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Overview of the talk

I Introduction: strategic abilities in multi-player games
– quantitative and qualitative aspects

I Multi-player concurrent game models

I Concurrent game models with payoffs and guards

I QATL*: a quantitative extension of the logic ATL*

I Model checking of QATL*: some (un)decidability results

I Concluding remarks
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Introduction:
strategic abilities of agents in multi-player games

Two traditions:

Game theory: study of rational behavior of players aiming to achieve
quantitative objectives: optimizing payoffs or, more generally, preferences
on outcomes.

Typical models:
normal form games, repeated games, extensive games.

Logic (and CS): study of strategic abilities of players for achieving
qualitative objectives: reaching or maintaining outcome states with
desired properties, e.g., winning states, or safe states, etc.

Typical models:
multi-agent transition systems, a.k.a. concurrent game models.
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Rich or happy?

In a slogan:

the game theory tradition is concerned with how a player can become
maximally rich, or how to pay as little cost as possible,

while the logic tradition – with how a player can achieve a state of
‘happiness’, e.g. winning, or avoid a state of ‘unhappiness’ (losing).

So, rich or happy?
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Rich or happy?
Preferably, both!

In a slogan:

the game theory tradition is concerned with how a player can become
maximally rich, or how to pay as little cost as possible,

while the logic tradition – with how a player can achieve a state of
‘happiness’, e.g. winning, or avoid a state of ‘unhappiness’ (losing).

Our objective: to bring these two perspectives together within a unifying
logical framework.

Wide spectrum of related work:

. resource-bounded reasoning;

. concurrent games with omega-regular objectives;

. mean-payoff and energy parity games;

. counter automata, Petri nets and VASS, timed games; etc.
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Concurrent game models recalled

(A, St, {Acta}a∈A, {acta}a∈A, out,Prop, L)

I A = {1, . . . , k} is a fixed finite set of agents (players)

I a set of actions Acta 6= ∅ for each a ∈ A.

For any A ⊆ A we denote ActA :=
∏

a∈A Acta.

I St is a set of system states.

I acta : St→ P(Acta) for each a ∈ A.

acta(s) is the set of actions available to a at s.

I out : S × ActA → S is a transition function.

out(s,−→α A) is the outcome state for every q ∈ St and action profile
−→α A = 〈α1, . . . , αk〉 s.t. αa ∈ acta(s) for each a ∈ A.

I Prop is the set of atomic propositions.

I L : St→ P(Prop) is the labeling function.
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Towards quantitative reasoning:
Concurrent game models with payoffs and guards

Concurrent game models with payoffs and guards (GGMPG):
extend concurrent game models by associating with every state a strategic
game with payoffs, which can also be interpreted as resources.

– at every state each player chooses an action; all actions are applied
simultaneously and determine transition to successor state;

– the collective action also determines each player’s payoff;

– same happens at the successor state, etc., thus eventually generating an
infinite play;

– so, players accumulate utilities in the course of the play;

– the players’ current utility values determine their available actions at the
current state, through guards – arithmetical constraints over the current
utilities.

Thus, CGMPGs are games with qualitative and quantitative objectives.
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Towards quantitative reasoning:
arithmetic constraints over payoffs

We need a simple formal language for dealing with payoffs/resources.

I VA = {va | a ∈ A}:
set of special variables to refer to the accumulated utilities;

I Given sets X and A ⊆ A, the set T (X ,A) of terms over X and A is
built from X ∪ VA by applying addition.

I Terms are evaluated in domain of payoffs D (usually, Z or R).

I The set AC(X ,A) of arithmetic constraints over X and A:

{t1 ∗ t2 | ∗ ∈ {<,≤,=,≥, >} and t1, t2 ∈ T (X ,A)}

I Arithmetic constraint formulae:
ACF(X ,A): the set of Boolean formulae over AC(X ,A).
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Concurrent game models with payoffs and guards

A guarded CGM with payoffs (GCMGP) is a tuple

M = (S, payoff, {ga}a∈A, {da}a∈A)

where S = (A,St, {Acta}a∈A, {acta}a∈A, out,Prop, L) is a CGM and:

I payoff : A× S × ActA → D is a payoff function.

I da ∈ [0, 1] is a discount factor for each a ∈ A.

I accumulated utility of a player a at a state of a play: the
(discounted) sum of all a’s payoffs collected in the play so far.

All initial payoffs are assumed 0.

I ga : S × Acta → ACF(X , {a}), for a ∈ A, is a guard function such
that ga(s, α) is an ACF for each s ∈ St and α ∈ Acta.

. The action α is available to a at s iff the current accumulated
utility of a satisfies ga(s, α).

The guard must enable at least one action for a at s.
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CGM with payoffs and guards: a toy game example

s1

s2 s3

(C ,D )
(D ,C )

(D ,D )

(C ,C )

(C ,C )

(D ,D )

(C ,D )
(D ,C )

(C ,C )
(D ,D )

(C ,D )
(D ,C )

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

The guards for both players are defined at each state so that the player may:

I apply any action if she has a positive current accumulated utility,

I only apply action C if she has accumulated utility 0,

I must play an action maximizing her minimum payoff in the current game if she
has a negative accumulated utility.

The discounting factors are 1 and the initial payoffs of both players are 0.
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Example 2: robots on a mission

Scenario: a team of 3 robots is on a mission. The team must accomplish
a certain task, e.g., formalized as ‘reaching state goal ’.

base goal

RGG/NGG/GGG

RRR/RRN/RRG/RNG/
RNN/GNN/NNN

NBB/BBB

NNN/NNB

The robots work on batteries which need to be charged in order to provide
the robots with sufficient energy to be able to function.

We assume the robots’ energy levels are non-negative integers.

Every action of a robot consumes some of its energy.

Collective actions of all robots may, additionally, increase or decrease the
energy level of each of them.
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Robots on a mission: agents and states

base goal

RGG/NGG/GGG

RRR/RRN/RRG/RNG/
RNN/GNN/NNN

NBB/BBB

NNN/NNB

For every collective action: an ‘energy update table’ is associated,
representing the net changes – increase or decrease – of the energy level
of each agent after that collective action is performed at the given state.

In this example the energy level of a robot may never go below 0.

Here are the detailed descriptions of the components of the model:

Agents: The 3 robots: a,b, c.

States: The ‘base station’ state (base) and the target state goal.
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Robots on a mission: actions and transitions

base goal

RGG/NGG/GGG

RRR/RRN/RRG/RNG/
RNN/GNN/NNN

NBB/BBB

NNN/NNB

Actions. The possible actions are:
R: ‘recharge’, N: ‘do nothing’, G : ‘go to goal’, B: ‘return to base’.

All robots have the same functionalities and abilities to perform actions,
and their actions have the same effect.

Each robot has the following actions possibly executable at the different
states: {R,N,G} at state base and {N,B} at state goal.

Transitions. The transition function is specified in the figure.
NB: since the robots abilities are assumed symmetric, it suffices to specify
the action profiles as multisets, not as tuples.
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Robots on a mission: some constraints

I The team has one recharging device which can recharge at most 2
batteries at a time and produces a total of 2 energy units in one
recharge step.

So if 1 or 2 robots recharge at the same time they receive a pro rata
energy increase, but if all 3 robots try to recharge at the same time,
the device does not charge any of them.

I Transition from one state to the other consumes a total of 3 energy
units. If all 3 robots take the action which is needed for that
transition (G for transition from base to goal, and B for transition
from goal to base), then the energy cost of the transition is
distributed equally amongst them.

If only 2 of them take that action, then each consumes 2 units and
the extra unit is transferred to the 3rd robot.

I An attempt by a single robot to reach the other state fails and costs
that robot 1 energy unit.
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Robots on a mission: resource updates

Resource updates. Resource updates are given below as vectors with
components that correspond to the order of the actions in the triple, not
to the order of the agents who have performed them.

From state base: From state goal :

Actions Successor Payoffs

RRR base (0,0,0)

RRN base (1,1,0)

RRG base (1,1,-1)

RNN base (2,0,0)

RNG base (2,0,-1)

RGG goal (3,-2,-2)

NNN base (0,0,0)

NNG base (0,0,-1)

NGG goal (1,-2,-2)

GGG goal (-1,-1,-1)

Actions Successor Payoffs

NNN goal (0,0,0)

NNB goal (0,0,-1)

NBB base (1,-2,-2)

BBB base (-1,-1,-1)
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Robots on a mission: guards

At state base: At state goal :

Action Guard

R v ≤ 2

N true

G v ≥ 2

B false

Action Guard

R false

N true

G false

B v ≥ 2

Guards. The same for each robot. The variable v denotes the current
resource of the respective robot. Some explanations:

I Action B is disabled at state base and actions R and G are disabled
at state goal.

I No requirements for the ’do nothing’ action N.
I R can only be attempted if the current energy level is ≤ 2.
I For a robot to attempt a transition to the other state, that robot

must have a minimal energy level 2.
I Any set of at least two robots can ensure transition from one state to

the other, but no single robot can do that.
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Configurations, plays and histories in a GCMGP

Hereafter we ignore accumulated utilities and discounting.

Configuration in M = (S, payoff, {ga}a∈A, {da}a∈A):
a pair (s,−→u ) of a state s and a vector −→u = (u1, . . . , uk) of currently
accumulated utilities of the agents at that state.

The set of possible configurations: Con(M) = S ×D|A|.

Partial configuration transition function:

ôut : Con(M)× ActA 99K Con(M)

where ôut((s,−→u ),−→α ) = (s ′,
−→
u′ ) iff out(s,−→α ) = s ′ and:

(i) the value ua assigned to va satisfies ga(s, αa) for each a ∈ A
(ii) u′a = ua + payoffa(s,−→α ) for each a ∈ A

The configuration graph on M with an initial configuration (s0,
−→u0)

consists of all configurations in M reachable from (s0,
−→u0) by ôut.

A play in M: an infinite sequence π = c0
−→α0, c1

−→α1, . . . from
(Con(M)× Act)ω such that cn ∈ ôut(cn−1,

−→α n−1) for all n > 0.

A history: any finite initial sequence of a play in PlaysM.
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Some configurations and plays in the toy example

s1

s2 s3

(C ,D )
(D ,C )

(D ,D )

(C ,C )

(C ,C )

(D ,D )

(C ,D )
(D ,C )

(C ,C )
(D ,D )

(C ,D )
(D ,C )

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

� (s1, 0, 0)(C ,C)(s1, 2, 2)(C ,C)(s1, 4, 4), ...

� (s1, 0, 0)(C ,C)(s1, 2, 2)(D,D)(s2, 1, 1)(D,C)(s2, 0,−1)(C ,D)(s2, 0, 1), (s2, 0, 3)...

� (s1, 0, 0)(C ,C)(s1, 2, 2)(D,C)(s3, 5,−2)(D,C)(s3, 4,−3)(C ,D)(s3, 3,−4)...
(s3, 0,−7)(C ,D)(s3,−1,−8), ...

NB: If player II has enough memory or can observe the accumulated utilities of I, she
can coordinate with I at the round where vI = 0 by cooperating, thus escaping the trap
at s3 and making a sure transition to s2.
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Some configurations and plays in the robots example

base goal

RGG/NGG/GGG

RRR/RRN/RRG/RNG/
RNN/GNN/NNN

NBB/BBB

NNN/NNB

Initial configuration: (base, (0, 0, 0)).

1. The robots do not coordinate and keep trying to recharge forever. The
mission fails:

(base; 0, 0, 0)(RRR), (base; 0, 0, 0)(RRR), (base; 0, 0, 0)(RRR), . . .

2. Now the robots coordinate on recharging, two at a time, until they each reach
energy levels at least 3.
Then they all take action G and the team reaches state goal and then succeeds
to return to base:

(base, 0, 0, 0)(RRN), (base, 1, 1, 0)(NRR), (base, 1, 2, 1)(RNR), (base, 2, 2, 2)(RRN),
(base, 3, 3, 2)(NNR), (base, 3, 3, 4)(GGG )(goal, 2, 2, 3)(BBB), (base, 1, 1, 2) . . .
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More configurations and plays in the robots example

base goal

RGG/NGG/GGG

RRR/RRN/RRG/RNG/
RNN/GNN/NNN

NBB/BBB

NNN/NNB

3. Again the robots coordinate on recharging, but after the first recharge Robot
a goes out of order. Thereafter a does nothing while the other two robots try to
accomplish the mission by each recharging as much as possible and then both
taking action G . The team reaches state goal but cannot return to base and
remains stuck at state goal forever, for one of the two functioning robots does
not have enough energy to apply B:

(base, 0, 0, 0)(RRN), (base, 1, 1, 0)(NRR), (base, 1, 2, 1)(NRR), (base, 1, 3, 2)(NRR),
(base, 1, 3, 4)(NGG ), (goal, 2, 1, 2)(NNB), (goal, 2, 1, 1)(NNN), . . .

4. As above, but now b and c apply a cleverer plan and succeed together to
reach goal and then return to base:

(base, 0, 0, 0)(RRN), (base, 1, 1, 0)(NRR), (base, 1, 2, 1)(NRR), (base, 1, 3, 2)(NGR),
(base, 1, 2, 4)(NRN), (base, 1, 4, 4)(NGG ), (goal, 2, 2, 2)(NBB), (base, 3, 0, 0) . . .
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Strategies

A strategy of a player a is a function sa : Hist→ Act that respects the
guards, i.e., if sa(h) = α then hu[last]a |= ga(hs [last], α).

NB: strategy is based on histories of configurations and actions.

Typically considered in the study of repeated games, e.g., Tit-for-tat
or Grim-trigger in repeated Prisoners Dilemma.

Strategies depend on players’ information, memory, observations.

Some natural restrictions: state-, action-, or configuration-based;
memoryless, bounded memory, of perfect recall strategies.

We assume that two classes of strategies Sp and So are fixed as
parameters, resp. for the proponents and opponents to select from.

A unique outcome playM(c , (sA, sA\A)) emerges from the execution of any
strategy profile (sA, sA\A) from configuration c .

Effective strategies: bounded memory strategies determined by
transducers with transitions defined by arithmetical constraints on the
current configurations.
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QATL*: Quantitative extension of ATL*
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Reminder: the logic of qualitative strategic abilities ATL*

The Alternating-time Temporal Logic involves:

I Coalitional strategic path operators: 〈〈A〉〉 for any coalition of agents
A. We will write 〈〈i〉〉 instead of 〈〈{i}〉〉.

I Temporal operators: X (next time), G (forever), U (until)

Formulae:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈A〉〉ϕ | Xϕ | Gϕ | ϕ1Uϕ2

Semantics: in concurrent game models.
Extends the semantics for LTL with the clause:

〈〈A〉〉ϕ: “The coalition A has a collective strategy to guarantee the
satisfaction of the goal ϕ” on every play enabled by that strategy.
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The Quantitative ATL*: syntax and semantics

State formulae ϕ ::= p | ac | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ
Path formulae: γ ::= ϕ | apc | ¬γ | γ ∧ γ | Xγ | Gγ | γUγ
where A ⊆ A, ac ∈ AC, apc ∈ APC, and p ∈ Prop.

Given: M be a GCMGP, c a configuration, ϕ state formula, γ, γ1, γ2 path
formulae, Sp and So two classes of strategies.

M, c |= p iff p ∈ L(cs);
M, c |= ac iff cu |= ac,

M, c |= 〈〈A〉〉γ iff there is a Sp-strategy sA such that for all So-strategies
sA\A: M, outcome playM(c , (sA, sA\A)) |= γ.

M, π |= ϕ iff M, π[0] |= ϕ,

M, π |= Xγ iff M, π[1] |= γ,

M, π |= Gγ iff M, π[i ] |= γ for all i ∈ N,

M, π |= γ1Uγ2 iff there is j ∈ N0 such that M, π[j ] |= γ2 and
M, π[i ] |= γ1 for all 0 ≤ i < j .

Ultimately, we define M, c |= ϕ iff M, c, 0 |= ϕ.
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Expressing specifications in QATL*

. QATL∗ extends ATL∗, so it can express all purely qualitative ATL∗ properties,
like

〈〈A〉〉(Gp ∧ qUr)

. QATL∗ can also express quantitative properties, e.g.:

〈〈{a}〉〉G(va > 0)

“Player a has a strategy to maintain his accumulated utility positive”,

or
〈〈A〉〉(wa ≥ 3)

“The coalition A has a strategy to guarantee the value (i.t., limit payoff) of the
play for player a to be at least 3’’.

. Moreover, QATL∗ can naturally express combined qualitative and quantitative
properties, e.g.

〈〈{a}〉〉((a is happy) U (va ≥ 106))

or
〈〈{a,b}〉〉((va + vb > 0) U Gsafe)))
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Expressing properties in QATL* for the toy example

s1

s2 s3

(C ,D )
(D ,C )

(D ,D )

(C ,C )

(C ,C )

(D ,D )

(C ,D )
(D ,C )

(C ,C )
(D ,D )

(C ,D )
(D ,C )

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

In the examples below pi is true only at si , for each i = 1, 2, 3.

1. 〈〈{I , II}〉〉F(p1 ∧ vI > 100 ∧ vII > 100)

2. 〈〈{I , II}〉〉XX〈〈{II}〉〉(G(p2 ∧ vI = 0) ∧ F vII > 100).

3. ¬〈〈{I}〉〉G(p1 ∨ vI > 0)

4. ¬〈〈{I , II}〉〉F(p3 ∧ G(p3 ∧ vI + vII > 0)).
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s1

s2 s3

(C ,D )
(D ,C )

(D ,D )

(C ,C )

(C ,C )

(D ,D )

(C ,D )
(D ,C )

(C ,C )
(D ,D )

(C ,D )
(D ,C )

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

u > 0 ⇒ any action u = 0 ⇒ C u < 0 ⇒ max min p

1. 〈〈{I , II}〉〉F(p1 ∧ vI > 100 ∧ vII > 100)

(s1, (0, 0)), (s1, (2, 2)), (s1(4, 4)) . . .

2. 〈〈{I , II}〉〉XXX〈〈{II}〉〉(G(p2 ∧ vI = 0) ∧ F vII > 100)

(s1, (0, 0)), (s1, (2, 2)), (s2, (1, 1)), (s2, (0,−1)), (s2, (0, 1)), (s2, (0, 3)) . . .
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Expressing properties in QATL*
for the Robots on a mission example

Suppose the objective of the team of robots on mission, starting from
state base where each robot has energy level 0, is to eventually reach the
state goal and then return to the base station.

Below, ‘base’ is an atomic proposition true only at state base and, ‘goal’
is an atomic proposition true only at state goal.

The following QATL*-formulae are true at (base, 0, 0, 0):

I 〈〈〉〉G(ra ≥ 0 ∧ rb ≥ 0 ∧ rc ≥ 0)

I ¬〈〈a〉〉Fgoal ∧ ¬〈〈b〉〉Fgoal ∧ ¬〈〈c〉〉Fgoal.

I 〈〈b, c〉〉F(goal ∧ 〈〈a,b, c〉〉(ra > 0 ∧ rb > 0 ∧ rc > 0)Ubase).

I 〈〈b, c〉〉F(goal ∧ 〈〈b, c〉〉(ra > 0)U(base ∧ ra > 0)).

I ¬〈〈b, c〉〉F(goal ∧ 〈〈b, c〉〉F(base ∧ (rb > 0 ∨ rc > 0))).
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On model checking in QATL*:
reduction from the Halting problem for Minsky machines

The framework of QATL* is very general and easily leads to undecidable
model checking (on finite models) even under very weak assumptions.

Lemma (Reduction from the Halting problem for Minsky machines)
For any Minsky machine (2-counter automaton) A a finite 2-player
GCMGP MA using a proposition halt can be constructed so that:

A halts on empty input iff
there is a play π in MA which reaches a halt-state.
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Undecidability results about model checking QATL*

Using that reduction, undecidability of the model checking in QATL* can
be proved under quite week assumptions:

– two players,

– simple temporal objectives, only of the type Xϕ,Gϕ, and ϕUψ,
for state formulae ϕ,ψ.

– no nesting of strategic operators,

– simple arithmetical constraints, only comparing players’ utilities with
constants, not with each other.

– and state-based guards.
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Some decidability results and conjectures about QATL*

Still, there are several practically important decidable cases where the
configuration space remains finite, e.g.:

I When the possible accumulated amount of payoffs or resource per
agent is bounded above and below, with state-based guards.

I When resources are not created, but only consumed or re-distributed
and cannot become negative.

There are some non-trivial decidable cases with infinite configuration
spaces, too, by reduction to VASS reachability and coverability problems
or to energy parity games.

For further details, as well as some open problems and conjectures, see
the full paper.
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Concluding remarks

This is a long-term interdisciplinary project, involving Logic, Game Theory
and CS. There is a wide spectrum of related work.

. Three perspectives of research agenda:

I Game theory: solution concepts, equilibria, extending results from
repeated games (e.g., folk theorems), etc.

I Logic: Expressiveness, formal reasoning, deduction.

I Computation: decidability, algorithms and complexity for model
checking and synthesis, incl. solving games, computing winning
strategies, optimizing payoffs, etc.

. Many still unexplored directions:

I solution concepts and equilibria
I games with imperfect information
I stochastic games with probabilistic strategies, etc.
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