖M = {s1, s2, s4}

‖〈〈1〉〉G〈〈2〉〉(¬qUp)‖M = {s1, s2, s4}

33 of 34

V Goranko

Lecture 1: concluding remarks

I Concurrent game models and the logic ATL provides a general framework
for modelling, specification, formal verification, and synthesis strategies and
of entire multi-agent systems.

I Various potential applications, to distributed computing, concurrency,
networks, robotic systems, AI, etc.

I Many variations and extensions,
and many challenges, conceptual and technical.

I Great potential for new research and contributions.

END OF LECTURE 1

34 of 34

