ESSAI 2024 course: Logic-based specification and verification of multi-agent systems Lecture 4.1: Generalised Dining Philosophers games: Competitive dynamic resource allocation in MAS

Valentin Goranko Stockholm University

2nd European Summer School on Artificial Intelligence ESSAI 2024 Athens, July 15-19, 2024

Riccardo De Masellis, Valentin Goranko, Stefan Gruner, and Nils Timm. Generalising the Dining Philosophers Problem: Competitive Dynamic Resource Allocation in Multi-agent Systems,

Proceedings of the 16th European Conference in Multi-agent Systems (EUMAS2018), Springer LNCS vol.11450, 2019, pp. 30-47.

https://link.springer.com/chapter/10.1007/978-3-030-14174-5_3

Generalised Dining Philosophers Games: Informal introduction

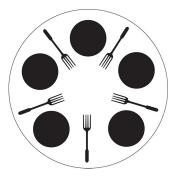
Edsger Dijkstra, 1965:

- Five philosophers dining with spaghetti at a round table.
- Five forks are available, as on the figure.
- Every philosopher either thinks or eats at any time instant.
- Every philosopher needs 2 forks to eat the spaghetti.
- The philosophers do not know each other's eating routine.

The problem: design a distributed protocol that prevents the philosophers from starvation, i e. enables each philosopher to eat infinitely often.

Not quite trivial.

Generalising the dining philosophers problem as a dynamic resource allocation problem



Generalising:

- Philosophers are agents
- Forks are resources (resource units)
- ► Resource accessibility relation
- Each agent has a need to fulfil (a goal to achieve): accumulate a prescribed number of resources.

Generalized dining philosophers games

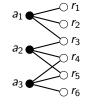
A generalized dining philosophers (GDP) game is a tuple

 $\mathcal{G} = (Agt, Res, d, Acc, Act, Rules)$ where:

- Agt is a set of agents;
- Res is a set of resource units;
- $d : Agt \rightarrow \mathbb{N}^+$ is a demand function;
- ► Acc ⊆ Agt × Res is a resource accessibility relation.
- Act is a set of possible actions;
- Rules is a set of transition rules;

The intended goal for each agent a_i is to acquire $d(a_i)$ resource units (needed to carry out its task).

The actions and rules will be specified later.



Example

 $d(a_i)=2$ for $i\in\{1,2,3\}$

To develop a formal framework for specifying and verifying relevant individual and collective strategic abilities of agents in GDP games, such as "no deadlocks", or "no starvation", or e.g.:

"Agent a can act strategically so as to ensure that she eventually reaches its goal (collects d(a) resource units)."

or (a collective goal):

" a_1 and a_2 can act collaboratively so as to ensure that each of them reaches its goal (collects the needed resource units) infinitely often."

or (a competitive goal):

" a_1 and a_2 can act collaboratively so as to ensure that each of them reaches its goal (collects the needed resource units) infinitely often, whereas a_3 never reaches its goal."

Generalised Dining Philosophers Games: technical introduction

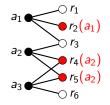
Actions:

- req_r^a agent *a* requests resource *r*;
- rel_r^a agent *a* releases resource *r*;
- rel^a_{all} agent a releases all resources it holds;
- ▶ idle^a agent *a* does nothing.

An **action profile** is a mapping $ap : Agt \rightarrow Act$.

Example

Given $\ensuremath{\mathcal{G}}$ as before the figure



A possible *state* of the game is called a **configuration**

 $c: \textit{Res} \rightarrow \textit{Agt}^+$

graphically represents configuration where r_2 is held by a_1 , r_4 is held by a_2 and r_5 by a_2 .

Remark

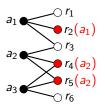
The number of configurations in a GDP game is, in general, exponential in the number of resources.

Transition rules and system dynamics

Given a configuration c and an action profile ap, (c, ap, c') is a step if:

- 1. ap can be executed in c, meaning:
 - agents can request only resources available in c;
 - if an agents a holds number d(a) resources, it must perform rel_{all}^{a} ;
- 2. and the resulting configuration c' is such that:
 - ▶ the released resources become available in c';
 - if a resource is requested by one agent only, than that agent acquires it, otherwise no agent gets it.

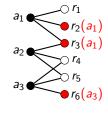
Example



 $ap(a_1) = \operatorname{req}_{r_3}^{a_1}$

$$ap(a_2) = \operatorname{rel}_{all}^{a_2}$$

$$ap(a_3) = \operatorname{req}_{r_6}^{a_3}$$



- Transition function of \mathcal{G} is the set $\rho(\mathcal{G})$ of all game steps;
- $\mathfrak{G} = (Conf, \rho(\mathcal{G}))$ is the configuration graph of \mathcal{G}
- \blacktriangleright a play is an infinite sequence of configurations in \mathfrak{G} .

Competition and cooperation in GDP games

A GDP game is a *both competitive and cooperative* scenario, where agents may, but need not to, cooperate in pursuing their goal.

- On the one hand, each agent is interested in reaching their individual goal.
- However, that may become impossible if each agents acts selfishly (follows a greedy strategy), as that may lead to blocking resources.
- Thus, it is sometimes preferable for agents to cooperate by releasing resources before having reached their individual goals.
- Furthermore, some of them may wish to join forces and act in a coordinated way, as a coalition.

That, inter alia, makes the analysis of GDP games quite non-trivial.

► Hence, the need for formal specification and algorithmic verification.

Remark: GDP games can also be regarded as "self-organising systems"

Our language $\mathcal{L}_{\mathrm{GDP}}$ is a slight variation of ATL:

 $\varphi ::= g_{\mathbf{a}_i} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathsf{X} \varphi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \mathsf{G} \varphi \mid \langle\!\langle \mathbf{A} \rangle\!\rangle \varphi_1 \mathsf{U} \varphi_2$

where $A \subseteq Agt$,

and g_{a_i} means that agent a_i currently holds at least $d(a_i)$ resource units (and has, therefore, reached its goal).

Strategies

For our language it suffices to consider *positional strategies*.

► a (positional) strategy for an agent a

$$\sigma_{a}: Conf \rightarrow Act$$

which prescribes *executable* actions to the agent.

▶ a joint (positional) strategy for $A = \{a_1, \ldots, a_r\} \subseteq Agt$:

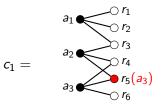
$$\sigma_{\mathbf{A}}(\sigma_{\mathbf{a}_i},\ldots,\sigma_{\mathbf{a}_r})$$

is a tuple of individual strategies σ_{a_i} , for each $a_i \in A$.

Function $out(c, \sigma_A)$ returns the set of all plays in $Conf^{\omega}$ that can occur when agents in A follow the joint strategy σ_A from configuration c on.

 $\mathcal{L}_{\mathrm{GDP}}$ is interpreted in GDP games as follows:

- \mathfrak{G} , $c \models g_{a_i}$ iff the number of resources a_i holds is $\geq d(a_i)$;
- \blacktriangleright $\land,$ \lor and \neg are treated as usual;
- $\mathfrak{G}, c \models \langle\!\langle A \rangle\!\rangle X \varphi$ iff there is a joint strategy σ_A , such that $\mathfrak{G}, \pi[1] \models \varphi$ for every path $\pi \in out(c, \sigma_A)$;
- $\mathfrak{G}, c \models \langle\!\langle A \rangle\!\rangle \operatorname{G} \varphi$ iff there is a joint strategy σ_A , such that $\mathfrak{G}, \pi[i] \models \varphi$ for every path $\pi \in out(c, \sigma_A)$ and for every $i \in \mathbb{N}$;
- 𝔅, c ⊨ ⟨⟨A⟩⟩ φ₁ U φ₂ iff there is a joint strategy σ_A, such that for every path π ∈ out(c, σ_A): there exists i ≥ 0 such that 𝔅, π[i] ⊨ φ₂ and 𝔅, π[j] ⊨ φ₁ for all j such that 0 ≤ j < i.



$$\mathfrak{G}, c_1 \models \langle\!\langle a_1, a_3 \rangle\!\rangle \operatorname{\mathsf{G}}(\langle\!\langle a_1 \rangle\!\rangle (\neg g_{a_2}) \operatorname{\mathsf{U}} g_{a_1})$$

ATL provides an algorithm for solving the global model checking problem: Inputs:

- \blacktriangleright formula φ
- \blacktriangleright a GDP problem ${\cal G}$

Output:

• the state extension of φ in \mathfrak{G}

$$\llbracket \varphi \rrbracket_{\mathfrak{G}} = \{ c \in \mathit{Conf} : \mathfrak{G}, c \models \varphi \}$$

Complexity

The ATL algorithm for global model checking problem applied to $\mathcal{L}_{\rm GDP}$ has worst-case time complexity exponential in the number of resources.

Since the number of resources can be large, this can be a problem.

Idea:

- ▶ Define a suitable abstraction: equivalence relation ~ on configurations, that preserves truth of L_{GDP} formulae;
- build the global model checking procedure to use that abstraction.

Observation:

 our logic cannot distinguish on atomic level configurations where agents hold the same number of resources

So, can we use

 $c_i \sim_{\#} c_j$

iff

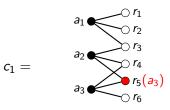
for each agent a, the number of resources a holds in c_i is the same it holds in c_i ?

No! This is too coarse.

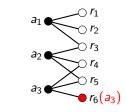
The abstraction $\sim_{\#}$ is too coarse

Example

 $c_2 =$



$$\mathfrak{G}, c_1 \models \langle\!\langle a_3 \rangle\!\rangle \mathsf{X} g_{a_3} \mathsf{True}$$



$$\mathfrak{G}, c_2 \models \langle\!\langle a_3 \rangle\!\rangle \mathsf{X} g_{a_3}$$
 False

A correct abstraction

A finer abstraction is required.

1. We first define an equivalence relation on resources

$r_i\approx r_J$

iff r_i and r_j are accessible by the same subset of agents

2. We then define

$\textbf{c_1} \sim \textbf{c_2}$

iff

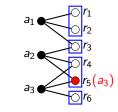
for each agent a and for each equivalence class of resource $R \in Res / \approx$ the number of resources from Rthat a holds in c_1 is the same as in c_2

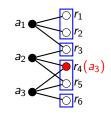
A sound and complete abstraction

Example

 $c_1 =$

 $c_{3} =$





$$\mathfrak{G}, c_1 \models \langle\!\langle a_3 \rangle\!\rangle \mathsf{X} g_{a_3} \mathsf{True}$$

$$\mathfrak{G}, c_3 \models \langle\!\langle a_3 \rangle\!\rangle \mathsf{X} g_{a_3}$$
 True

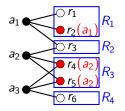
Interval expressions

We symbolically represent sets of configurations with expressions:

$$\alpha ::= \bigwedge_{a \in Agt} \bigwedge_{R \in \mathcal{R}} (a, R) [I_R^a, I_R^a] \mid \alpha_1 \lor \alpha_2$$

and $\|\alpha\|_{\mathfrak{G}}$ denotes the set of configurations "contained" in α

Example



is contained in:

 $egin{aligned} &(a_1,R_1)[1,1]\wedge(a_1,R_2)[0,0]\wedge\ &(a_2,R_2)[0,0]\wedge(a_2,R_3)[2,2]\wedge\ &(a_3,R_3)[0,0]\wedge(a_3,R_4)[0,0] \end{aligned}$

A symbolic model checking algorithm for $\mathcal{L}_{\rm GDP}$

We develop a symbolic global model checking algorithm for $\mathcal{L}_{\mathrm{GDP}}.$

Given

- ▶ a game G
- \blacktriangleright a formula φ

it returns

• the interval constraint expression $\alpha(\mathcal{G}, \varphi)$

Theorem

For each game \mathcal{G} and formula $\varphi \in \mathcal{L}_{GDP}$ we have:

 $c \in \llbracket \varphi \rrbracket_{\mathfrak{G}}$ iff $c \in \alpha(\mathcal{G}, \varphi)$

Complexity

The symbolic global model checking algorithm runs in time at most double exponential in the number of agents but polynomial in the number of resources.

Lecture 4.1: Closing remarks and the read ahead

This project is still in an early state of development. Much yet to be done. On the technical side:

- To obtain more refined complexity results. (The double exponential case seems to never actually happen.)
- Can we do better? Is our model-checking algorithm optimal?
- Find analytic solutions for important special cases.

On the conceptual side:

- Explore the cases with agents' incomplete and imperfect information.
- Gam-theoretic analysis: identify and analyse the equilibria, design socially optimal equilibria, etc.
- Extend the framework to one where resources are autonomous agents themselves. Clients/Bankers problem.

END OF LECTURE 4.1

