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Introduction:
Homogeneous Dynamic Multi-agent Systems (HDMAS)

We consider multi-agent systems which evolve by means of discrete
transitions from state to state, and have two special features:

Homogeneous:

I all agents have the same type (protocol). In particular:

– all agents have the same available actions at each system state;

– the effect of any action does not depend on which agent performs
it, but only on how many agents perform it.

I thus, transitions are completely determined by how many agents
perform each possible action.

Dynamic:

I unbounded (but always finite) number of agents in the system.

I at every round, each agent may be ‘active’, by taking
a ‘real’ action, or ‘inactive’ by performing action ’idle’.

So, agents can ’join’ and ’leave’ the system dynamically.
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Controllable and uncontrollable agents in HDMAS

All agents in a HDMAS are split into

– controllable (by the leader/supervisor), and

– uncontrollable (regarded as environment or adversaries).

All controllable and uncontrollable agents have the same type.

However, the controllable agents follow a prescribed strategy,
whereas the uncontrollable ones are unconstrained.
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Homogeneous Dynamic Multi-agent Systems:
some examples

I sensor/computer/social networks;

I election systems and voting procedures;

I more abstractly, systems of strategic dynamic resource allocation,
such as Colonel Blotto games.
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HDMAS: a typical property to specify and verify

Assuming perfect coordination between the controllable agents,
an HDMAS can be regarded as a concurrent game between two
‘super-players’: Proponent and Opponent.

Proponent has a (temporalised) qualitative objective, for instance:

– to eventually reach a desired goal state in the system, or
– to keep the system in a safe region, until a goal state is reached.

Opponent tries to prevent the achievement of that objective.

A typical property to specify and verify in an HDMAS:

Proponent has a joint strategy for a coalition of M controllable agents
acting against (Opponent represented by) at most N non-controllable
agents, to ensure that Proponent’s objective is satisfied on every play
enabled by that strategy.
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HDMAS: technical preliminaries

I Ag = {ag 1, ag 2, . . .}: unbounded universe of agents.

I Act = {act1, . . . , actn}: a finite set of (names for) actions.

Act+ = Act ∪ {ε}, where ε is a specific ‘idle’ action.

I X = {x1, . . . , xn} and X + = X ∪{xε}: a fixed set of variables, called
action counters, respectively associated with the actions in Act+.

I action profile: a tuple of actions in Act+, one for each agent in Ag .

I An action distribution for an action profile σ is a function
actσ : X → N, where, for i = 1, ..., n,

actσ(xi ) is the number of agents taking action act i in σ.

(The idle action ε is not counted.)

I A (transition) guard is an open formula of Presburger arithmetic
(PrA) over the variables in X .

I Satisfaction of a transition guard g by an action distribution act,
denoted act |= g , is defined by the standard semantics of PrA.
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HDMAS models: technical definition

An HDMAS structure for a set of agents Ag and a set of actions Act+:

S = 〈Ag ,Act+, S , δ〉

I S is a (usually finite) set of states.

I δ : S × S → G is a transition guards function.

δ labels all possible transitions between states
with guards that determine, for every possible action distribution,
a unique transition to a successor state.

NB: the transition caused by any action profile only depends on its
action distribution.
Hereafter, we use action distributions instead of action profiles.

HDMAS-based model: HDMAS structure +
labelling λ of states with sets of atomic propositions in a fixed set Φ.
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An example of HDMAS

s1

{}

s2

{p}

s3

{p}

s4

{p}

s5

{q}

s6

{q}

¬g1 ∧ ¬g2

g1

g2
¬g3

g3

¬g6 g6

¬g4
g4

¬g7

g7

g5

The model involves 6 states and 2 atomic propositions (p and q). Besides ε,
there are 3 ‘real’ actions, with respective counters x1, x2, x3. The guards:

g1 := (x1 ≥ 2x2) ∧ (x3 ≤ 3)
g2 := (x1 + x2 + x3 ≤ 10) ∧ (x3 > 3)
g3 := (x1 > 5) ∧ (x3 > x1)

g4 := x1 > 5 ∧ (3x2 < x1 + 2x3)
g5 := x1 = x1

g6 := x1 + 2x2 ≥ x3

g7 := x2 = x3
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The logic LHDMAS

LHDMAS is a logic (extending ATL) for specifying strategic properties in
HDMAS, such as existence of a strategy for the controllable agents that
guarantees satisfaction of Proponent’s objective against any behavour of
the uncontrollable agents.
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The logic LHDMAS: terms

The vocabulary of LHDMAS contains:

I a fixed set of atomic propositions Φ = {p1, p2, ....},
I a set of two special variables Y = {y1, y2} ranging over N,

called agent counters, representing respectively
the current numbers of controllable and uncontrollable agents,

I a set of auxiliary agent-counting parameters Z = {z1, z2, . . .}.

The set of terms: T = N ∪ Y ∪ Z .

(Natural numbers will be identified with their numerals.)
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The logic LHDMAS: formulae

Two sorts of formulae:

Path formulae: χ ::= Xϕ | Gϕ | ϕUϕ,
where ϕ are state formulae.

State formulae:
ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∀yϕ | ∃yϕ | 〈〈t1, t2〉〉χ
where p ∈ Φ, y ∈ Y , t1 ∈ T \{y2}, t2 ∈ T \{y1}, and χ is a path formula.

In the formula 〈〈t1, t2〉〉χ, t1 denotes the number of controllable agents,
and t2 – the number of uncontrollable agents.

Positive polarity constraint for the formulae ∀yϕ and ∃yϕ:
all free occurrences of y in ϕ must have a positive polarity
(i.e., must be in the scope of an even number of negations).
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Formulae of LHDMAS: some examples

I 〈〈7, 5〉〉X p:
“7 controllable agents have a joint action ensuring against

5 uncontrollable agents that any outcome state satisfies p”.

I ∀y2〈〈7, y2〉〉G¬p:
“for any number y2, 7 controllable agents have a joint strategy to ensure

against y2 uncontrollable agents that any outcome play never reaches a

p-state.”

I ∀y2∃y1〈〈y1, y2〉〉q U¬p:
“For any number (y2) of uncontrollable agents there is a number (y1) of

controllable agents who have a joint strategy to ensure that any outcome

play will stay within a q-region until it eventually reaches a non-p-state.”
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Semantics of LHDMAS

Assignment: a function θ : T → N, where θ(i) = i for i ∈ N.

Let M be a HDMAS, s be a state and θ an assignment in it.
The satisfaction relation |= is inductively defined as follows:

I M, s, θ |= p iff p ∈ λ(s),

I The semantics of >, ∧, ∨, ¬, ∀, ∃: as in classical logic.

I M, s, θ |= 〈〈t1, t2〉〉χ iff
there exists a joint strategy σ for a coalition of θ(t1) controllable
agents such that every play enabled by σ, against (at most) θ(t2)
uncontrollable agents, satisfies the temporal objective χ.
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Monotonicity properties
and quantifier elimination equivalences

〈〈t1, t2〉〉χ is monotone with respect to t1

and anti-monotone with respect to t2.

That means:

I If M, s, θ |= 〈〈t1, t2〉〉χ and C > t1 then M, s, θ |= 〈〈C , t2〉〉χ;

I If M, s, θ |= 〈〈t1, t2〉〉χ and N < t2 then M, s, θ |= 〈〈t2,N〉〉χ.

Based on these, some quantifier elimination equivalences are valid, e.g.:

I ∀y1〈〈y1, t〉〉χ ≡ 〈〈0, t〉〉χ[0/y1],

I ∃y2〈〈t, y2〉〉χ ≡ 〈〈t, 0〉〉χ[0/y2],

I ∀y2∀y1〈〈y1, y2〉〉χ ≡ ∀y2〈〈0, y2〉〉χ[0/y1],

I ∃y1∃y2〈〈y1, y2〉〉χ ≡ ∃y1〈〈y1, 0〉〉χ[0/y2], etc.

15 of 26



V Goranko

Normal form of LHDMAS-formulae

The full language LHDMAS is not suitable for algorithmic model
checking, because of the unconstrained nesting of strategic operators
and quantification over agent counters.

For model checking we transform LHDMAS-formulae to normal form,
by imposing syntactic restrictions on the patterns of quantification.

Informally, the formulae in LNF
HDMAS are defined by modifying the

recursive definition of state formulae of LHDMAS, where the clauses ∀yϕ
and ∃yϕ are replaced with the following, where χ is a temporal objective:

∃y1〈〈y1, t2〉〉χ | ∀y2∃y1〈〈y1, y2〉〉χ | ∀y2〈〈t1, y2〉〉χ | ∃y1∀y2〈〈y1, y2〉〉χ

LNF
HDMAS: the fragment of LHDMAS-formulae in normal form.
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Transformation to normal forms

Normal forms restrict the language syntactically, but not its expressiveness.

A key technical result: a recursive procedure nf, converting every
LHDMAS-formula ϕ into nf(ϕ) ∈ LNF

HDMAS, such that:

1. nf(ϕ) ≡fin ϕ. (≡fin is equivalence on all finite HDMAS models)

2. If ϕ ∈ LNF
HDMAS then nf(ϕ) = ϕ.

3. nf(ϕ) can be computed effectively and has length linearly bounded
above by the length of ϕ.

Thus, normal forms restrict the language syntactically,
but do not reduce its expressiveness over finite models.
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Fixpoint equivalences for formulae in normal form

The strategic operators for formulae in LNF
HDMAS satisfy fixpoint

equivalences over finite models, listed in the theorem below.

Theorem. For every terms t, t ′, t ′′ the following equivalences hold,
where the formulae on the left are in LNF

HDMAS.

I 〈〈t′, t′′〉〉Gϕ ≡ ϕ ∧ 〈〈t′, t′′〉〉X 〈〈t′, t′′〉〉Gϕ
I 〈〈t′, t′′〉〉ψUϕ ≡ ϕ ∨ (ψ ∧ 〈〈t′, t′′〉〉X 〈〈t′, t′′〉〉ψUϕ)

I ∃y1〈〈y1, t〉〉Gϕ ≡fin ϕ ∧ ∃y1〈〈y1, t〉〉X∃y1〈〈y1, t〉〉Gϕ
I ∀y2〈〈t, y2〉〉Gϕ ≡fin ϕ ∧ ∀y2〈〈t, y2〉〉X∀y2〈〈t, y2〉〉Gϕ
I ∃y1〈〈y1, t〉〉ψUϕ ≡fin ϕ ∨ (ψ ∧ ∃y1〈〈y1, t〉〉X∃y1〈〈y1, t〉〉ψUϕ)

I ∀y2〈〈t, y2〉〉ψUϕ ≡fin ϕ ∨ (ψ ∧ ∀y2〈〈t, y2〉〉X∀y2〈〈t, y2〉〉ψUϕ)

I ∀y2∃y1〈〈y1, y2〉〉Gϕ ≡fin ϕ ∧ ∀y2∃y1〈〈y1, y2〉〉X∀y2∃y1〈〈y1, y2〉〉Gϕ.

I ∃y1∀y2〈〈y1, y2〉〉Gϕ ≡fin ϕ ∧ ∃y1∀y2〈〈y1, y2〉〉X∃y1∀y2〈〈y1, y2〉〉Gϕ.

I ∀y2∃y1〈〈y1, y2〉〉ψUϕ ≡fin ϕ ∨ (ψ ∧ ∀y2∃y1〈〈y1, y2〉〉X∀y2∃y1〈〈y1, y2〉〉ψUϕ).

I ∃y1∀y2〈〈y1, y2〉〉ψUϕ ≡fin ϕ ∨ (ψ ∧ ∃y1∀y2〈〈y1, y2〉〉X∃y1∀y2〈〈y1, y2〉〉ψUϕ).
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Model checking of formulae in LNF
HDMAS

Given a state formula ϕ of LHDMAS, a HDMAS model M, a state
s ∈M, and an assignment θ in M:

I the local model checking problem for HDMAS
is the problem of deciding whether M, s, θ |= ϕ,

I the global model checking problem is the problem of computing
the state extension of ϕ in M for θ, formally defined as:

[[ϕ]]θM = {s ∈ S | M, s, θ |= ϕ}.

Recall: the transitions in HDMAS models are represented symbolically, in
terms of the guards.
So, an explicit representation of the transition graph is generally infinite.

That is why, the model checking of HDMAS models is done symbolically,
by reduction to Presburger arithmetic (PrA).
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Algorithm for global model checking in LNF
HDMAS:

the core sub-procedure preImg

For a set of states Q ⊆ S and integers C ,N ∈ N, the
(C ,N)-controllable pre-image of Q is the set of states from which C
controllable agents have a joint action, which, when played against any
joint action of N uncontrollable agents produces an outcome state in Q.

The procedure preImg returns the (C ,N)-controllable pre-image of Q.

preImg is extended to compute, for any terms t1, t2,
the (t1, t2)-controllable pre-image of Q
by means of a PrA-formula with t1, t2 as parameters.

20 of 26



V Goranko

Algorithm for global model checking in LNF
HDMAS:

informal description

1. For ϕ = 〈〈t1, t2〉〉Xψ, preImg applied to Q = [[ψ]]θM, computes the
state extension of ϕ, as a PrA-formula parameterised with t1, t2.

2. Then the procedure is readily extended to all quantified extensions of
〈〈t1, t2〉〉Xψ, by adding the respective quantification to the result.

3. Lastly, for the long-term temporal objectives model checking is done
by fixpoint unfolding iterations (like in model checking of CTL or ATL).

Every iteration stage produces again a PrA-formula.

Stabilisation and reaching the fixpoint is detected by checking
equivalence of the PrA-formulae produced at the successive iterations.

So, in all cases, computing the state extension of a LNF
HDMAS-formula

is reduced to computing a PrA-formula.

Thus, the local model checking problem for LNF
HDMAS is reduced to

checking the truth of PrA-formulae.
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Local model checking in LNF
HDMAS: example 1

s1

{}

s2

{p, q}

s3

{p}

s4

{q}

s5

{q}

s6

{}

¬g1 ∧ ¬g2

g1

g2
g3

¬g3

¬g6 g6

¬g4
g4

¬g7

g7

g5

g1 := (x1 ≥ 2x2) ∧ (x3 ≤ 3)

g2 := (x1 + x2 + x3 ≤ 10) ∧ (x3 > 3)

g3 := (x1 > 5) ∧ (x3 > x1)

g4 := x1 > 5 ∧ (3x2 − 2x3 < x1)

g5 := . . .

. . .

〈〈7, 5〉〉X p is true in s1.

An action profile for the
7 controllable agents :
1 agent performs act1,
4 agents perform act3,
2 agents perform ε
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Global model checking problem for LNF
HDMAS: example 2

Computing [[ϕ]]M for ϕ = ∃y1∀y2〈〈y1, y2〉〉X (p ∨ q) in the given model M.

1. Compute [[p ∨ q]]M = {s2, s3, s4, s5, s6}.
2. For each s ∈M check the truth of
∃y1∀y2PrF(M, s, y1, y2, [[p ∨ q]]M).

– 11 uncontrollable agents can keep the
system in s1 by all performing act3; so,
∃y1∀y2 PrF(M, s1, y1, y2, [[p ∨ q]]M) is
false, hence s1 is not in the
∃y1∀y2(y1, y2)- controllable pre-image of
[[p ∨ q]]M.

– All outgoing transitions from s2 lead to
states in [[p ∨ q]]M; hence
∃y1∀y2 PrF(M, s2, y1, y2, [[p ∨ q]]M) is
true, so s2 is in the ∃y1∀y2(y1, y2)-
controllable pre-image of [[p ∨ q]]M.

– Checking all other states likewise
produces the final result:
[[ϕ]]M = {s2, s4, s5, s6}.
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Global model checking problem for LNF
HDMAS: example 3

Computing [[ψ]]M for ψ = 〈〈7, 4〉〉X (∀y2∃y1〈〈y1, y2〉〉G p) in the model M.

1. Initialize Z ← {s2, s3, s4} and
W ← S = {s1, . . . , s6}.
A while-loop computing the fixpoint:

– W ← {s2,s3,s4};
– preImg(M,y1,y2,{s2,s3,s4},θ,∀y2∃y1)=
{s2,s4,s5};
– Z ← {s2, s4, s5} ∩ {s2, s3, s4} = {s2, s4}.
Next round: Z ← ...{s2, s4}.
Now the fixpoint is reached.

So, [[∀y2∃y1〈〈y1, y2〉〉G p]]M = {s2, s4}.
Lastly, for computing the outer
Next-formula the algo calls the preImg
procedure.

For each s ∈ S the truth of formula
PrF(M, s, 7, 4, {s2, s4}) is called.

The final result is [[ψ]]M = {s4, s5}.
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Complexity estimates

Complexity of model checking of LNF
HDMAS- formulae: by using results

(by Hasse and others) on complexity of model checking of PrA-formulas.

I Ranges from ΣEXP
3 in the general case, to NP-complete when the

number of controllable or uncontrollable agents is fixed or bounded.

I When the number of actions is bounded, too, it is P-complete.
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Lecture 4.2: Closing remarks

Future works (in some possible futures) include:

I Allowing several types of agents.

I Allowing several coalitions of controlled agents.

I Extending the language, e.g. by relaxing some syntactic restrictions.

I Possible applications include:

– solving games of the type of generalised Colonel Blotto games by
model checking LNF

HDMAS-formulae.

– design and verification of sensor networks and voting procedures.

– etc.

END OF LECTURE 4.2
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