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We introduce and study a natural extension of the Alternating time temporal logic ATL, called Temporal

Logic of Coalitional Goal Assignments (TLCGA). It features one new and quite expressive coalitional strategic
operator, called the coalitional goal assignment operator 〈[γ ]〉, where γ is a mapping assigning to each set of
players in the game its coalitional goal, formalised by a path formula of the language of TLCGA, i.e., a formula
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says that there is a strategy profile Σ for the grand coalition Agt such that for each coalitionC , the restriction
Σ|C of Σ to C is a collective strategy of C that enforces the satisfaction of its objective γ (C ) in all outcome
plays enabled by Σ|C .
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1 INTRODUCTION

Formalising strategic reasoning has become an increasingly rich and attractive direction of active
research and applications of multi-agent modal logic over the past few decades. Early logical sys-
tems capturing agents’ abilities were developed with philosophical motivations and applications
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in mind, including Brown’s modal logic of ability [11] and Belnap and Perloff’s STIT logic [8]. In
the late 1990s—early 2000s two seminal works in the area appeared independently: Pauly’s Coali-

tion logic (CL ), introduced in [36, 37], and Alur, Henzinger and Kupferman’s Alternating time

temporal logic (ATL ) introduced (in its final version) in [5], cf also [17].
The logic CL was introduced with the explicit intention to formalise reasoning about one-step

(local) strategic abilities of coalitions of agents to guarantee the achievement of designated ob-
jectives in the immediate outcome of their collective action, regardless of the respective actions
of the remaining agents. The logic ATL, on the other hand, was introduced as a logical formal-
ism for formal specification and verification of open (interacting with the environment) computer
systems, where the agents represent concurrently executed processes. However, it was gradually
adopted in the research on logic for multi-agent systems as one of the most standard and popu-
lar logical systems for reasoning about the long-term strategic abilities of agents and coalitions
in concurrent multiplayer games. The logic ATL can be described as an extension of CL with the
long-term temporal operators G and U, adopted in the branching-time temporal logic CTL, which
can be regarded as a single-agent fragment of ATL. More precisely, both CL and ATL feature special
modal operators1 〈〈C〉〉, indexed with groups (coalitions) of agents C , such that for any formula ϕ,
regarded as expressing the coalitional objective of C , the formula 〈〈C〉〉ϕ intuitively says that the
coalitionC has a collective strategy σC that guarantees the satisfaction ofϕ in every outcome (state
for CL, respectively, play for ATL) that can occur when the agents in C execute their strategies in
σC , regardless of the choices (strategic or not) of actions of the agents not in C .

Thus, both CL and ATL capture reasoning about absolute powers of agents and coalitions to act
in pursuit of their goals and succeed unconditionally against any possible behaviour of their op-
ponents, which are thus regarded as adversaries (in the context of CL) or as randomly behaving
environment (in the context of ATL). This is a somewhat extreme perspective, as strategic inter-
actions of rational agents in the real world usually involve a complex interplay of cooperation
and competition, both driven by the individual and collective objectives of all agents, be them pro-
ponents or opponents of the objective in focus. To capture these adequately, expressively richer
formal logical languages are needed. In the recent precursor [23] of the present work, we pro-
posed two such extensions of CL with additional coalitional operators, respectively implementing
the following two ideas relating to cooperation and competition in a social context:

Social friendliness: agents can achieve private goals while leaving room for cooperation with the
others and with the rest of the society.

Group protection: agents can cooperate within the society while simultaneously protecting their
private goals.

The second extension mentioned above, called Group Protecting Coalition Logic (GPCL) is
the starting point of the present work, which introduces and studies its extension in ATL-like style,
called Temporal Logic of Coalitional Goal Assignments (TLCGA). The logic TLCGA features
one, very expressive, coalitional strategic operator, viz. the coalitional goal assignment operator of
the type 〈[γ ]〉, where γ is a mapping assigning to each coalition (subset) in the family of all agents
Agt its coalitional goals, which is formalised by a path formula of the language of TLCGA, i.e., a
formula prefixed with a temporal operator X ,G , or U , representing the temporalised objective for
the respective coalition. Then, the formula 〈[γ ]〉 intuitively says that there is a strategy profile Σ for
the grand coalition Agt such that for each coalition C , the restriction Σ|C of Σ to C is a collective
strategy of C that enforces the satisfaction of its objective γ (C ) in all outcome plays enabled by

1We use here the notation from [5], which was more widely adopted.
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Σ|C . The intuition is that each agent participates in the grand coalition with its individual strategy
so that, while contributing to the achievement of the common goal, each coalition also guarantees
the protection of its coalitional interest against any possible deviation of all other agents. The
logic of TLCGA naturally extends ATL (in particular, CL) and exhibits richer expressiveness, both
purely technical, but also in terms of potential applications (cf. Section 4). Notably, it turns out
(cf. Section 3.3) that the semantics of TLCGA is more sophisticated than the semantics of ATL

and most of its extensions studied so far, in the sense that it is essential that the class of (memory-
based) strategies underlying the semantics of TLCGA includes all play-based strategies (taking into
account the full history, consisting not only of the sequence of visited states but also including the
action profiles causing the transitions between them) rather than only the path-based strategies
(based on the state histories only), which has been the customary choice both for the logics in the
ATL/ATL∗ family and for the family of Strategy logics (see further) studied so far. More precisely, the
two semantics differ for TLCGA, both in terms of truth at a state in a model and in terms of validity
(respectively, satisfiability), as shown in Section 3.3, where we also argue that the semantics using
play-based strategies is the more natural and faithful one for the intended meaning of the operator
〈[·]〉. We also analyse there how the two semantics relate technically and show how model checking
for the semantics using play-based strategies can be reduced to a model checking for the semantics
using path-based strategies.

Besides TLCGA, we also introduce and study, though in less detail, two extensions of this lan-
guage: TLCGA+, in which conjunctions of path formulas are allowed, and a fixpoint language
LXCGA

μ in the style of the modal μ-calculus. The first of these two extensions appears naturally in
some applications with a connection to game theory, described shortly. The full fixpoint language
LXCGA

μ has a theoretical interest on its own, as a very expressive, yet quite well-behaved logic
for multiplayer games. Furthermore, since the logics TLCGA and TLCGA+ embed as fragments
of LXCGA

μ , the latter can be used as a tool to study these logics and obtain technical results about
them. Here, it is used to prove decidability and finite model property of both TLCGA and TLCGA+,
as well as to establish upper complexity bounds for their satisfiability problems.

As we demonstrate with examples in Section 4, the logic of TLCGA enables the expression of
various natural and important nuanced patterns of multiplayer strategic interaction. In particular,
the logic TLCGA captures a concept that we call “co-equilibrium”, which we define and promote
here as a new, alternative solution concept on the border of non-cooperative and cooperative game
theory [33]. We argue (in Section 4.2.2) that is more natural and applicable than the standard no-
tion of Nash equilibrium in the context of concurrent multiplayer games with individual qualita-
tive objectives. The existence of a co-equilibrium can be expressed quite simply in TLCGA using
the operator 〈[γ ]〉. We also show (in Section 4.2.3) how other naturally defined notions of stable
individually and coalitionally stable outcomes can be formalised in TLCGA+.

Further motivation for the present work comes from cooperative game theory [9, 13, 33]. One
natural link is the apparent relationship between concurrent game models and coalitional goal
assignments in them studied here, and some classes of cooperative games, such as the so-called
simple games [38, 46], where the characteristic function defining the game assigns a payoff 0 or 1
to each coalition. An important class of such games are the voting games [13]. We only mention
here these links with cooperative game theory, but they are left to be explored in a further work.
In this article, we only illustrate briefly (in Section 4.2) the expressiveness of TLCGA and TLCGA+

by showing how natural qualitative analogues of the key notions of stable strategy profiles and
core, defined and studied for a type cooperative games based on concurrent game models in [26],
can be expressed in TLCGA+.
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Main contributions. Besides the introduction of the logic TLCGA and its extensions TLCGA+

into LXCGA
μ , the main technical contributions of this article are

— Fixpoint characterizations of the main types of long-term goal assignments and translation
of TLCGA and TLCGA+ into LXCGA

μ .
— bisimulation invariance and Hennessy–Milner property for the logic TLCGA and for the full
LXCGA

μ with respect to the GPCL-bisimulation introduced in [23].
— sound and complete axiomatic system for TLCGA.
— finite model property and decidability (with triple exponential bound) for the extended logic

TLCGA+ (hence also of TLCGA).
— double exponential bound on the satisfiability problem for the fixpoint language LXCGA

μ .
— complexity bounds for the model checking problems and the satisfiability problems for

TLCGA and TLCGA+.

Related work and results. In addition to the links and references mentioned so far, the present
work bears both conceptual and technical connections with several previously studied logics for
strategic reasoning and multiplayer games, including: the logic ATL with irrevocable strategies
[3, 4], ATL with strategy contexts [10], coalitional logics of cooperation and propositional control
[45, 47], cooperative concurrent games [26], and especially with the family of Strategy Logics, orig-
inally introduced in [14] and further extended and studied in [2, 6, 22, 28, 29, 31], and so on. Indeed,
the operator 〈[γ ]〉 in TLCGA+ with the “path-based semantics” mentioned earlier (cf. Section 3.3)
can be translated to the Conjunctive Goals fragment2 SL [CG] of Strategy Logic [22, 30], in a way
similar to the standard translation of modal logics to first-order logic. As shown in Section 3.4,
that translation can be used for applying model checking algorithms for SL [CG] to TLCGA+ (in
particular, TLCGA) and for obtaining the 2ExpTime complexity upper bound for the model check-
ing problem for TLCGA+, for both versions of its semantics. Likewise, that translation can be used
for applying algorithms and obtaining PSpace complexity upper bound for the satisfiability prob-
lem in flat fragment of TLCGA+ with the path-based semantics by reduction to the satisfiability
problem in flat fragment FSL [CG] of SL [CG], shown in [2] to be decidable and PSpace-complete.
On the other hand, a direct argument in Section 9, using embedding of TLCGA and TLCGA+ to
the μ-calculus extension LXCGA

μ shows that the satisfiability problem in the whole TLCGA+ (in
particular, TLCGA), with its standard play-based semantics, is in 2ExpTime.

Notwithstanding these important technical benefits, we note that translating TLCGA to (a frag-
ment of) Strategy Logic could generally result in an unwanted surplus of expressiveness, or even
in a technical overkill, for which we have both conceptual and computational reasons to avoid,
whenever possible. On the conceptual side, translating TLCGA to Strategy Logic would lose of
the elegant succinctness and clear focus of the operator 〈[γ ]〉 as the main high-level logical con-
struct of the language and would replace it with its low-level description in Strategy Logic.3 On
the technical side, such translation would map a syntactically simple propositional language to a
generally quite more expressive and syntactically heavier, essentially second-order language, ex-
plicitly involving quantification over strategies (being functions from finite sequences of states to
actions). Essentially these are the same arguments in favour of preferring modal logic over first-
order logic, but amplified by the technical complexity of quantifying over functions rather than
individuals. Thus, we eventually adopt and advocate the pragmatic approach of adhering as much
as possible to the propositional logic framework of TLCGA for the purposes of expressing and
reasoning about properties of strategic interactions of the type mentioned above, while resorting

2We thank an anonymous reviewer for suggesting to consider the translation of TLCGA into that fragment.
3Admittedly, this is a subjective argument and mostly a matter of taste, which we only state but do not try to impose here.
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to using translation to fragments of Strategy Logic only when necessary or practically expedient,
e.g., for the purpose of using already developed tools for a model or satisfiability checking in these
fragments of Strategy Logic.

Our work is also essentially connected with coalgebraic modal logic [16, 32, 35], which is an
abstract framework for modal logics of state-based evolving systems. Together with the fixpoint
characterization of TLCGA, this makes TLCGA in essence a fragment of a coalgebraic fixpoint logic
[15, 21, 48]. This connection is used to establish decidability and finite model property for our logic.
Beyond that, however, our presentation is mostly self-contained, and will not require familiarity
with coalgebra.

Still, we want to emphasize that the connection with coalgebraic logic, and coalgebraic fixpoint
logics, in particular, is implicitly present throughout the article. In particular, the notion of one-step
completeness, and the idea of lifting one-step completeness to completeness for the full language,
is at the heart of our completeness proof. The notion of one-step completeness is inherently coal-
gebraic and has been studied in depth by a number of authors [35, 41, 42].

Furthermore, the fact that our translation into fixpoint logic requires only a single recursion
variable means that TLCGA is a fragment of a flat fixpoint logic [18, 40, 43], and completeness
of flat fixpoint logics can be obtained by simpler techniques than the full μ-calculus. There are
two main reasons why our completeness proof is not explicitly formulated in coalgebraic terms:
first, we note that TLCGA is not a flat μ-calculus per se, but rather embeds into such a logic via
a fairly intricate translation. So the results in [43] do not apply directly here, as far as we can
see. Second, and more importantly, we want the proof to be as self-contained and accessible
without prior knowledge in coalgebraic μ-calculus as possible. It is possible that one could
“transfer” completeness of flat coalgebraic μ-calculi to obtain completeness for TLCGA via our
translation, but we believe a direct completeness proof is more transparent and provides a better
understanding of TLCGA and its semantics.

Lastly, we also note the relationship of the present work with the logic for local conditional
strategic reasoning CSR introduced in [24]. Furthermore, we point out the direct applicability
of the logic TLCGA for the adequate alternative formalisation of the ideas of rational synthesis
[20] and rational verification [49]. These connections and possible applications are left to future
work.

Structure of the article. After some preliminaries in Section 2 on concurrent game models, plays
and strategies in them, in Section 3 we introduce and study the formal syntax and semantics of
the logic TLCGA, and illustrate its expressiveness with some examples. In Section 5 we obtain
fixpoint characterizations of the long-term goal assignments expressed in a suitable μ-calculus
extension of TLCGA. We then discuss the connection with coalgebraic modal logic. In Section 6
we introduce the relevant notion of bisimulation for TLCGA and prove bisimulation invariance
and the Hennessy–Milner property for it. In Section 7 we provide an axiomatic system for TLCGA

for which we prove soundness and completeness. In Section 9 we show the decidability of TLCGA

via finite model property. We then end with a brief concluding remarks in Section 10.

2 PRELIMINARIES AND BACKGROUND

2.1 Concurrent Game Models, Plays, Strategies

We fix a finite set of players/agents Agt = {a1, . . . , an } and a set of atomic propositions AP.
Subsets of Agt will also be called coalitions.

Given a set W , we denote by W ∗ the set of finite words over W , by W + the set of non-empty
words fromW ∗, and byW ω the set of infinite words overW .
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21:6 S. Enqvist and V. Goranko

Definition 1. Let O be any non-empty set. A (strategic) game form over the set of outcomes

O is a tuple

G = (Act, act,O, out),

where

— Act is a non-empty set of actions,
— act : Agt→ P+ (Act) is a mapping assigning to each a ∈ Agt a non-empty set acta of actions

available to the player a,
— out : Πa∈Agt acta → O is a map assigning to every action profile ζ ∈ Πa∈Agt acta a unique

outcome in O.

Definition 2. A concurrent game model is a tuple

M = (S,Act, g,V ),

where

— S is a non-empty set of states;
— Act is a non-empty set of actions;
— g is a game map, assigning to each state w ∈ S a strategic game form g(w ) = (Act, actw , S,

outw ) over the set of outcomes S;
—V : AP→ P (S) is a valuation of the atomic propositions in S.

For every concurrent game modelM = (S,Act, g,V ) we define the following.

— For each a ∈ Agt and w ∈ S, the set actw (a) consists of the locally available actions for
a in w . It will also be denoted by act(a,w ). We also define the set acta :=

⋃
w ∈S actw (a) of

globally available actions for a.
— An action profile is a tuple of actions ζ ∈ Πa∈Agt acta. A locally available action profile

at statew is any tuple of locally available actions ζ ∈ Πa∈Agt actw (a). The set of these action
profiles will be denoted by ActProfw .

— outM is the global outcome function assigning to every state w and a local action profile
ζ at w a unique outcome outM (w, ζ ) := outw (ζ ). WhenM is fixed by the context, it will
be omitted from the subscript.

— Given a coalition C ⊆ Agt, a joint action for C inM is a tuple of individual actions ζC ∈∏
a∈C acta. In particular, for any action profile ζ ∈ Πa∈Agt acta, ζ |C is the joint action obtained

by restricting ζ to C .
— For any w ∈ S, C ⊆ Agt, and joint action ζC that is available at w , we define:

Out[w, ζC ] =
⎧⎪⎪⎨⎪⎪⎩u ∈ S | ∃ζ ∈

∏
a∈Agt

actw (a) : ζ |C = ζC and out(w, ζ ) = u
⎫⎪⎪⎬⎪⎪⎭.

A partial play, or a history inM is either an element of S or a finite word of the form:

w0ζ0w1 . . .wn−1ζn−1wn ,

wherew0, . . . ,wn ∈ S and for each i < n, ζi is a locally available action profile in Πa∈Agt act(a,wi ).
The last state in a historyh will be denoted by l (h). The set of histories inM is denoted by Hist(M).

A (memory-based) strategy for player a is a map σa assigning to each history h =
w0ζ0 . . . ζn−1wn in Play an action σa (h) from act(a,wn ). Note that strategies are defined here in
terms of histories, i.e., partial plays, not just sequences of states, as it is customary for ATL∗ and in
particular ATL [5], cf also [12, 17]. This distinction will turn out to be essential for the semantics of
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the logic introduced here. A strategy σa is memoryless, or positional, if it assigns actions only
based on the current (last) state, i.e., σa (h) = σa (h′) whenever l (h) = l (h′).

Given a coalition C ⊆ Agt, a joint strategy for C in the modelM is a tuple ΣC of individual
strategies, one for each player inC . A (global) strategy profile Σ is a joint strategy for the grand
coalition Agt, i.e., an assignment of a strategy to each player. We denote the set of all strategy
profiles in the modelM by StratProfM , and the set of all joint strategies for a coalitionC inM by
StratProfM (C ). Thus, StratProfM = StratProfM (Agt).

Given a strategy profile Σ, the play induced by Σ at w ∈ S is the unique infinite word

play(w, Σ) = w0ζ0w1ζ1w2ζ2 . . .

such that w0 = w and, for each n < ω we have wn+1 = out(ζn ,wn ), and

ζn+1 = Σ(w0ζ0 . . . ζnwn+1).

The infinite word w0w1w2 . . . obtained by simply forgetting the moves of players in this infinite
play is called the computation path induced by Σ at v , and denoted path(Σ,v ).

More generally, given a coalitionC ⊆ Agt, a state w ∈ S and a joint strategy ΣC forC we define
the set of outcome plays induced by the joint strategy ΣC at w to be the set of plays

Plays(w, ΣC ) =
{
play(w, Σ) | Σ ∈ StratProfM such that Σ(a) = ΣC (a) for all a ∈ C

}
.

Given a strategy profile Σ we also denote Plays(w, Σ,C ) := Plays(w, Σ|C ). We will likewise use the
notation paths(w, Σ,C ) for the set of computation paths obtained from the plays in Plays(w, Σ,C ).
Since these only depend on the strategies assigned to players inC , we shall freely use the notation
Plays(w, Σ,C ) and paths(w, Σ,C ) even when Σ is defined for all members ofC , but not for all other
players.

The strategies in our semantics will be memory-based: moves of players in a strategy may de-
pend on previous moves of other players, and players have perfect information and recall about
previous moves. Indeed, as we will show in Section 3.2, just like for ATL+ and ATL∗, but unlike ATL,
the restriction to positional strategies generates different semantics for the logic TLCGA which we
introduce here.

3 THE TEMPORAL LOGIC OF COALITIONAL GOAL ASSIGNMENTS (TLCGA)

3.1 Goal Assignments, Language and Syntax of TLCGA

Given a fixed finite set players Agt and a set G of objects, called “goals”, a (coalitional) goal

assignment for Agt in G is a mapping γ : P (Agt) → G.
We now define the set StateFor of state formulae and the set PathFor of path formulae of

TLCGA by mutual induction, using the following BNF:

StateFor : φ := p | 
 | ¬φ | (φ ∧ φ) | (φ ∨ φ) | 〈[γ ]〉,
PathFor : θ := Xφ | φUφ | Gφ,

where p ∈ AP and γ : P (Agt) → PathFor is a goal assignment for Agt in PathFor. The other
propositional connectives ⊥, → and↔, as well as the temporal operator F , are defined as usual.
We write: XFor for the set of path formulas of the form Xφ; UFor for the set of path formulas of
the form φUψ ; GFor for the path formulas of the form Gφ; and UGFor for UFor ∪ GFor.

We denote the language by LTLCGA, and its next time fragment (where PathFor is restricted to
XFor) by LXCGA. The latter is essentially (with some minor notational changes) the language of
the logic GPCL introduced in [23].

Intuitively, the path formulae can be regarded as temporal goals. The goal X
 is called a trivial

goal and all other goals in PathFor are non-trivial goals. The family of coalitions F to which the
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21:8 S. Enqvist and V. Goranko

goal assignment γ assigns non-trivial goals is called the support of γ , denoted Support(γ ), and γ
is said to be supported by F .

Sometimes we will write a goal assignment γ explicitly, like

C1 � θ1, . . . ,Cn � θn ,

meaning that Support(γ ) = {C1, . . . ,Cn } and γ (Ci ) = θi , for i = 1, . . . ,n.
More notation:

—γ
 is the trivial goal assignment, mapping each coalition to X
.
— The goal assignment γ [C � θ] is like γ , but mapping C to θ .
— The goal assignment γ \C defined as γ [C �X
] is like γ , but excludingC from its support, by

replacing its goal with X
.
— The goal assignment γ |C is defined by mapping each C ′ ⊆ C to γ (C ′) and mapping all

coalitions not contained in C to X
.

As a convention, if γ is the unique goal assignment with empty support, we will identify the
formula 〈[γ ]〉 with 
.

We will also consider a slight extension of the logic TLCGA which allows forming conjunctions
of path formulas. This extension, which we call TLCGA+, has the same definition of state formulae,
whereas the path formulae of TLCGA+ are defined as follows:

PathFor : θ := Xφ | φUφ | Gφ | θ ∧ θ .
In this article, we will focus mainly on TLCGA, but most of the technical results extend likewise

to TLCGA+, and we will note that explicitly for some of them.

3.2 Semantics of TLCGA

The semantics of TLCGA is defined in terms of the truth of state formulae at a state, respec-
tively truth of path formulae on (the path generated by) a play, in a concurrent game model
M = (S,Act, g, out,V ). The truth clauses are like in classical logic for the Boolean connectives
and like in LTL for the temporal operators. The only new clause, for 〈[γ ]〉, is as follows, where
s ∈ S:

M, s � 〈[γ ]〉 iff there exists a strategy profile Σ ∈ StratProfM such that,
for each C ⊆ Agt, it holds thatM,π � γ (C ) for every π ∈ paths(s, Σ,C ).

For any state formula φ ∈ StateFor we define the extension of φ inM to be the set of states
inM where φ is true: [[φ]]M = {s ∈ S | M, s � φ}. Likewise, we define the extension of any path
formula θ ∈ PathFor to be the set of paths inM where θ is true: [[θ]]

p

M = {π ∈ S | M,π � θ }.
The truth clause for 〈[γ ]〉 can now be re-stated in terms of formula extensions as follows:

[[〈[γ ]〉]]M =
{
s ∈ S | ∃ Σ ∈ StratProfM : paths(s, Σ,C ) ⊆ [[γ (C )]]

p

M for each C ⊆ Agt
}
.

A strategy profile Σ is said to witness the goal assignmentγ at a state s of a modelM, denoted
by Σ, s � γ , if, for every coalition C in the support of γ and every path π ∈ paths(s, Σ,C ) inM
we haveM,π � γ (C ). We then also say that Σ witnesses the formula 〈[γ ]〉 at the state s inM.
Thus,M, s � 〈[γ ]〉 iff γ is witnessed by some strategy profile at s inM.

A TLCGA formula ϕ is valid, denoted � ϕ, ifM, s � ϕ for every concurrent game modelM
and a state s in it; respectively ϕ is satisfiable ifM, s � ϕ for some concurrent game modelM
and some state s in it. Likewise, (local) logical consequence and logical (semantic) equivalence in
TLCGA are defined as expected.
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Fig. 1. Example showing that memory is needed.

We note that the formula 〈[C �Xϕ, Agt �Xψ ]〉 is semantically equivalent to the strategic operator
[C](ϕ;ψ ) in the logic SFCL defined in [23]. Therefore, the corresponding fragment SFCL1 of SFCL

embeds into TLCGA. Note also that the strategic operator [C] from Coalition logic CL is definable
as a special case: [C]ϕ := [C](ϕ;
) ≡ 〈[C � Xϕ]〉.

Furthermore, the strategic operator 〈〈C〉〉 from ATL is also a special case: 〈〈C〉〉θ ≡ 〈[C � θ]〉. Thus,
the logic ATL is embedded as a simple fragment of TLCGA.

Also, we note that a natural (downward) monotonicity condition on goal assignments can be
imposed, viz. that � γ (C ) → γ (C ′) for every coalitionsC ,C ′, such thatC ′ ⊆ C . This condition can
be imposed semantically, up to equivalence, by replacing each γ (C ) with

∧
C ′ ⊆C γ (C ′), though the

resulting goals cannot be expressed in TLCGA, but in TLCGA+. A special case of monotone goal
assignments, worth noting, are the “individualistic” goal assignments, where γ (C ) ≡ ∧

a∈C γ (a)
for every coalition C .

3.3 Variations of the Semantics of TLCGA

3.3.1 Memory-based and the Memoryless Semantics. Let us introduce ad hoc the variation 〈[·]〉0
of 〈[γ ]〉, with semantics restricted to positional strategies, i.e., M, s � 〈[γ ]〉0 iff there exists a
positional strategy profile Σ ∈ StratProfM such that, for each C ⊆ Agt, it holds thatM,π � γ (C )
for every π ∈ paths(s, Σ,C ).

Proposition 1 (No Positional Determinacy of TLCGA). Let Agt = {a, b}. There exist concur-
rent game modelM = (S,Act, g, out,V ), state s ∈ S and a coalitional goal assignment γ , such that
M, s � 〈[γ ]〉, butM, s �� 〈[γ ]〉0.

Consequently, the memory-based and the memoryless semantics of 〈[·]〉 are not equivalent.

Proof. Consider the modelM = (S,Act, g, out,V ) on Figure 1 and a goal assignment γ , such
that γ ({a, b}) = p Uq and γ ({a}) = 
U¬(p ∨ q).

Then,M, s � 〈[γ ]〉, witnessed by any strategy profile Σ such that Σa (s ) = a1 and Σa (ss1s ) = a2.
However, there is no positional strategy profile witnessing the truth of 〈[γ ]〉0 at s because any

positional strategy for a would have to assign a unique action to any history ending at s , hence
not enabling both the satisfaction of p Uq and of 
U¬(p ∨ q) there. �

Hereafter, we will only work with the memory-based semantics.

3.3.2 Semantics with Path-based Strategies vs. Play-based Strategies. Furthermore, note that
(memory-based) strategies are defined here in terms of plays, not just paths, as it is customary
for ATL∗ and in particular ATL [5] (cf also [12, 17]), as well as for Strategy Logic [14, 28, 31]. In-
deed, the two versions of strategy types affect essentially the semantics, as shown by the following
example.
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Example 1 (Path-based Strategies vs. Play-based Strategies). Consider the modelM below, with
3 players: {1, 2, 3}, where the triples of actions correspond to the order (1, 2, 3) and ∗ denotes any
(or, a single) action.

s
{p,q }

s1
{p,q }

s2
{p,q }

s31
{p }

s32
{q }

(a1,a2,a3) (a1,b2,a3), (a1,a2,b3), (a1,b2,b3)

(∗, ∗, ∗)

(∗, ∗, ∗) (∗, ∗, ∗)

(ap , ∗, ∗) (aq , ∗, ∗)

Consider the goal assignment γ , such that γ ({1, 2}) = Gp and γ ({1, 3}) = Gq. The following
hold:

(1) M, s � 〈[γ ]〉 in terms of the semantics with plays-based strategies adopted here.
Indeed, the strategy profile Σ prescribing the following action profiles: (a1,a2,a3) on the play
s; (ap , ∗, ∗) on the play s (a1,a2,b3)s2; (aq , ∗, ∗) on the plays s (a1,b2,a3)s2 and s (a1,b2,b3)s2;
and (∗, ∗, ∗) on any play ending at s1, s31, and s32, would ensure the truth of 〈[γ ]〉 at s .

(2) M, s �� 〈[γ ]〉 in terms of the semantics with path-based strategies.
This is because player 1 does not have such a strategy for which both:
(a) the coalition {1, 2} ensures the satisfaction of the goal Gp by the transition from s2 to

s31, if 3 acts b3 at s and the game goes to s2, and
(b) the coalition {1, 3} ensures the satisfaction of the goal Gq by the transition from s2 to

s32, if 2 acts b2 at s and the game goes to s2.

Thus, two different semantics for TLCGA emerge. Let us call them respectively play-based

semantics, hereafter indicated by �play, and path-based semantics, hereafter indicated by �path.
Now, a natural question arises: which is the better/more correct one? We argue that, as the example
above indicates, this is the semantics based on play-based strategies, adopted here, because only
play-based strategies can detect agents’ deviations from the adopted strategy profile of the grand
coalition, so as to ensure that the execution of these strategies by the non-deviating agents will
still guarantee the fulfilment of their individual and collective goals.

3.3.3 Relating the Path-based and the Play-based Semantics. Still, the two semantics can be rec-
onciled in the example above by splitting off the node s2 into 3 copies, each being the successor
node of s1 for exactly one action profile, as in Figure 3.3.3. (In fact, for this example, 2 copies suffice,
just to split the outcomes from (a1,b2,a3) and (a1,a2,b3).) That way, different action profiles ap-
plied at any given state lead to different successor nodes, so different plays correspond to different
paths, hence the two semantics coincide in the resulting model.
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s
{p,q }

s21
{p,q }

s1
{p,q }

s22
{p,q }

s23
{p,q }

s31
{p }

s32
{q }

(a1,a2,a3 ) (a1,b2,a3 ) (a1,a2,b3 ) (a1,b2,b3 )

(∗,∗,∗)

(∗,∗,∗) (∗,∗,∗)

(ap,∗,∗) (aq,∗,∗)(ap,∗,∗) (aq,∗,∗)(ap,∗,∗) (aq,∗,∗)

This construction generalises to any concurrent game model to produce concurrent game mod-
elsM having the following property: for every state s ∈ M and action profiles ζ1, ζ2 available at
s , if ζ1 � ζ2 then outM (s, ζ1) � outM (s, ζ2). We call such models injective. Every non-injective
concurrent game modelM can be transformed into an injective one ι (M) by generalising the con-
struction in the example above. That can be done in various ways, but a most economical one is to
multiply every state w into as many copies as the maximal number of incoming to w transitional
arrows leading from any other given stateu labelled with different action profiles applied atu. The
labels of these copies, as well as all available action profiles at each of them and their outcomes,
are copied from those at w . Thereafter, all multiply-labelled transitions from any state s to w are
respectively re-directed to the different copies of w . We leave out the routine technical details of
this construction. We will call this construction state-copying and outcome-splitting (SCOS).

Note that plays and paths in any injective model are in a trivial 1–1 correspondence, hence play-
based and path-based strategies in injective models coincide. It is then straightforward to show
the following, by induction on the formulae in TLCGA+.

Proposition 2. In every injective concurrent game modelM, �play and �path coincide, i.e., for
every state s ∈ M and a state formula φ ∈ TLCGA+: M, s �path φ iffM, s �play φ.

We further note that the resulting model from applying the SCOS construction is TLCGA-
bisimilar to the original one, in terms of the notion of TLCGA-bisimulation defined in Section 6.
Consequently, due to the bisimulation invariance Theorem 3 established there, the SCOS construc-
tion preserves, inter alia, the truth of all TLCGA+ formulae with respect to the play-based seman-
tics, as follows.

Proposition 3. Given any concurrent game modelM, state s ∈ M, and a copy si of s in the injec-
tive model ι (M) obtained by applying SCOS toM, for every state formulaφ ∈ TLCGA+: M, s �play φ
iff ι (M), si �play φ.

Combining the two observations above, we obtain the following.

Corollary 1. The model-checking problem (MC) for formulae of TLCGA+ with the play-based
semantics is reducible to the model checking problem for TLCGA+ with the path-based semantics, at
the cost of most quadratic blow-up of the size of the model.

Observe also that in any concurrent game modelM, every path-based strategy is also a play-
based strategy (prescribing the same action on every two plays generating the same path). There-
fore, for every formula 〈[γ ]〉 ∈ TLCGA+, in any concurrent game modelM and a state s ∈ M: if
M, s �path 〈[γ ]〉 thenM, s �play 〈[γ ]〉.
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We now show that the two semantics also differ with respect to the respective validities (hence,
also with respect to the satisfiable formulae) of TLCGA. For that, we will use the idea of Example 1.
Consider the goal assignment γ defined there, as well as the goal assignment γ ′ with support
{{1, 2}, {1, 3}, {1, 2, 3}}, where:

γ ′({1, 2}) = X 〈[{1} � Gp]〉,γ ′({1, 3}) = X 〈[{1} � Gq]〉,andγ ′({1, 2, 3}) = G (p ∧ q).

Then the following hold:

(1) �play 〈[γ ′]〉 → 〈[γ ]〉. Indeed, in any given model, a strategy profile satisfying 〈[γ ]〉 can be
produced from a strategy profile satisfying 〈[γ ′]〉 by amending the strategy for player 1 in the
former strategy profile with those strategies for 1 claimed to exist in the respective successor
outcomes from the joint strategies for {1, 2} for {1, 3}. These amendments are done as follows.
Consider any successor statew of the current state s , obtained as the outcome from applying
at s an action profile ζ obtained, for instance, by extending the joint action of {1, 2} prescribed
at s by the strategy profile Σ′ witnessing the truth of 〈[γ ′]〉 at s with any action of 3 different
from the one prescribed by its strategy in Σ′. Then, the strategy for 1 is re-defined on any
play of the type πsζwπ ′ to prescribe the action which a strategy for 1 that is claimed by
γ ′({1, 2}) to exist at w prescribes at the play wπ ′ in order to ensure the truth of Gp on any
resulting play. The strategy for 1 on all plays passing through ζ ′w ′ when ζ ′ comes from
a joint action of {1, 3} at s is re-defined likewise. Lastly, when all 3 players are following
the strategy profile Σ′ witnessing the truth of 〈[γ ′]〉 at s , in the resulting play both Gp and
Gq hold, so no strategy amendment is needed. Since the strategies that we consider are
play-based, the two cases of strategy amendments are independent of each other, as they
apply to disjoint sets of plays, and are therefore unproblematic to combine (which is not the
case for path-based strategies, as Example 1 shows). It is now straightforward to show that
the strategy profile Σ, resulting from the replacement of the strategy for 1 in Σ′ with the
amended strategy described above, witnesses the truth of 〈[γ ]〉.

(2) ��path 〈[γ ′]〉 → 〈[γ ]〉. Indeed, that formula fails in the model displayed in Example 1, because
it is straightforward to show thatM, s �path 〈[γ ′]〉.

3.4 Standard Translation of the Path-based Semantics of TLCGA+ Into Fragments of

Strategy Logic and the Complexity of Model Checking TLCGA

We refer here to a standard version SL of Strategy logic as defined e.g., in [28, 31], involving vari-
ables ranging over strategies that can be associated with any agents within the formulae by means
of strategy assignments, and quantification over such variables. Here we mostly follow the nota-
tion for strategy assignments from [2, 30], which is slightly differ from the one in [22].

First, we show that the logic TLCGA+ with the path-based semantics can be translated to SL in
a way very similar to the standard translation of modal logic to first-order logic. The key clause
is the translation of the operator 〈[γ ]〉, defined as follows4 (using the notation from [2]), for Agt =

{a1, . . . , an }:
tr(〈[γ ]〉) = ∃x1 . . . ∃xn∀y1 . . .∀yn

∧
C⊆Agt

�Cγ (C ),

where the binding prefix �C assigns to each agent ai in Agt the value of the strategy variable
xi if ai ∈ C , and the value of the strategy variable yi , otherwise. To shorten the formula up to
equivalence, the big conjunction above can be restricted to range only over those coalitions C ⊆
Agt for which γ (C ) � X
.

4This form of the translation was suggested by an anonymous reviewer.
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Since the translation above places only conjunctions of temporal goals in the scope of all quan-
tifiers over strategies, TLCGA+ translates in the Conjunctive-Goal fragment SL [CG]. Using this,
we obtain the following:

Proposition 4. For each of the path-based semantics and the play-based semantics of TLCGA+,
the respective model checking problem is PTIME-complete in the size of the model and in 2ExpTime
in the size of the formula.

Proof. For MC in the path-based semantics, the claim follows from the translation tr above and
the respective results in [30, Theorem IV.2] and in [22], for the upper bounds. The lower bound
in terms of the size of the model follows from the PTIME-complete complexity of MC for ATL [5],
which is embedded into TLCGA. The precise complexities of MC for TLCGA and TLCGA+ in the
size of the formula are currently still open.

For the MC in the play-based semantics, the complexity bounds are obtained from those above,
by using the reduction to MC in the path-based semantics provided by Corollary 1. �

Note further that, when 〈[γ ]〉 is in the flat fragment FTLCGA+ of TLCGA+, i.e., all goals γ (C )
are conjunctions of purely temporal goals (not containing nested γ operators), the translation for-
mula above is in the flat sub-fragment FSL [CG] of SL [CG] [2]. Consequently, that translation can
also be used for applying algorithms and obtaining PSpace complexity bound for the satisfiability
problem in FTLCGA+ with the path-based semantics by reduction to the satisfiability problem in
FSL [CG], shown in [2] to be decidable and PSpace-complete (notably, lower than the 2ExpTime
complexity of model checking for FSL [CG], as shown in [2]). On the other hand, as we show in
Section 9, using embedding of TLCGA+ to a μ-calculus extension LXCGA

μ of the next time frag-

ment LXCGA of TLCGA, defined in Section 5.3, the satisfiability problem in LXCGA
μ is in 2ExpTime,

hence the satisfiability problem in the whole TLCGA+, with its standard play-based semantics, is
in 3ExpTime.

4 SOME APPLICATIONS OF TLCGA AND TLCGA+

4.1 Examples of Expressing and Reasoning About Group Objectives with TLCGA

4.1.1 Example 1: Password Protected Data Sharing. This example is adapted from [23], where
it was adapted from [34]. Consider the following scenario involving two players, Alice (denoted
A) and Bob (denoted B). Each of them owns a server storing some data, the access to which is
protected by a password. Alice and Bob want to exchange passwords, but neither of them is sure
whether to trust the other. So the common goal of the two players is to cooperate and exchange
passwords, but each player also has the private goal not to give away their password in case the
other player turns out to be untrustworthy and does not provide his/her password. When and how
can the two players cooperate to exchange passwords? The answer depends on the kind of actions
that Alice and Bob can perform while attempting to achieve their common objective. However, we
are more interested now in formalising the problem in TLCGA.

Let us first try to express the common objective by a TLCGA formula. For that, we write HA

for “Alice has access to the data on Bob’s server” and HB for “Bob has access to the data on Al-
ice’s server”. Then an obvious candidate for a formula expressing the common goal is the goal
assignment formula

〈[{A,B} � F (HA ∧ HB )]〉,
stating that Alice and Bob have a joint strategy to eventually reach their common objective. How-
ever, it is easy to see that this is not good enough. Indeed, while the common desired eventual
outcome is HA ∧ HB , but for Alice the worst possible outcome is ¬HA ∧ HB , whereas the worst
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possible outcome for Bob is HA ∧ ¬HB , and each of them would like to avoid their worst possi-
ble outcome to happen while trying to achieve the common goal. Thus, the common goal can be
formulated better as “eventually reach a state where both players can access each other’s data
and until then no player should be able to unilaterally access the other’s data”, expressed by the
following goal assignment formula:

〈[{A,B} � (HA ↔ HB )U(HA ∧ HB )]〉.
The formula above is ok if both players follow a strategy profile that would realise that goal, but it
does not express yet the stronger requirement that even if one of them deviates from that strategy
profile the other should still be able to protect her/his interests while still following her/his strategy.
For that, we need to enrich the goal assignment above with individual goals:

〈[{A,B} � (HA ↔ HB ) U (HA ∧ HB ); A � G (HB → HA); B � G (HA → HB )]〉.
Note that the common goal can now be simplified to the original one, to produce an equivalent

to the above formula:

〈[{A,B} � F (HA ∧ HB ); A � G (HB → HA); B � G (HA → HB )]〉.

4.1.2 Example 2: Sheep and Wolves: A Fragile Alliance. This example is a remake with a twist
of a well-known children’s puzzle. A group of 3 wolves and 3 sheep is on the one side of a river
and they want to cross the river by boat. There is only one boat that can take 2 animals at a time,
but there is no boatman, so one animal has to take the boat back every time until they all cross the
river. The main problem, of course, is that if the wolves ever outnumber the sheep on either side
of the river, or on the boat, then the sheep in minority will be promptly eaten up by the wolves.
The question is whether,—and if so, how—all animals can cross the river without any sheep being
eaten. (Spoiler alert: the answer will be gradually revealed further, so the reader may wish to pause
here and think on the puzzle before reading further.)

Let us formalise the problem in TLCGA. First, some notation. Let Sheep denote the set of all
sheep, Wolves denote the set of all wolves, c denote the proposition “all animals have crossed the
river” and e denote the proposition “a sheep gets eaten”. Then the problem seems to be expressed
succinctly as the question of whether the following formula is true:

〈[Sheep ∪Wolves � (¬e) U c]〉.
As in the previous example, this formula is too weak to express the important subtlety that, even
if such a strategy exists, nothing guarantees that the wolves will not decide to deviate from it and
have a gourmet feast with a sheep before (or after) crossing the river. Thus, we need to add an
extra goal for all sheep, protecting their interest to stay alive:

〈[Sheep ∪Wolves � (¬e) U c; Sheep � G¬e]〉.
Now, the common goal can clearly be simplified, while preserving the formula up to equivalence:

〈[Sheep ∪Wolves � F c; Sheep � G¬e]〉.
Let us now try to model it as a concurrent game model. We can assume that the river crossing

happens instantaneously, so each state of the game is described uniquely (up to re-shuffling of the
sheep and of the wolves, which can be considered identical) by the numbers of sheep and wolves
on each side of the river, plus the position of the boat (on one or the other side of the river). At
each river crossing round, each of the animals has two possible actions: “stay” or “go on the boat
and cross the river”. The respective transitions are then readily defined, by ensuring that only
legitimate transitions can occur, e.g., if more than two animals decide to jump on the boat at the
same time, the state does not change (the transition is a loop). The states satisfying e are precisely
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those where there are more wolves than sheep on any one side of the river, whereas only one state
satisfies c, where all animals have crossed the river.

And, now, the question: is there a strategy profile satisfying the goal assignment above? The
answer, perhaps surprisingly, depends on the specific design of the “river crossing game”. If it
presumes that all animals act simultaneously, then it is easy to see that any joint strategy realising
the common goal can be abused by the wolves deviating from it and eating some of the strategy-
abiding sheep. For example, consider the joint strategy resulting in the play shown below:

S S S W W W B
S S W W B S W
S S S W W B W
S S S B W W W
S S S W B W W
S W B S S W W
S S W W B S W
W W B S S S W
W W W B S S S
W B S S S W W
W W B S S S W

B S S S W W W

.

At the very first round of this play, a sheep and a wolf cross the river together. If the wolf deviates
from this action and stays instead, then two sheep are left to fend against three wolves on one side
of the river. We leave it to the reader to convince themselves that any joint strategy that achieves
the common goal must encounter a similar situation.

So, the answer to our question, in this case, is “No”. However, to level the playing field, the
game can be modified so that at every state first all wolves choose how to act and then all sheep
choose how to act, i.e., formally, every round gets split into two sub-rounds with intermediate states
(thus, making it a partly turn-based game). The effect of this change is that now a strategy profile
satisfying the goal assignment above could be designed in such a way that the joint strategy of
the sheep could involve a suitable joint counter-action to any possible deviation of the wolves that
would jeopardise a sheep. Indeed, the joint strategy shown previously can now easily be modified
to make it sheep-friendly.

4.2 Some Applications of TLCGA and TLCGA+ to Non-cooperative and Cooperative

Game Theory

4.2.1 Expressing Nash Equilibria. The fundamental game-theoretic concept of Nash equilibrium
can be applied in the concurrent games that we consider, where, given a goal assignment γ , the
payoff from each play for every player is binary: 1, if that player’s goal defined by γ is satisfied
on that play (i.e., the player is a “winner” in the play), and 0 otherwise (i.e., the player is a “loser”
in the play). However, this notion makes little sense in such a qualitative setting, because every
strategy profile where no “loser” can deviate unilaterally to satisfy her objective is a weak Nash
equilibrium. That gives no individually rational reasons for the losers to adhere to that strategy
profile, because a deviation cannot be penalised any further by making their payoff even worse
than it already is. Thus, we are rather sceptical about the use of Nash equilibria in such games with
qualitative objectives as those considered here, and we argue further for an alternative solution
concept in games with such objectives. Accordingly, even though the language of TLCGA is not
designed with the explicit purpose of expressing equilibria by means of formulae, that can be done
in terms of characterising the equilibria profiles as those witnessing suitable goal assignments
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defined by means of the original goal assignment γ . In this way, TLCGA also enables expressing
existence of equilibria by means of formulae.

First, we add some terminology and notation. Let us fix a concurrent game modelM with initial
state w . Then, any pair (Σ,γ ) of a strategy profile Σ and a goal assignment γ , the pair (Σ,γ ) deter-
mines a partition of the family of possible coalitions of agents P (Agt) in two disjoint subsets: the
set W(Σ,γ ) of winning coalitions, whose goals assigned by γ are satisfied in the play play(w, Σ)
in M starting from w and induced by Σ, and the set L(Σ,γ ) of losing coalitions, whose goals
assigned by γ are not satisfied in play(w, Σ). In particular, the pair (Σ,γ ) determines a partition
of Agt in two disjoint subsets, respectively the set W0 (Σ,γ ) of (individual) winners and the set
L0 (Σ,γ ) of (individual) losers from Σ with respect to γ .

We now illustrate the idea of expressing equilibria in TLCGA in the case of a next time goal
assignment α with an example for 2 players,A and B, with respective individual next time goals αA

and αB . First, we can express an equilibrium satisfying any fixed combination of individual goals.
In the case when both goals are satisfied by the equilibrium profile, no deviations can possibly
improve any player’s payoff, so Σ is such equilibrium profile iff Σ witnesses the goal assignment
{A,B} � X (αA ∧ αB ), hence the existence of such equilibrium profile is simply expressed by the
formula

〈[{A,B} � X (αA ∧ αB )]〉.
A more interesting case is when the equilibrium profile Σ satisfies only one goal, say αA. This is
the case precisely when Σ witnesses the goal assignment {A,B} �X (αA∧¬αB ); A�X¬αB . The goal
X¬αB of A encodes the claim that if A follows the equilibrium strategy then B cannot deviate to
satisfy its goal, thus B has no unilateral beneficial deviation from the equilibrium strategy profile.
Thus, the following formula the expresses existence of such equilibrium:

〈[{A,B} � X (αA ∧ ¬αB ); A � X¬αB]〉.
Likewise, the following formula the expresses existence of an equilibrium not satisfying anyone’s
goal:

〈[{A,B} � X (¬αA ∧ ¬αB ); A � X¬αB ; B � X¬αA]〉.
Thus, the language of TLCGA allows for expressing more refined descriptions of equilibria and the
disjunction of all such formulae expresses the existence of any equilibrium with respect to α .

In the more general case of any set of agents Agt and pair (Σ,α ) of a strategy profile Σ and a next
time goal assignmentα , the strategy profile Σ is a Nash equilibrium with respect toα iff Σ witnesses
the goal assignment α0

Σ defined as follows: α0
Σ(Agt) = X

∧
a∈W0 (Σ,α ) α (a), α0

Σ(Agt \{a}) = ¬α (a)

for each a ∈ L0 (Σ,α ), and α0
Σ(C ) = 
 in all other cases.

Then, the disjunction of all such formulae over all subsets W0 (Σ,α ) of Agt expresses the exis-
tence of any equilibrium, though the size of that formula grows exponentially in the number of
agents.

Lastly, for the most general case of any goal assignment γ , the idea is the same, but using
TLCGA+ (which allows conjunctions of path formulae of TLCGA as goals) in order to define the
goal γ 0

Σ(Agt). Note that in the case when all individual goals are of the type Gψ , the language of
TLCGA again suffices, because G distributes over conjunctions.

Thus, computing the sets L0 (Σ,γ ) and answering the question of whether the game has any
Nash equilibria can be solved by reducing to model checking in TLCGA+; in the special case when
all goals are next time formulae, or all are G -type formulae, model checking in TLCGA suffices.

4.2.2 Co-equilibria. Here we define and promote a new, alternative solution concept, that nat-
urally arises in our framework, vis that of a “co-equilibrium”, which is also one of the main moti-
vations for the introduction of the operator 〈[·]〉. Recall that an equilibrium strategy profile means
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that no player can deviate individually to improve their performance, and that concept makes very
good sense when players pursue quantitative individual objectives which are usually achieved to
some degree, leaving room both for possible optimisation and for punishment by the other play-
ers when deviating, hence can serve as an effective deterrent from deviation. As we argued above,
it does not make very good sense when the individual objectives are qualitative, i.e., win or lose,
as losing is the worst possible outcome for the player, hence there can be no deterrent from de-
viation from a strategy profile where that player is losing anyway. Furthermore, players usually
participate simultaneously in several coalitions with mutually consistent, yet different objectives.
Assuming that they are first of all individually rational and only then collectively rational, players
try to adjust their strategic behaviour so as to serve the collective objectives as much as possible
while first protecting and ensuring their individual interests. In particular, all players usually have
one common, societal objective—say to keep the entire system live and safe—so they enter into
a global “social contract” over that common objective, but only on the condition that pursuing it
would not compromise the achievement of their individual objectives. These aspects of strategic
interaction of individually rational agents serve as our motivation to define the somewhat dual to
equilibrium notion of co-equilibrium in the context of collective and individual qualitative objec-
tives, as a strategy profile that not only ensures satisfaction of the collective objective (the “social
contract”) if all players follow it, but moreover also guarantees to every player who adheres to it
that even if all other players deviate, that would not affect the satisfaction of his/her individual
objective.5 Thus, a co-equilibrium is a strongly stable solution concept that, we argue, makes bet-
ter sense than a Nash equilibrium in games with qualitative individual objectives and existence of
a co-equilibrium is an important criterion for the stability of a society of strategically interacting
individually rational agents. Formally, a strategy profile Σ is a co-equilibrium with respect to a
goal assignmentγ iff Σ witnesses the goal assignmentγ ∗,which is the restriction ofγ with support
consisting of the grand coalition Agt and all singleton sets of agents. Respectively, the existence
of a co-equilibrium with respect to γ can be expressed in TLCGA simply as 〈[γ ∗]〉.

4.2.3 Expressing Other Stable Outcomes. The notion of co-equilibrium is one of a family of
stable strategy profiles that can be defined by varying the notion of stability with respect to non-
existence of various beneficial deviations of players or coalitions. In the case of co-equilibrium,
no player or coalition is interested to deviate simply because they are all satisfied by the co-
equilibrium strategy profile, so there are no beneficial deviations. This, of course, is the ideal case,
which is often not possible in reality, so we will look at some natural relaxations of the notion of
a stable outcome.

Let us fix a concurrent game model M with initial state w , a coalitional goal assignment γ ,
and a strategy profile Σ. In Section 4.2.1, we defined winning players and coalitions in the out-
come play(w, Σ) with respect to γ , the sets W(Σ,γ ), L(Σ,γ ) and respectively W0 (Σ,γ ), L0 (Σ,γ ).
In addition, we say that a coalition C is individually winning in play(w, Σ) with respect to

γ if C ⊆ W0 (Σ,γ ); respectively, C is individually losing in play(w, Σ) with respect to γ if
C ⊆ L0 (Σ,γ ).

Now, with reference to the fixed coalitional goal assignmentγ , we say that a strategy profile Σ is

(1) individually stable at w , if no losing player in play(w, Σ) can deviate from Σ to become a
winning player in the resulting strategy profile Σ′.

This is precisely equivalent to the standard notion of Nash equilibrium.

5The notion of co-equilibrium, when applied to possibly quantitative objectives, is essentially equivalent to the special case
of “t -immune strategy profile”, introduced in [1], when t = n − 1, where n is the number of players.
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(2) strongly individually stable at w , if no group of losing players in play(w, Σ) can
collectively deviate from Σ to become a group of winning players in the resulting strategy
profile Σ′.

This corresponds to Aumann’s notion of strong equilibrium [7] and is similarly expressible
in TLCGA (for next time goal assignments) or TLCGA+ (for any goal assignments):

Σ is strongly individually stable with respect to γ iff Σ witnesses the goal assignment γ s
Σ

defined as follows:

γ s
Σ (Agt) =

∧
a∈W0 (Σ,γ )

γ (a),

γ s
Σ (C ) = ¬

∧
a∈C

γ (a) for each C such that C ⊆ L0 (Σ,γ ),

and γ s
Σ (C ) = 
 in all other cases.

(3) coalitionally stable at w , if no losing coalition in play(w, Σ) can collectively deviate from
Σ to become a winning coalition in the resulting strategy profile Σ′.

This is similarly expressible in TLCGA (for next time goal assignments) or TLCGA+ (for
any goal assignments):

Σ is coalitionally stable with respect to γ iff Σ witnesses the goal assignment γΣ defined
as follows:

γΣ(Agt) =
∧

C ∈W(Σ,γ )

γ (C ),

γΣ(C ) = ¬γ (C ) for each C such that C ∈ L(Σ,γ ),

and γΣ(C ) = 
 in all other cases.

4.2.4 Cooperative Games and TLCGA. The technical ideas outlined above can also be applied
to express in TLCGA (or TLCGA+) some key notions of the theory of cooperative games (with trans-
ferable utility) [9, 13, 38], including beneficial deviations, stable outcomes, and core of a cooperative
game. We leave the exploration of these to a further work, and here we only outline one example
showing how that can be done for the kind of cooperative concurrent games studied in [26]. These
games are played in concurrent game structures, where each player has a goal expressed by a set
of plays starting from some fixed initial state, regarded as the “winning plays” for that player. In
particular, cooperative concurrent games with goals expressible in the linear time logic LTL (cf
e.g., [17]) are studied in [26], for which it is shown that a suitably defined notion of a core of such
a game can be logically characterised using the logic ATL∗ and the computational complexities of
certain decision problems associated with that core have been established.

Let us fix a state w in a concurrent game model M and consider the cooperative concurrent
game G = G (M,w ) generated at w inM and a strategy profile Σ in G. We note that the terminol-
ogy from [26], differs somewhat from ours, as they call a winning (respectively, losing) coalition6

what we call in Section 4.2.3 individually winning (respectively, individually losing) coalition. For
consistency, we will adhere to our terminology.

To make the parameter w referring to the current initial state explicit, we will denote the set
of all losing players in play(w, Σ) with respect to γ by L0 (w, Σ,γ ). Thus, C ⊆ L0 (w, Σ,γ ), i.e.,
the coalition C is individually losing in play(w, Σ), iff Σ witnesses the TLCGA+ goal assignment
Agt �

∧
i∈C ¬γ (i). In the case when all γ (i) are next time formulae Xψ (i), that goal assignment can

be replaced by the TLCGA goal assignment Agt �X
∧

i∈C ¬ψ (i).

6Only individual, but no coalitional goals are considered in [26].
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Now, if C ⊆ L0 (w, Σ,γ ), then an individually beneficial deviation7 for C is any joint strategy ΣC

of C that guarantees for C to be individually winning on any outcome play from w induced by
ΣC . The core of the gameG, denoted core(G ), is defined as the set of stable strategy profiles in
G, viz. those that admit no beneficial deviations (by any losing coalition). Thus,C has a beneficial
deviation at the statew iff 〈[γC ]〉 is true atw , whereγC is the goal assignmentC�

∧
i∈C γ (i). Therefore,

the existence of a coalition that has a beneficial deviation with respect toγ (and Σ) can be expressed
as the disjunction of all formulae 〈[γC ]〉, overall individually losing coalitionsC ⊆ L0 (w, Σ,γ ). Then,
Σ is in core(G ) iff it does not satisfy that formula at w :

Σ ∈ core(G ) iff M,w �
∧

C⊆L0 (w,Σ,γ )

¬〈[γC ]〉.

Thus, like in the case of Nash equilibria and the other stable outcomes defined in Section 4.2.3,
computing the sets L0 (w, Σ,γ ) and answering the question of whether the core of such a game is
non-empty can be solved by reducing to model checking in TLCGA+; in the special case when all
goals are next time formulae, or all are G -type formulae, model checking in TLCGA suffices.

5 FIXPOINT CHARACTERIZATIONS OF TEMPORAL FORMULAE IN TLCGA

In this section, we will show how to embed the logic TLCGA into a suitable fixpoint logic. In fact,
the embedding can be extended likewise to the logic TLCGA+, and we sketch along the way how
this is done. The results in this section will be stated and proved for TLCGA, but their extensions
to TLCGA+ are quite routine.

5.1 Types of Goal Assignments

Definition 3. A goal assignment γ supported by a family of coalitions F will be called long-

term temporal if γ maps every coalition in F either to a U-formula or a G-formula, that is, if
γ [F ] ⊆ UGFor, where γ [F ] = {γ (C ) | C ∈ F }.

A goal assignment is called local, or next time, if γ maps every coalition in F to a X-formula,
i.e., γ [F ] ⊆ XFor.

A formula ϕ is said to be in normal form if, for every subformula of the form 〈[γ ]〉, the goal
assignment γ is either a next time or a long-term temporal goal assignment.

To extend this definition to TLCGA+, we say that a goal assignment γ in the extended language
is long-term temporal if for each coalition C , each conjunct of γ (C ) is either a U-formula or a G-
formula. Clearly, this reduces to the previous definition for the special case of goal assignments in
TLCGA.

Definition 4. Let γ be a long-term temporal goal assignment supported by the family F . We say
that γ is

— of type U if γ maps at least one element of F to an U-formula;
— of type G if γ maps every element of F to an G-formula.

We denote the sets of goal assignments of type U and type G respectively by TypeU and TypeG.

Again, this can be extended to TLCGA+: we say that a long-term temporal goal assignment γ is
of type U if there is some coalitionC in the support of γ , such that at least one conjunct of γ (C ) is
an U-formula. Otherwise, γ is of type G.

7Note that this notion, defined in [26] as “beneficial deviation”, does not actually depend on Σ in any other way but that C

is losing in play(w, Σ).
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5.2 The Fixpoint Property of Goal Assignments

Definition 5. Given a family of coalitions F and a goal assignment γ supported by F , we write
γ |UGFor for the restriction of γ to the family F |UGFor = {C ∈ F | γ (C ) ∈ UGFor}. Similarly, we
write γ |XFor for the restriction of γ to the family F |XFor ⊆ F defined as {C ∈ F | γ (C ) ∈ XFor}.

To extend this notion to TLCGA+, we define γ |UGFor (γ |XFor) by setting, for each coalition C ,
γ |UGFor (C ) to be the conjunction of all formulas αUβ or Gχ that appear as conjuncts of γ (C ),
provided that γ (C ) has at least one such conjunct, and γ |UGFor (C ) = X
 otherwise. The goal
assignment γ |XFor is defined similarly.

Definition 6. Given a family of coalitions F and a goal assignment γ supported by F , the next

time-extension of γ is the goal assignment Δγ defined as follows. First, we define sup Δγ :={⋃F ′ | ∅ � F ′ ⊆ F }
, Then, for each C ∈ sup Δγ we define

Δγ (C ) := X
(∧ {

φ | there exists C ′ ∈ F ,C ′ ⊆ C such that γ (C ′) = Xφ
}
∧ 〈[(γ |C ) |UGFor]〉

)
,

whereas a convention we remove from this formula any conjuncts that reduce to 
, which can
appear as the result of a conjunction of the empty set (the left conjunct reduces to 
) or as 〈[γ ]〉
where γ is the empty goal assignment (the right conjunct reduces to 
). For all coalitions that are
not in sup Δγ , Δγ assigns the trivial goal. Given any formula ϕ, we will sometimes abbreviate the
formula Δγ [

⋃F � Xϕ] by Δγ {ϕ}.

The definition above may look a bit opaque, but what it does is quite simple. Intuitively, the
goal assignment Δγ describes the conditions that each coalition must ensure to hold for the next
state, with respect to a given strategy profile Σ, in order for that strategy profile to fulfill the goal
assignment γ at the current state. To make things more concrete, let us consider two examples.

Example 2. If 〈[γ ]〉 is 〈[C � φUψ ]〉, then 〈[Δγ ]〉 = 〈[C � X 〈[C � φUψ ]〉]〉 = 〈[C � X 〈[γ ]〉]〉. So in this
special case, the next time-extension simply pushes the eventuality φUψ one step into the future,
so to speak. Similarly, if 〈[γ ]〉 is 〈[C � Gφ]〉, then 〈[Δγ ]〉 = 〈[C � X 〈[C � Gφ]〉]〉 = 〈[C � X 〈[γ ]〉]〉.

Example 3. Consider the example of a goal assignment γ supported by F = {{a,b}, {c}, {b, c}}
and defined by the assignment:

{a,b} � pUq, {c} � Gr , {b, c} � X s .

The support of Δγ will be F ∪ {{a,b, c}}. The action of Δγ is shown below:

— {a,b} � X〈[{a,b} � pUq]〉.
— {c} � X〈[{c} � Gr ]〉.
— {b, c} � X(s ∧ 〈[{c} � Gr ]〉).
— {a,b, c} � X(s ∧ 〈[{a,b} � pUq, {c} � Gr ]〉).

The procedure for computing Δγ goes, informally, as follows: for each ⊆-downset8 D of coali-
tions from F , we collect all the formulas φ for which some coalition in D is mapped to the goal
Xφ into a conjunction, add a conjunct collecting all the long-term goals for coalitions in D into
a single goal assignment, and finally put the resulting conjunction in the scope of an X -operator
and assign this goal to the union of D.

We are now ready to define one of the key concepts of the article.

8I.e., set D such that for all Z ∈ D and all Z ′ ∈ F , if Z ′ ⊆ Z then Z ′ ∈ D.
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Definition 7. Letγ be a goal assignment, supported by F . Then we define the following formula:

unfold(γ ) :=
∨

Finish(γ ) ∨
(∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ ]〉
)
,

where

— Finish(γ ) :=
{
β ∧ 〈[γ \C]〉 | γ (C ) = αUβ

}
.

—uдam :=
{
α | γ (C ) = αUβ, for some C, β

}
.

— GHolds(γ ) :=
{
χ | γ (C ) = Gχ , for some C

}
.

As before, by convention we remove from this formula all conjuncts that reduce to 
 and all
disjuncts that reduce to ⊥. So, for example, if the set Finish(γ ) = ∅, and hence also UHolds(γ ) = ∅,
then the formula unfold(γ ) reduces to:∧

GHolds(γ ) ∧ 〈[Δγ ]〉.

We call unfold(γ ) the unfolding formula of γ .

The formula unfold(γ ) may require some additional explanation. We shall see that unfold(γ ) is
in fact equivalent to 〈[γ ]〉, and the formula can be seen as an analysis of the different possibilities
for how a given strategy profile may fulfil the goal assignment γ . The first disjunction Finish(γ )
describes those cases where one of the coalitions C has an eventuality αUβ as its goal formula;
if the formula β happens to be true at the current state then the coalition C trivially attains its
goal regardless of its actions. So, for a strategy profile to fulfil the goal assignment γ , it suffices
that it fulfils the goals of all coalitions besides C , i.e., the goal assignment γ \C . In the remaining
case, the conditions that a strategy profile must satisfy in order to fulfil the goal assignment γ are
divided into two parts: “local” conditions that must be true at the current state, which are outside
the agents’ control, and those conditions that each coalition must ensure for the next state. The
latter conditions are described by the formula 〈[Δγ ]〉, as explained earlier. The local conditions
are derived from the interpretation of temporal (path) formulas: if the goal of coalition C is an
eventuality αUβ , and this goal is not trivially fulfilled because β happens to be true, then the goal
can only be attained if α is true at the current state. Similarly, a goal Gχ can only be fulfilled if
χ is currently true. These conditions are captured by the conjuncts UHolds(γ ) and GHolds(γ ),
respectively.

Definition 8. Let γ be a long-term temporal goal assignment. Then we define the induction

formula for γ on ϕ as follows:

ind(γ ,ϕ) :=
∨

Finish(γ ) ∨
(∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ {ϕ}]〉
)
,

after removing redundant conjuncts and disjuncts, as before. So, this formula is like unfold(γ ),
except that the largest coalition in the support of Δγ will be mapped to Xϕ.

Proposition 5. For every long-term temporal goal assignment γ we have:

unfold(γ ) = ind(γ , 〈[γ ]〉).

Proof. If γ is long-term temporal and supported by F then we get:

(γ |UGFor) |⋃ F = γ .
Thus, since there are no next time formulas to consider, Δγ will map

⋃F to X〈[γ ]〉, hence Δγ [
⋃F �

X〈[γ ]〉] = Δγ . �
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It is not hard to see that, if γ is a next time goal assignment, then unfold(γ ) ≡ 〈[γ ]〉. For example,
suppose γ is supported by {{a}, {b}} and maps {a} to Xp and {b} to Xq. Then unfold(γ ) is equal to
〈[Δγ ]〉, which is the following formula:

〈[{a} � Xp, {b} � Xq, {a,b} � X(p ∧ q)]〉,

which is clearly equivalent to 〈[γ ]〉 = 〈[{a} � Xp, {b} � Xq}]〉. In fact, the equivalence always holds;
this is by design and will play a key role in our axiomatization.

Theorem 1 (Fixpoint Property). For any goal assignment γ :

〈[γ ]〉 ≡ unfold(γ ),

and hence for any long-term temporal goal assignment γ :

〈[γ ]〉 ≡ ind(γ , 〈[γ ]〉).

Proof. We prove each implication separately.

Left to right: suppose thatM, s � 〈[γ ]〉, whereM = (S,Act, g, out,V ), and let Σ be some profile
witnessing γ at s . Assuming thatM, s � ∨

Finish(γ ), we show that

M, s �
∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ ]〉.

We treat these conjuncts separately. First, note that if UHolds(γ ) = ∅ or GHolds(γ ) = ∅ then these
conjunctions reduce to 
 and hence are trivially satisfied.

Suppose α ∈ UHolds(γ ). Then there is some coalitionC and some β for which γ (C ) = αUβ . The
set paths(s, Σ,C ) are always non-empty, so consider an arbitrary member π and recall that its first
element is s . Since Σ, s � γ it follows that π � αUβ . Since we assumed thatM, s � ∨

Finish(γ ),
we cannot haveM, s � β since this would giveM, s � β ∧ 〈[γ ]〉 which entailsM, s � β ∧ 〈[γ |C ]〉,
and β ∧〈[γ |C ]〉 is a member of Finish(γ ). Hence we haveM, s � α , as required. The proof that each
conjunct from GHolds(γ ) is satisfied is similar (but simpler).

We now show that Σ, s � Δγ . Pick an arbitrary coalitionC in the support of Δγ and an arbitrary
path π ∈ paths(s, Σ,C ). We need to show that π � Δγ (C ). Suppose that π is the path generated
by a play in Plays(w, Σ,C ) of the form:

w0ζ0w1ζ1w2 . . .

where w0 = s . We need to show that

(1) For each C ′ ⊆ C in the support of γ , if γ (C ′) = Xψ thenM,w1 � ψ ,
(2) M,w1 � 〈[(γ |UGFor) |C ]〉.

The first item is straightforward, so we focus on item (2). We need to come up with a strategy
profile Σ′ that witnesses (γ |UGFor) |C at w1. We define Σ′ as follows. Given a history of the form:

v0ζ
′
0v1 . . .vn−1ζ

′
n−1vn ,

where v0 = w1, and a player a ∈ C , we set:

Σ′(a,v0ζ
′
0v1 . . .vn−1ζ

′
n−1vn ) := Σ(a,w0ζ0v0ζ

′
0v1 . . .vn−1ζ

′
n−1vn ).

Now let C ′ ⊆ C be a coalition for which γ (C ′) = αUβ , and let π ′ ∈ paths(w1, Σ
′,C ′). Then

sπ ′ ∈ paths(s, Σ,C ′) by the construction of Σ′, hence sπ ′ � αUβ . SinceM, s � β , we get π ′ �
αUβ as well. Similarly we can show that if C ′ ⊆ C is a coalition for which γ (C ′) = Gα , and
π ′ ∈ paths(w1, Σ

′,C ′), then π ′ � Gα . This shows that Σ′,w � (γ |UGFor) |C , as required.
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Right to left: SupposeM, s � 〈[unfold(γ )]〉. We show thatM, s � 〈[γ ]〉.
There are two cases to consider: either some formula in Finish(γ ) holds at s , or:

M, s �
∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ ]〉.

In the first case, there is some C in the support F of γ for which γ (C ) = αUβ and:

M, s � β ∧ 〈[γ \C]〉.
But then αUβ holds at any path beginning from s , and it follows thatM, s � 〈[(γ \C )[C � αUβ]]〉.
This formula is the same as 〈[γ ]〉, so we are done.

Suppose the second, more challenging case, and fix a strategy profile Σ for Agt witnessing 〈[Δγ ]〉
at s . Given any locally available action profile ζ ∈ ActProfs , we define the set fol(ζ ) of followers

of Σ relative to ζ :

fol(ζ ) :=
⋃ {

C ∈ F | ζ (a) = Σ(a, s ) for all a ∈ C
}
.

Note that fol(ζ ) belongs to the support of Δγ . By unfolding the definition of 〈[Δγ ]〉, we see that the
following conditions hold for each locally available action profile ζ ∈ ActProfs and any C ∈ F
such that C ⊆ fol(ζ ):

(1) out(ζ , s ) ∈ [[〈[(γ |UGFor) |C ]〉]]M .
(2) If γ (C ) = Xφ then out(ζ , s ) ∈ [[φ]]M .

This motivates the following definition: for each locally available action profile ζ ∈ ActProfs we
pick a strategy profile ζ defined for all players in

⋃F , such that for all C ⊆ fol(ζ ):

ζ , out(ζ , s ) � (γ |UGFor) |C .

Now, we will build a strategy profile Ω using the strategy profile Σ and all strategy profiles ζ for

each possible locally available action profile ζ at s:
Given a player a ∈ ⋃F and w ∈ S, let Ω(a,w ) = Σ(a,w ) if w = s , and some arbitrary available

move otherwise. For a history of the form w0ζ0 . . . ζnwn+1, if w0 � s then we can again define the
move of player a arbitrarily. Otherwise, we set

Ω(a,w0ζ0w1 . . . ζnwn+1) := ζ0 (a,w1ζ1 . . . ζnwn+1).

We will show that the strategy profile Ω witnesses 〈[γ ]〉 at s . LetC ∈ F , and let π ∈ paths(s,Ω,C ).
We need to show that π � γ (C ). The case where γ (C ) = Xφ is immediate, by definition of Δγ
and of Ω at s . We focus on the case where γ (C ) is of the form αUβ . We assume that π is the path
generated by a play in Plays(s,Ω,C ) of the form:

w0ζ0w1ζ1w2 . . .

so that π equals w0w1w2, . . . , w0 = s and w1 = out(s, ζ0). But then C ⊆ fol(ζ0), and by the
construction of the strategy profile Ω, the play w1ζ1w2ζ2w3 . . . belongs to Plays(w1, ζ

0
,C ). So the

path w1w2w3 . . . satisfies αUβ since, by definition, ζ
0
,w1 � (γ |UGFor) |C . Since α ∈ UHolds(γ ), we

haveM, s � α . Since s = w0 it follows that π � αUβ is required. Lastly, the case where γ (C ) is of
the form Gχ is analogous. �

Finally, we show how to extend these definitions to the logic TLCGA+. In this setting, goal
assignments are of a more general kind as they map coalitions to conjunctions of X -formulas,
U-formulas and/or G-formulas, so we have to account for this slight complication. Given a goal
assignment γ , and a coalition C in its support, we can think of γ (C ) as the set of its conjuncts of
the form Xα , αUβ or Gχ . So we abuse notation slightly and write θ ∈ γ (C ) to say that θ has one of
these three forms, and is a conjunct of γ (C ). With this notation in place, we extend the definition
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of the next time-extension Δγ of a goal assignment γ as follows. The support of Δγ is defined as
before, and for each C ∈ sup Δγ we define

Δγ (C ) := X
(∧ {

φ | there exists C ′ ∈ F ,C ′ ⊆ C such that Xφ ∈ γ (C ′)
}
∧ 〈[(γ |C ) |UGFor]〉

)
,

As before we abbreviate the formula Δγ [
⋃F � Xϕ] by Δγ {ϕ}.

Next, we define the unfolding of a goal assignment: Let γ be a goal assignment, supported by
F . Given a coalition C and a conjunct θ of γ (C ), we write γ \(C � θ ) for the goal assignment that
is like γ , except:

(γ \(C � θ )) (C ) =
∧
{θ ′ | θ ′ ∈ γ (C ) ∧ θ ′ � θ }.

We now define:

unfold(γ ) :=
∨

Finish(γ ) ∨
(∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ ]〉
)
,

where

— Finish(γ ) :=
{
β ∧ 〈[γ \(C � αUβ )]〉 | γ (C ) = αUβ

}
.

— UHolds(γ ) :=
{
α | αUβ ∈ γ (C ), for some C, β

}
.

— GHolds(γ ) :=
{
χ | Gχ ∈ γ (C ), for some C

}
.

The induction formula for ind(γ ,ϕ) is defined as before, by

ind(γ ,ϕ) :=
∨

Finish(γ ) ∨
(∧

UHolds(γ ) ∧
∧

GHolds(γ ) ∧ 〈[Δγ {ϕ}]〉
)
,

where Δγ {ϕ} is Δγ [
⋃F � Xϕ]. With these extended definitions, the proofs of Proposition 5 and

Theorem 1 go through as before.

5.3 A μ-calculus of Goal Assignments

The μ-calculus extension of the language LTLCGA of TLCGA will be denoted by LTLCGA
μ , and the

μ-calculus extension of the next time fragment LXCGA – by LXCGA
μ .

Formally the language LTLCGA
μ is given by the following grammar:

StateFor : φ := p | 
 | ¬φ | (φ ∧ φ) | (φ ∨ φ) | 〈[γ ]〉 | μx .φ,

PathFor : θ := Xφ | φUφ | Gφ.
Here, in μx .φ the formula φ is subject to the usual constraint that every occurrence of the variable
x in φ is positive, in the sense that it is under the scope of an even number (possibly zero) of
negations. We usually denote bound variables x ,y, z . . . rather than p,q, r , . . . , but formally we do
not introduce a separate supply of fixpoint variables. In the formula μx .φ the variable x is simply
a propositional variable. We define the greatest fixpoint operator as usual:

νx .φ := ¬μx .¬φ[¬x/x],

where φ[¬x/x] is the result of the uniform substitution of ¬x for x in φ.
A model for LTLCGA

μ is just like a model for LTLCGA, viz a tuple,M = (S,Act, g, out,V ), but now
the valuationV assigns values to the variable(s) z used in formulae μz.ψ . Now, for each Z ⊆ S, we
define the amended valuationV Z := V [z �→ Z ], which is likeV except that it maps z to Z . We will
denoteMZ := (S,Act, g, out,V Z ) and for any formulaψ (z) in which the variable z may occur free,
we will writeM, s � ψ (Z ) to state thatMZ , s � ψ (z).
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The semantics of LTLCGA
μ extends that of LTLCGA with the additional clause that the extension

[[μz.φ (z)]] of a least fixpoint-formula in a modelM = (S,Act, g, out,V ) is given by

[[μz.φ (z)]] :=
⋂ {

Z ⊆ S | [[φ (Z )]] ⊆ Z
}
,

where, as expected:

[[φ (Z )]] :=
{
w ∈ S | MZ ,w � φ (z)

}
.

Given a modelM = (S,Act, g, out,V ), let fγ be the monotone map on P (S) induced by ind(γ , z)
in the usual way, i.e., for each Z ⊆ S, fγ (Z ) is the set of states satisfying ind(γ , z) with respect to
the amended valuation V Z := V [z �→ Z ].

The proofs of the following two propositions are in the appendix.

Proposition 6 (Fixpoint Characterization of TypeU Temporal Goal Assignments). Sup-
pose that γ is a long-term temporal goal assignment in TypeU, and let z be a fresh variable not
occurring in 〈[γ ]〉. Then 〈[γ ]〉 ≡ μz.ind(γ , z).

Proposition 7 (Fixpoint Characterization of TypeG Temporal Goal Assignments). Sup-
pose that γ is a long-term temporal goal assignment in TypeG. Then 〈[γ ]〉 ≡ νz.ind(γ , z).

Recall that (memory-based) strategies are defined here in terms of plays, not just paths as for
ATL∗ in [5] (cf also [12, 17]), and we showed in Example 1 that the two versions affect essentially
the semantics. In fact, the model in that example also shows that νz.ind(γ , z) → 〈[γ ]〉 is not valid
in the semantics with path-based strategies.

Using the fixpoint characterizations of long-term temporal goal assignments we have estab-
lished here, we can define an explicit translation t : LTLCGA → LXCGA

μ , preserving the semantics

of each LTLCGA-formula. To make this precise, the translation has to be defined by induction on
a certain well-founded order ≺ over LTLCGA-formulas, defined as the smallest transitive relation
closed under the following rules:

— If φ is a proper subformula ofψ then φ ≺ ψ .
— If γ is a goal assignment which is neither next time nor long-term temporal, i.e., the sup-

port of γ contains both some coalitions mapped to next time formulas and some coalitions
mapped to long-term temporal goals, then unfold(γ ) ≺ 〈[γ ]〉.

— If γ is a TypeU or TypeG-goal assignment, and z is a propositional variable not occurring in
〈[γ ]〉, then ind(γ , z) ≺ 〈[γ ]〉.

To see that this order is well-founded, consider for example the clause where γ is in TypeU. Then
the formula ind(γ , z) can be viewed as being built up using Boolean connectives from proper sub-
formulas of 〈[γ ]〉 and formulas of the form 〈[γ ′]〉 where γ ′ is either Δγ {z} or γ \C for some coalition
C in the support of γ . Note that the goal assignment γ \C has a smaller support than γ . Further-
more, the goal assignment Δγ {z} is a next time goal assignment, the coalition

⋃F is mapped to
X z (where F is the support of γ ) and each coalitionC �

⋃F in the support of Δγ {z} is mapped to
X 〈[γ |C ]〉. But each goal assignment γ |C forC �

⋃F has smaller support than γ , since ifC a proper
subset of

⋃F then there is some C ′ ∈ F which is not contained in C . So in γ |C , the coalition C ′

will be assigned the trivial goal X
.
With the well-founded order ≺ in place, the translation can be defined by t (〈[γ ]〉) =

μz.t (ind(γ , z)) if γ is a type U goal assignment, t (〈[γ ]〉) = νz.t (ind(γ , z)) if γ is of type G and
t (〈[γ ]〉) = t (unfold(γ )) if γ contains both U-formulas and G-formulas as goals. The induction steps
for Booleans and next time goal assignments are handled in the standard manner, simply letting
the translation commute with these connectives.
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As noted at the beginning of the section, it is a relatively routine task to extend our translation
to cover the richer language LTLCGA+ underlying the logic TLCGA+. Again, the translation is by
induction on a well-founded ordering over formulas, defined as above but with the extended defini-
tions of unfold(γ ) and ind(γ , z). The proofs of Propositions 6 and 7 go through essentially as before.

5.4 A Note on Coalgebras

One reason why the translation of LTLCGA into LXCGA we have presented is useful is because it
establishes a connection with coalgebraic modal logics. We note that the next time fragmentLXCGA

of LTLCGA is, in fact, an instance of the general framework of coalgebraic modal logics, making
the language LXCGA

μ a coalgebraic fixpoint logic, as studied in [15, 21, 48]. This connection helps to
clarify the place of the logic TLCGA in the landscape of modal fixpoint logics for various kinds of
state-based evolving systems. The theory of universal coalgebra appears in computer science as a
generic framework for modelling a wide range of state-based evolving systems in a uniform man-
ner [39]. It is formulated using the language of basic category theory (functors and natural trans-
formations), see [27] for a standard reference. The key idea of universal coalgebra is to pack all the
information about the type of transitions that a system can make (deterministic, non-deterministic,
probabilistic etc.) into a functor on the category of sets, which then can be considered as a variable
parameter featuring in abstract definitions and results. A coalgebra for a functor F is then just a
set X together with a map f : X → FX , which intuitively represents the evolution of the state-
based system. Concurrent game models are in fact coalgebras for a certain functor (together with
a valuation of propositional variables), as has been observed several times, e.g., [42]. Furthermore,
it can be checked that the semantics of modalities 〈[γ ]〉 in which each goal formula is of the form
Xθ for some θ can be phrased in terms of predicate liftings for this functor, which is the currently
most usual way of interpreting modalities in coalgebras. We omit the details here.

The coalgebraic representation of the logic LXCGA
μ , together with the translation from TLCGA

into LXCGA
μ , gives us access to a wealth of known general results on coalgebraic fixpoint logics.

For example, we shall use it to derive decidability and finite model property for the logic TLCGA,
as well as a complexity bound on the satisfiability problem for the language LXCGA

μ . However,
we emphasize that some caution is required here. Universal coalgebra and coalgebraic logic are
valuable frameworks, unifying a large class of systems and associated logics, just like universal
algebra provides a common language that puts many different algebraic structures under one roof.
But, of course, universal algebra does not tell us everything we want to know about specific classes
of algebras, like groups or Heyting algebras. Generic results are helpful, but a detailed study of
concrete special cases is usually required. The same is true here. In particular, our main technical
result in this article on completeness for an axiomatization of TLCGA makes heavy use of ideas
from the literature on coalgebraic logic, in particular, the notion of “one-step completeness” is
essential [15, 42]. But the proof of one-step completeness is not a trivial consequence of generic
results from coalgebra, it requires a careful study of the semantics of next time goal assignments.

Once we have one-step completeness in place, the next step will be to handle the least and great-
est fixpoints. We have shown that TLCGA can be translated into LXCGA

μ using a single recursion
variable, in effect embedding TLCGA as a fragment of a “flat coalgebraic fixpoint logic” in the
sense of Schröder and Venema [44], who prove a generic completeness result for such logics. It is
possible that we could obtain completeness for our axiom system by “transferring” Schröder’s and
Venema’s completeness result via our translation, but we have chosen to present a direct proof
instead since we believe this will be more instructive. That said, we do consider our approach as
being very much coalgebraic in spirit, and the connection with coalgebraic fixpoint logic is con-
ceptually important. In particular, the idea that one-step completeness of a (multi-)modal logic can
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be “lifted” to give a complete axiomatization of a fixpoint extension [15, 19, 25, 44] is at the heart
of our proof.

6 BISIMULATIONS AND BISIMULATION INVARIANCE FOR TLCGA

As noted earlier, the logic GPCL introduced in [23] is essentially the next time fragment LXCGA of
TLCGA. Therefore, the notion of GPCL-bisimulation (ibid.) also applies to TLCGA. For the reader’s
convenience, we introduce it again here, now called TLCGA-bisimulation and extend the bisimu-
lation invariance result from [23] to the full logic TLCGA. This notion of bisimulation corresponds
to the play-based semantics which is of importance for us. A similar notion can be defined for the
path-based semantics and bisimulation invariance of TLCGA formulae with respect to it can be
proved likewise, which we leave out.

We only define TLCGA-bisimulation within a single concurrent game model, and generalise to
bisimulations between game models via disjoint unions.

Definition 9 (TLCGA-bisimulation). Let

M = (S,Act, g, out,V ),

be a game model for the set of agents Agt. A binary relation β ⊆ S2 is a TLCGA-bisimulation in

M if it satisfies the following conditions for every pair of states (s1, s2) such that s1βs2:

Atom equivalence: For every p ∈ AP: s1 ∈ V (p) iff s2 ∈ V (p).

Forth: For any action profile ζ 1 of Agt at s1 there is an action profile ζ 2 of Agt at s2 such that
LocalBack: For every coalition C and every u2 ∈ Out[s2, ζ

2 |C ], there is some u1 ∈
Out[s1, ζ

1 |C ] such that u1βu2.

Back: For any joint action ζ 2 of Agt at s2 there is a joint action ζ 1 of Agt at s1 such that
LocalForth: For every coalition C and every u1 ∈ Out[s1, ζ

1 |C ], there is some u2 ∈
Out[s2, ζ

2 |C ] such that u1βu2.

States s1, s2 ∈ M are TLCGA-bisimulation equivalent, or just TLCGA-bisimilar, if there is a
bisimulation β inM such that s1βs2.

The proof of the following theorem is relatively routine, and can be found in the appendix.

Theorem 2 (TLCGA-bisimulation Invariance). Let β be a TLCGA-bisimulation in a game
modelM. Then for every TLCGA-formula φ and every pair s1, s2 ∈ M such that s1βs2:

M, s1 � φ iffM, s2 � φ.

In fact, the proof of Theorem 2 essentially amounts to a proof of bisimulation invariance for the
whole language LXCGA

μ , and therefore also for the fragment TLCGA+.

Theorem 3. Every formula of LXCGA
μ is bisimulation invariant.

Furthermore, we also have the following result from [23], showing that TLCGA already suffices
to capture bisimulation invariance in finite models.

Proposition 8 (Hennessy–Milner Property, cf [23], Proposition 4.6). Let β be a TLCGA-
bisimulation in a finite game modelM = (S,Act, g, out,V ). Then for any pair s1, s2 ∈ S, s1βs2 holds
iff s1 and s2 satisfy the same TLCGA-formulae.

Proof. For the non-trivial direction, we will use only formulae from the fragment LXCGA. Since
M is finite, we can define, by a standard construction, a “characteristic formula” char(s ) for each
state s in M, such that s1, s2 are LXCGA-equivalent if and only if char(s1) = char(s2), and that
char(s1) ∧ char(s2) ≡ ⊥ whenever s1, s2 are not LXCGA-equivalent. For a set of states Z , let
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char[Z ] =
∨{char(v ) | v ∈ Z }. Our goal is to show that the relation of TLCGA-equivalence is itself

a TLCGA-bisimulation, and the key observation is that each state s satisfies the LXCGA-formula:∧
ζ ∈ActProfs

〈[C1 � X char[Out[s, ζ |C1 ], . . . ,Ck � X char[Out[s, ζ |Ck
]]〉,

where we list the set P (Agt) of all possible coalitions as C1, . . . ,Ck . �

7 AXIOMATIZATION AND ONE-STEP COMPLETENESS OF TLCGA

In this section, we focus exclusively on TLCGA and leave the extension of the axiomatic system
presented here to TLCGA+, as well as the respective axiomatizations for the path-based semantics
(which may turn out to be more problematic) for future work.

7.1 Axiomatic System for TLCGA

Definition 10. Let F be a set of coalitions. A voting profile for F is a mapping f assigning to
each ai ∈ Agt a goal assignment f (ai ). If f (ai ) (C ) is a next time formula for each i andC ∈ F , we
say that f is a one-step voting profile for F .

The notion of merging a voting profile, defined next, will be used in some proofs later and we
will need some derivable formulae that use it, listed further.

Definition 11. Let f be a voting profile. We define the goal assignment merge( f ) as follows:

— merge( f ) (C ) := θ , if C � ∅ and f (ai ) (C ) = θ for each ai ∈ C ,

— merge( f ) (C ) := X
, if C = ∅ or the above holds for no θ .

Our axioms are as follows (recall notation on goal assignments from Section 3.1).

7.1.1 I. General Axiom Schemes for Goal Assignments.

(Triv) 〈[γ
]〉 (Recall that γ
 is the trivial goal assignment, mapping each coalition to X
)

(Safe) ¬〈[Agt �X⊥]〉
(Merge) 〈[C1 � θ1]〉 ∧ . . . ∧ 〈[Cn � θn]〉 → 〈[C1 � θ1, . . . ,Cn � θn]〉, where C1, . . . ,Cn are pairwise

disjoint.
This axiom generalises the Superadditivity axiom of Coalition Logic. The idea is simple: if

the coalitions C1, . . . ,Cn are pairwise disjoint, then they can join their collective strategies
for their respective coalitional goals into one strategy profile that ensures achievement of
all these collective goals.

(GrandCoalition) 〈[γ ]〉 → (〈[γ [Agt �X(φ ∧ψ )]]〉 ∨ 〈[γ [Agt �X(φ ∧ ¬ψ )]]〉), where γ (Agt) = Xφ.
Any strategy profile generates a unique successor state, on which any state formula ψ is

either true or its negation is true, so eitherψ or ¬ψ can be added to the next time goal of the
grand coalition Agt.

(Case) 〈[γ ]〉 → (〈[γ [C � X(φ ∧ψ )]]〉 ∨ 〈[γ |C [(Agt �X¬ψ ]]〉), where γ (C ) = Xφ.
For any coalitionC , state formulaψ , and a strategy profile Σ, either its projection ΣC toC

ensures the truth of ψ in all successor states enabled by ΣC —in which case ψ can be added
to the next time goal ofC enforced by Σ—or else ¬ψ is true in some of these successor states,
in which case it can be added to γ |C as the next time goal of the grand coalition Agt enforced
by Σ.

(Con) 〈[γ ]〉 → 〈[γ [C � X(φ ∧ψ )]]〉 where γ (C ) = Xφ and γ (C ′) = Xψ for some C ′ ⊆ C .
Given any coalition C and sub-coalition C ′, the next time goal of C ′ can be added to the

next time goal of C , in the sense that if there is any strategy profile Σ that ensures that C
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Fig. 2. Fixpoint axiom and induction rules.

and C ′ can force their respective next time goals Xφ and Xψ , then Σ also ensures that C can
force the conjunction of these goals.

7.1.2 II. General Rules of Inference:

Modus Ponens and Goal Monotonicity (G-Mon):

ϕ → ψ

〈[γ [C � Xϕ]]〉 → 〈[γ [C � Xψ ]]〉 .

The meaning of the rule is clear: if ϕ implies ψ , then any coalition C that can ensure the next
time goal ϕ within the context of some strategic goal assignment, can also ensureψ with the same
context.

7.1.3 III. Axioms and Rules for the Long-term Goal Assignments. The axioms and rules for the
goal assignments of Types 1 and 2, involving long-term temporal operators are given in Figure 2.
They are adapted from the respective axioms and rules for least and greatest fixed points in the
modal mu-calculus. In the axiom Fix, γ is any goal assignment. In the rule R-Ind it is a long-term
temporal assignment of type U, and in R-CoInd it is a long-term temporal assignment of type G.

We denote the axiomatic system above by AxTLCGA and will denote derivability in it by
AxTLCGA �, but will often write just �. Here are some important validities that are derivable in
AxTLCGA, some of which will be used in the proofs further:

Ind 〈[γ ]〉 ↔ ind(γ , 〈[γ ]〉) for every long-term temporal goal assignment γ .
(Immediately from (Fix), due to Proposition 5).

(Weakening) 〈[γ ]〉 → 〈[C � γ (C )]〉, for any C ⊆ Agt. (Using (Triv) and (G-Mon).)

Agt-Maximality 〈[∅ � Xϕ]〉 ∨ 〈[Agt �X¬ϕ]〉. (Using (Triv) and (Case).)

(Superadditivity) 〈[C1 � Xϕ1]〉 ∧ 〈[C2 � Xϕ2]〉 → 〈[C1 ∪C2 � X (ϕ1 ∧ ϕ2); C1 � Xϕ1; C2 � Xϕ2]〉, if
C1 ∩C2 = ∅.
This subsumes the Superadditivity axiom for Coalition Logic CL. It is derivable from (Merge))
using twice (Con) to add X (ϕ1 ∧ ϕ2) as a goal assignment to C1 ∪C2.

(Merge’)
∧

ai ∈Agt〈[f (ai )]〉 → 〈[merge( f )]〉, where f is any voting profile.
This is an essentially equivalent formulation of (Merge). Indeed, (Merge) is a particular case
of (Merge’), whereas (Merge’) is derivable from (Merge) by first using (Weakening) to detach
each 〈[Cj � θ j ]〉 from every f (ai ), for ai ∈ Cj , if Cj � ∅ and f (ai ) (Cj ) = θ j for all such ai .

Fix(G) 〈[C � Gχ]〉 → χ ∧ 〈[C � X 〈[C � Gχ]〉]〉.
This is a special case of Fix.

CoInd(G) If � ϕ → χ ∧ 〈[C � Xϕ]〉 then � ϕ → 〈[C � Gχ]〉.
This is a special case of the rule CoInd.

In particular, by using Fix(G) and applying G-Mon we obtain
� (χ ∧ 〈[C � X 〈[C � Gχ]〉]〉) → χ ∧ 〈[C � X (χ ∧ 〈[C � X 〈[C � Gχ]〉]〉)]〉
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Now, by applying CoInd(G) for ϕ = χ ∧ 〈[C � X 〈[C � Gχ]〉]〉, we derive

� χ ∧ 〈[C � X 〈[C � Gχ]〉]〉 → 〈[C � Gχ]〉.

Thus, we have derived the fixpoint equivalence for G:

FP(G) 〈[C � Gχ]〉 ↔ χ ∧ 〈[C � X 〈[C � Gχ]〉]〉.
PreFP(U) β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉) → 〈[C � αUβ]〉.

This is a special case of Fix.

Ind(U) If � β ∨ (α ∧ 〈[C � Xϕ]〉) → ϕ then � 〈[C � αUβ]〉 → ϕ.
This is a special case of the rule Ind.

In particular, by applying the rule G-Mon to PreFP(U) we derive

〈[C � X (β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉))]〉 → 〈[C � X 〈[C � αUβ]〉]〉.

Then, by simple propositional inference we derive
(β ∨ (α ∧ 〈[C � X (β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉))]〉)) → (β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉)).

Now, by applying Ind(U) for ϕ = β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉), we derive

� 〈[C � αUβ]〉 → β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉).

Thus, we have derived the fixpoint equivalence for U:

FP(U) 〈[C � αUβ]〉 ↔ β ∨ (α ∧ 〈[C � X 〈[C � αUβ]〉]〉).
Proposition 9 (Soundness of AxTLCGA). The axiomatic system AxTLCGA is sound: every derivable

formula in AxTLCGA is valid.

Proof. We show that every axiom is valid and all rules of inference preserve validity.
Checking the validity of the general axiom schemes is fairly routine. Most of these, as well as

the preservation of validity by the general rules II, follow from the soundness of the logic GPCL

in [23].
The validity of the axiom scheme Fix follows from Theorem 1.
The preservation of validity by the special rule R − Ind can be shown as follows. Suppose

ind(γ ,ϕ) → ϕ is valid. Take any concurrent game modelM. ThenM � ind(γ ,ϕ) → ϕ, hence
[[ϕ]]M is a pre-fixed point of the set operator induced by the formula ind(γ , z) inM. By Proposi-
tion 6, 〈[γ ]〉 is semantically equivalent to the least fixed point μz.ind(γ , z), which is also the least
pre-fixed point of ind(γ , z). Therefore,M � 〈[γ ]〉 → ϕ. Thus, 〈[γ ]〉 → ϕ is valid.

The preservation of validity by the special rule R − CoInd is proved analogously, using Proposi-
tion 7 and the fact that the greatest fixed point νz.ind(γ , z), is also its greatest post-fixed point. �

Recall (cf Section 5.1) that a formula ϕ ∈ LTLCGA is in normal form if, for every subformula of
the form 〈[γ ]〉, the goal assignment γ is either a next time or a long-term temporal goal assignment.

Proposition 10. For every formula φ there is a formulaψ which is in normal form, and such that
AxTLCGA � φ ↔ ψ .

Proof. By induction on the structure of formulas, using the axiom Fix for the crucial steps. By
design, the unfolding unfold(γ ) of any goal assignment γ is a next time goal assignment, and all
new goal assignments appearing in the scope of next time operators in the codomain of unfold(γ )
will be long-term temporal. So, all mixing of next time and long-term temporal path formulas
in 〈[unfold(γ )]〉 will appear in proper subformulas of 〈[γ ]〉, where the inductive hypothesis is
applied. �

By the soundness, the proposition above implies the following corollary.
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Fig. 3. Types of formulae and their components.

Corollary 2. For every formulaφ there is a semantically equivalent formulaψ which is in normal
form.

7.2 Formula Types, Components, and Extended FL-closure of TLCGA Formulae

We use some generic notions and terminology from the literature on tableaux-based satisfiability
decision methods (see e.g., [17, Ch.13]). Formulae of TLCGA in normal form can be classified as
literals: 
, ¬
, p,¬p, where p ∈ AP, conjunctive formulae, of the type (ϕ ∧ψ ) and ¬(ϕ ∨ψ );
disjunctive formulae, of the type (ϕ ∨ ψ ) and ¬(ϕ ∧ ψ ); successor formulae: 〈[γ ]〉 and ¬〈[γ ]〉,
where γ is a local (next time) goal assignment; and long-term temporal formulae, of the type
〈[γ ]〉 and ¬〈[γ ]〉, where γ is a long-term goal assignment. The formulae in the last four classes
have respective components that are given in Figure 3. Clearly, every conjunctive (respectively,
disjunctive) formula in the table is equivalent to the conjunction (respectively, disjunction) of its
components.

Given a formula φ, we define φ := ψ if φ is of the form ¬ψ , and φ := ¬φ otherwise.

Definition 12. The extended (Fischer-Ladner) closure of a TLCGA formula in normal form φ
is the least set of formulae ecl(φ) such that

(1) φ ∈ ecl(φ),
(2) ecl(φ) is closed under taking all components of formulae in ecl(φ).

(3) ψ ∈ ecl(φ) wheneverψ ∈ ecl(φ).

For any set of formulae Φ we define ecl(Φ) :=
⋃{ecl(φ) | φ ∈ Φ}.

A set Φ of TLCGA formulae in normal form is said to be (Fischer-Ladner) closed iff ecl(Φ) = Φ.

The proof of the following proposition can be found in the appendix:

Proposition 11. The extended closure of any finite set Φ of TLCGA formulae in normal form is
finite.

7.3 One-step Completeness

Hereafter derivability/provability and consistency refer to the axiomatic system AxTLCGA. Given a
set of formulae Φ, the maximal consistent subsets of Φ are defined as usual.

Definition 13. Given a closed set of formulae Φ, a Φ-atom is a maximal consistent subset of Φ.
We denote by At(Φ) the set of all Φ-atoms.
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Definition 14. Let Φ be a finite set of formulae. A next time assignment over Φ is a formula of
the shape

〈[C1 � Xφ1, . . . ,Ck � Xφk ]〉,
where each formula φi belongs to Φ. A modal one-step theory over Φ is a finite set of formulae
Γ, such that every formula in Γ is either a next time assignment over Φ or the negation of such a
formula.

Definition 15. Let Φ be a finite set of formulae. A consistent game form for Φ is a game
form (Act, act,P (Φ), out) over the set of outcomes P (Φ) such that, for each action profile ζ ,
out(ζ ) is a consistent set of formulae. A maximal consistent game form for Φ is a game form
(Act, act,P (Φ), out) over outcomes P (Φ) such that, for each action profile ζ , out(ζ ) is a maximal
consistent subset of Φ.

Note that, if Φ is a closed set of formulae, then a consistent game form for Φ is maximal if and
only if for every action profile ζ the set out(ζ ) is a Φ-atom.

Given a strategic game form G = (Act, act,O, out), a coalition C and action profiles ζ ′, ζ , we
write ζ ′ ∼C ζ to state that ζ ′ |C = ζ |C .

Theorem 4 (One-step Completeness). Let Γ be a consistent modal one-step theory over a finite

set of formulas Φ and assume that Φ contains all components of Γ, also contains ψ whenever ψ ∈ Φ,
and is closed under conjunctions (up to provable equivalence). Then there exists a maximal consistent
game formM (Γ) = (Act, act,P (Φ), out) for Φ such that, for every goal assignment γ :

(1) If 〈[γ ]〉 ∈ Γ, then there is a profile ζ ∈ Πa∈Agt acta such that for all C in the support of γ with
γ (C ) = Xϕ and all ζ ′ ∼C ζ , we have ϕ ∈ out(ζ ′).

(2) If ¬〈[γ ]〉 ∈ Γ, then for every profile ζ ∈ Πa∈Agt acta there is some C in the support of γ , and

some ζ ′ ∼C ζ , for which we have ϕ ∈ out(ζ ′) where γ (C ) = Xϕ.

Furthermore, the size of Act is at most exponential in |Φ|.

Proof. We may assume without loss of generality that, for every next time goal assignment γ
over Φ, the set Γ contains either 〈[γ ]〉 or¬〈[γ ]〉, since otherwise we can extend Γ, using Lindenbaum’s
lemma, to a consistent (and still finite) set satisfying this assumption.

We consider next time goal assignments over the set of conjunctions of subsets of Φ. We say that
such a goal assignment γ is deterministic if γ (Agt) is (provably equivalent to) the conjunction of
a maximal consistent subset of Φ. We then say that a goal assignment γ ′ is a strengthening of γ if,
for allC withγ (C ) = Xϕ andγ ′(C ) = Xϕ ′, the formulaϕ ′ → ϕ is provable. Note that every formula
〈[γ ]〉 provably implies the disjunction of all formulas 〈[γ ′]〉whereγ ′ is a deterministic strengthening
of γ over Φ. This follows by repeated applications of the axiom (GrandCoalition).

If γ is deterministic we let next(γ ) denote the maximal consistent set Ψ for which γ (Agt) =
X(

∧
Ψ). Note that for any deterministic strengthening γ ′ of a goal assignment γ over Ψ and any

C for which γ (C ) = Xφ, next(γ ′) must contain φ as a conjunct. This is a consequence of axioms
(Con), (Safe) and the assumption that next(γ ′) is maximal consistent.

For technical convenience, in this proof, we fix the enumeration of Agt to be a0, . . . , aK−1, where
K = | Agt |. Given an agent a ∈ Agt, we define actΓ

a to be the set of all triples (γ , f ,k ) such that γ
is a goal assignment with 〈[γ ]〉 ∈ Γ, 0 ≤ k < K , and f is a function mapping each goal assignment
γ ′ : P (Agt) → Φ to one of its deterministic strengthenings. To count the number of actions, this
is the number of goal assignments γ with 〈[γ ]〉 ∈ Γ, times the number of functions f mapping goal
assignments over Φ to deterministic strengthenings, times K . The number of goal assignments
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over Φ is |Φ|2K
, and more generally the number of goal assignments over conjunctions of subsets

of Φ is (2 |Φ | )2K
= 22K · |Φ | . So the number of functions f that can appear in an action is

(
22K · |Φ |

) |Φ |2K

= 22K · |Φ |2K +1
.

Since the number of agents is fixed, 2K is a constant and the term 2K · |Φ|2K+1 is a polynomial in
|Φ|. Hence the number of actions is exponential in |Φ|.

Note that actΓ
a � ∅ for all a ∈ Agt since there is at least one goal assignment with 〈[γ ]〉 ∈ Γ

by the axiom (Triv), and 〈[γ ]〉 is equivalent to the disjunction of its deterministic strengthenings,
so one of these must also be in Γ. Note also that the goal assigned to Agt by any 〈[γ ]〉 ∈ Γ must
be consistent by the axiom (Safe). We set ActΓ =

⋃
a∈Agt actΓ

a . Given an action profile ζ and
a ∈ Agt, if ζa = (γ ,k, f ) we write vote(a, ζ ) = γ , bet(a, ζ ) = k and choice(a, ζ ,γ ′) = f (γ ′) for
every goal assignment γ ′ with 〈[γ ′]〉 ∈ Γ. We write vote(ζ ) for the voting profile mapping each
a ∈ Agt to vote(a, ζ ). We define the voting winner win(ζ ) to be player ai where i is determined as
follows:

i := ��
∑

a∈Agt

bet(a, ζ )��� mod K .

Finally, we define the outcome of a given action profile ζ as follows:

out(ζ ) := next (choice(win(ζ ), ζ ,merge(vote(ζ ))).

We will show that the game form M (Γ) = (ActΓ, actΓ,P (Φ), out) we have constructed satisfies
the criteria listed in the statement of the theorem. First, we shall prove a rather technical auxiliary
claim. Before going through its proof, the reader may want to skip ahead to see how the claim is
used in the main argument.

Claim 1. Let φ be any formula in Φ, C any coalition, and let ζ be an action profile inM (Γ) such
that for every action profile ζ ′ ∼C ζ , we have φ ∈ out(ζ ′). Let γ be any deterministic strengthening
of merge(vote(ζ )) such that 〈[γ ]〉 ∈ Γ and γ (Agt) = X(

∧
out(ζ )), and let γ (C ) = Xψ . Then there

exists a deterministic strengthening γ ′ of γ such that 〈[γ ′]〉 ∈ Γ, and:

γ ′(C ) = X(ψ ∧ φ).

Proof of Claim 1. We need to distinguish two cases, for C = Agt and C � Agt. We begin with
the easier case whereC = Agt. In this case, there is only one action profile ζ ′ ∼C ζ , namely ζ itself.
Our assumption thus gives φ ∈ out(ζ ). Furthermore, we have γ (C ) = γ (Agt) = X(

∧
out(ζ )) by

assumption. But, since ψ ∈ out(ζ ) the formula
∧

out(ζ ) is equal (up to provable equivalence) to
ψ ∧∧

out(ζ ), which is provably equivalent toψ ∧ φ (because γ ′ is a deterministic strengthening).
Hence we can set γ ′ = γ .

In the case, where C � Agt is more involved. We assumed that 〈[γ ]〉 ∈ Γ. By (Case), we have:

〈[γ [C � X (ψ ∧ φ)]]〉 ∨ 〈[γ |C [Agt �X¬φ]]〉 ∈ Γ.

We first show that 〈[γ |C [Agt �X¬φ]]〉 � Γ. Suppose the contrary, that 〈[γ |C [Agt �X¬φ]]〉 ∈ Γ. Let γ ∗

be an arbitrary deterministic strengthening ofγ |C [Agt �X¬φ] such that 〈[γ ∗]〉 ∈ Γ. Such strengthen-
ing must exist, since we recall that every formula of the form 〈[δ]〉 provably implies the disjunction
of all its deterministic strengthenings over Φ. Now we define a new action profile ζ ′ as follows.
First, pick an arbitrary c � C , which exists sinceC � Agt. For each a ∈ C set ζ ′a = ζa. For each a � C
and a � c, set ζ ′a = (γ
, f , 0) where f is arbitrary (recall that γ
 is the trivial goal assignment with
empty support). For c, set ζ ′c = (γ
, f ,h) where the choice function f chooses γ ∗ whenever possi-
ble, and the bet h is chosen so that the index of the player c is equal to

∑
a∈C bet(a, ζ ) +h (mod K ).
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This guarantees that c will be the voting winner in ζ ′. Clearly ζ ′ ∼C ζ . Furthermore, since γ ∗

is a strengthening of γ |C [Agt �X¬φ], and γ is a strengthening of merge(vote(ζ )) by assumption,
it follows that γ ∗ is a deterministic strengthening of merge(vote(ζ ′)). This is because the only
coalitions not mapped to X
 by merge(vote(ζ ′)) are the ones contained in C , and for any such
coalition D we have merge(vote(ζ ′)) (D) = merge(vote(ζ )) (D). So, we get:

out(ζ ′) = next (choice(win(ζ ′), ζ ′,merge(vote(ζ ′)))

= next (choice(c, ζ ′,merge(vote(ζ ′)))

= next(γ ∗).

But ¬φ ∈ next(γ ∗) since γ ∗ is a strengthening of γ |C [Agt �X¬φ]. By consistency of next(γ ∗), we
have thus found an action profile ζ ′ such that ζ ∼C ζ ′ and φ � out(ζ ′). This is a contradiction
with our assumption on the action profile ζ . Thus, we have proved 〈[γ |C [Agt �Xφ]]〉 � Γ, as desired.
It follows that 〈[γ [C � X (ψ ∧ φ)]]〉 ∈ Γ. We then define:

γ ′ := γ [C � X (ψ ∧ φ)].

Thus, we have shown that 〈[γ ′]〉 ∈ Γ, γ ′ is clearly a strengthening of γ , and it is deterministic since
γ ′(Agt) = γ (Agt). This concludes the proof of the claim. �

We now prove that the properties (1) and (2) listed in the theorem hold for the game form
M (Γ) = (ActΓ, actΓ,P (Φ), out).

Item (1). Suppose 〈[γ ]〉 ∈ Γ. Let ζ be defined by letting all players vote for (γ , f , 0) where f is
an arbitrary, fixed choice function. Let C be in the support of γ , where γ (C ) = Xφ and let ζ ′ ∼C ζ .
Since all players in C vote for γ in ζ ′, and the outcome out(ζ ′) is next(γ ′) for a deterministic
strengthening of merge(vote(ζ ′)), it follows that φ ∈ out(ζ ′).

Item (2). Suppose ¬〈[γ ]〉 ∈ Γ, and let ζ be an arbitrary action profile. We want to show that

there is some coalition C and some action profile ζ ′ ∼C ζ such that ϕ ∈ out(ζ ′), where γ (C ) = φ.
We will prove this by reductio ad absurdum. Suppose that for every coalitionC with γ (C ) = Xφ

and every action profile ζ ′ ∼C ζ , we have ϕ � out(ζ ′). This means that φ ∈ out(ζ ′) since both ϕ
and φ are in the closure of 〈[γ ]〉 and out(ζ ′) is maximal consistent. Let us list all coalitions in the
support of γ as C1, . . . ,Cm . Let γ0 denote the goal assignment choice(win(ζ ), ζ ,merge(vote(ζ )).
Then γ0 (Agt) = X(

∧
out(ζ )). Furthermore 〈[γ0]〉 ∈ Γ by definition of choice, and γ0 is a deter-

ministic strengthening of merge(vote(ζ )). For each i ∈ {1, . . . ,m} let ψi be the formula such that
γ (Ci ) = Xψi , and letψ 0

i be the formula such that γ0 (Ci ) = Xψ 0
i . We define, for each i ∈ {0, . . . ,m},

a deterministic goal assignment γi such that

— 〈[γi ]〉 ∈ Γ,
—γi is a deterministic strengthening of γj for all j < i ,
—γi (Cj ) = X(ψ 0

j ∧ψj ) for all j with 1 ≤ j ≤ i , and γi (Agt) = X(
∧

out(ζ )).

The goal assignment γ0 has already been defined, and we can extend the definition inductively
to all i by repeatedly applying Claim 1. Note that the induction hypothesis has been tailored so
that Claim 1 applies at each inductive step.

Now, consider the goal assignment γm . We have 〈[γm]〉 ∈ Γ. But by definition 〈[γm]〉 is a
strengthening of 〈[γ ]〉, hence 〈[γ ]〉 ∈ Γ, by Goal Monotonicity. Since we assumed that ¬〈[γ ]〉 ∈ Γ,
we have reached a contradiction with the consistency of Γ. This concludes the proof of item (2)
and thus the proof of the theorem. �
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8 COMPLETENESS OF TLCGA

8.1 Networks

Throughout the rest of this section, we fix a finite, closed set Φ of TLCGA-formulae in normal
form. To prove completeness, we will show how to construct a model for each (consistent) atom
in At(Φ), using the technique of networks. The idea behind this technique is to construct a series
of approximations to the satisfying model. At each finite stage of the construction, the current
approximating network will generally have a number of defects, each of which represents is some
particular reason that the network cannot yet be regarded as a satisfying model. For example,
consider a formula of the form 〈[A�αUβ,B�Gχ]〉. If this formula belongs to the label associated with
some nodeu in a network, then there must exist some strategy profile Σ such that, when restricted
to a joint strategy for the coalition A, it ensures that every play generated by it eventually leads
to a state where β is in the label, and all states that are visited meanwhile have α in their labels;
likewise, when Σ is restricted to a joint strategy for the coalition B, it ensures that on every play
generated by it all states that are visited have χ in their labels. For the respective conditions for
α and χ it suffices that they are satisfied locally, at every step of the construction of the network.
Thus, there are two types of conditions to be satisfied by the network: local conditions, that can
be ensured on-the-fly, i.e., the defects arising from their violation can be fixed step-by-step in the
process of the construction and updates of the network; and eventualities, which need to be taken
special care of. In the example above, if it is not already the case that every play generated by the
joint strategy for B obtained from Σ eventually leads to a state where β is in the label, that creates a
defect, which we needs to be eventually fixed. To do so we first show that we can “push” the defect
towards leaves in the network, in the sense that it suffices to fix the defect at each leaf in order
to make sure each occurrence of the defect in the current network disappears. Next, we fix each
defect associated with a leaf. To do that, we prove that for every atom that contains the formula
〈[A � αUβ,B � Gχ]〉, we can find a network whose root is labelled by that atom, and in which the
occurrence of the formula at the root is not a defect (though it may appear as a defect elsewhere
in the network). This network can then by “plugged in” at appropriate leaves in another network
in order to fix a defect there. Once a specific occurrence of a defect is fixed it never reappears, but
of course, each round of the construction may introduce new defects, like new heads of a hydra
appearing where one was previously cut off. These new defects are then taken care of in the next
round, and so on. By taking a limit of the approximating series we obtain a perfect network, i.e.,
a network with no defects. A “truth lemma” for perfect networks assures that we can view the
network obtained in the limit as a model in which each formula attached to the root is true.

Definition 16. A Φ-network is a triple N = (T ,L,G) such that

—T is a rooted, finitely branching directed tree,
— L : T → At(Φ) is a map that assigns to each node of T an atom from At(Φ).
— G is a map that assigns to each non-leaf nodeu ofT a game formG (u) = (Actu , actu ,T , outu ),

where outu is subject to the constraint that its codomain is the set of children nodes ofu inT .

Definition 17. A networkN = (T ,L,G) is said to be a sub-network ofN ′ = (T ′,L′,G′), written
N � N ′, if

—T is a subgraph of T ′ and the root of T is also the root of T ′,
— If u is any non-leaf node in T then it has the same children in T as in T ′ and, furthermore,
G (u) = G′(u),

— L = L′|T .

Definition 18. Given a Φ-network N = (T ,L,G), a marking of N is a map m from T to the
powerset of Φ such that m(v ) ⊆ L(v ) for all v ∈ T . (In particular, note that L itself is a marking of
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N .) Given a marking m ofN , a next time goal assignmentγ such that 〈[γ ]〉 ∈ Φ, and a non-leaf node
u ∈ T with G (u) = (Act, act,T , out), we say that the marking m verifies the goal assignment

γ at u if there is a strategy profile Σ ∈ Πa∈Agt such that, for every C in the support of γ such
that γ (C ) = Xψ and for every strategy profile Σ′ with Σ′ ∼C Σ, we have ψ ∈ m(out(Σ′,u)). We
say that m refutes the goal assignment γ at u if for every strategy profile Σ ∈ Πa∈Agt there is
some C in the support of γ with γ (C ) = Xψ and some strategy profile Σ′ with Σ′ ∼C Σ such that

ψ ∈ m(out(Σ′,u)).

Definition 19. A Φ-network N = (T ,L,G) is said to be one-step coherent if, for every non-
leaf node u ∈ T such that G (u) = (Act, act,T , out), the marking L verifies every next time goal
assignment γ such that 〈[γ ]〉 ∈ L(u) and refutes every next time goal assignment γ such that
¬〈[γ ]〉 ∈ L(u).

8.2 Eventualities and Defects

Definition 20. A TypeU-eventuality is a formula 〈[γ ]〉where γ ∈ TypeU. A TypeG-eventuality

is a formula of the form ¬〈[γ ]〉 where γ ∈ TypeG.

Definition 21. Let 〈[γ ]〉 be a TypeU-eventuality, where γ is a goal assignment for the family F =
{C1, . . . ,Cn ,D1, . . . ,Dm } or F = {C1, . . . ,Cn } defined by

γ (C1) = α1Uβ1, . . . , γ (Cn ) = αnUβn ,

and (ifm > 0)

γ (D1) = Gχ1, . . . , γ (Dm ) = Gχm .

LetN = (T ,L,G) be a one-step coherent network. Given a nodeu ∈ T , we say that 〈[γ ]〉 is partially

fulfilled in 0 steps at u in N if there is some i ∈ {1, . . . ,n} such that βi ∧ 〈[γ \Ci ]〉 ∈ L(u). For
any natural number k ≥ 0, we say that 〈[γ ]〉 is partially fulfilled in k + 1 steps at u if it is either
partially fulfilled in 0 steps, or u is a non-leaf node and the following conditions hold:

— αi ∈ L(u) for all i ∈ {1, . . . ,n},
— χj ∈ L(u) for all j ∈ {1, . . . ,m},
— there is a marking m that verifies 〈[Δγ ]〉 at u and is such that for all v ∈ T such that v is a

child of u, 〈[γ ]〉 is partially fulfilled in k steps at v whenever 〈[γ ]〉 ∈ m(v ).

Lastly, we say that 〈[γ ]〉 is partially fulfilled at u if it is partially fulfilled in k steps at u for some
k ≥ 0.

Definition 22. Let ¬〈[γ ]〉 be an eventuality in TypeG, where γ is the goal assignment for the
family F = {D1, . . . ,Dm } defined by

γ (D1) = Gχ1, . . . ,γ (Dm ) = Gχm .

Let N = (T ,L,G) be a one-step coherent network. Given a node u ∈ T , we say that ¬〈[γ ]〉 is

partially fulfilled in 0 steps at u in N if there is some i ∈ {1, . . . ,n} such that χi ∈ L(u).
For any natural number k ≥ 0, we say that ¬〈[γ ]〉 is partially fulfilled in k + 1 steps at u if

it is either partially fulfilled in 0 steps, or u is a non-leaf node and there exists a marking m that
refutes 〈[Δγ ]〉 at u, and such that for all v ∈ T such that v is a child of u, ¬〈[γ ]〉 is partially fulfilled
in k steps at v whenever ¬〈[γ ]〉 ∈ m(v ). Lastly, we say that ¬〈[γ ]〉 is partially fulfilled at u if it is
partially fulfilled in k steps at u for some k ≥ 0.

Definition 23. A defect of a network N = (T ,L,G) is a pair (u,ϕ) such that u ∈ T , ϕ ∈ L(u) is
an eventuality which is not partially fulfilled at u.
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Proposition 12. Let N � N ′ and let (u,φ) be a defect of N ′. If u belongs to N , then (u,φ) is a
defect of N , as well.

Proof. A trivial induction on k shows that, if an eventuality of any of the two types is partially
fulfilled in k steps at u in N , then it is partially fulfilled in k steps at the same node in N ′ as
well. �

Definition 24. A network is said to be perfect if it is one-step coherent, has no leaves, and no
defects.

Definition 25. Given a perfect network N = (T ,L,G) we define a game model M (N ) = (S,
Act, g,V ) as follows. We take S to be the set of all nodes in T , and g = G. Finally, we set V (p) =
{v ∈ T | p ∈ L(v )}. We callM (N ) the induced model of the network N .

The following proposition will relate truth sets [[φ]]M (N ) of formulas in the induced model of a
network to the set of nodes v with φ ∈ L(v ). To clearly distinguish the latter from the former, we
introduce the following notation:

[φ]N := {v ∈ T | φ ∈ L(v )}.

For the proof of the following proposition, see the appendix.

Proposition 13. Every Φ-atom that is the label of some node in a perfect Φ-networkN = (T ,L,G)
is true at the respective state of the modelM (N ) induced by that network.

8.3 Constructing a Perfect Network

8.3.1 Step 1: Extending Leaves in Coherent Networks.

Proposition 14. Let N be any finite, one-step coherent network, and let u be a leaf in N . Then
there exists a finite and one-step coherent networkN ′ such thatN � N ′ and such that u is not a leaf
in N ′.

Proof. Let Γ = {〈[γ ]〉 | 〈[γ ]〉 ∈ L(u)} ∪ ¬{〈[γ ]〉 | ¬〈[γ ]〉 ∈ L(u)}. This is a consistent modal one-
step theory, so let (Act, act,P (Φ), out) be the maximal consistent game formM (Γ) provided by
Theorem 4. We construct the network N ′ = (T ′,L′,G′) as follows. For each atom Ψ in the image
of the function out (which is always non-empty), add a new successor vΨ to u, and set L(vΨ) = Ψ.
Let S denote the set of successors of u added in this manner. We construct a new game form
G′(u) = (Act, act, S, out′) by setting, for each action profile ζ , out′(ζ ) := {vΨ} where Ψ = out(ζ ).
This completes the definition ofN ′. It is clear thatN � N ′, and the conditions given in Theorem 4
directly entail (by design) that the network N ′ is one-step coherent. Since at least one successor
was added to u, this node is no longer a leaf in N ′. �

8.3.2 Step 2: Pushing Defects Towards Leaves.

Proposition 15. LetN be a finite, one-step coherent network and let (u,φ) be a defect ofN . Then
there exists a set {v1, . . . ,vk } of leaves in N such that

— For each i ∈ {1, . . . ,k }, the pair (vi ,φ) is a defect of N , and
— For any one-step coherent network N ′ such that N � N ′, if (u,φ) is still a defect in N ′ then

there is some i ∈ {1, . . . ,k } such that (vi ,φ) is a defect of N ′.

Proof. We focus on the case of a type U eventuality; the case of type G eventualities is very
similar. Let 〈[γ ]〉 be a type U eventuality. We say that a defect (u, 〈[γ ]〉) one-step generates a
defect (v, 〈[γ ]〉) if v is one of the children of u, and (v, 〈[γ ]〉) is a defect of N . We then say that a
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defect (u, 〈[γ ]〉) generates a defect (v, 〈[γ ]〉) if (v, 〈[γ ]〉) is a successor of (u, 〈[γ ]〉) with respect to
the transitive closure of the one-step generation relation.

Now suppose that (u, 〈[γ ]〉) is a defect of N . We claim that the set of leaves l such that (l , 〈[γ ]〉)
is a defect generated by the defect (u, 〈[γ ]〉) satisfies the conditions of the proposition. The first
condition holds by definition. To prove this, consider any one-step coherent networkN ′ such that
N � N ′. We show that for every defect (w, 〈[γ ]〉) of N , if (w, 〈[γ ]〉) is still a defect of N ′, then the
same holds for some defect (v, 〈[γ ]〉) of N that is one-step generated by (w, 〈[γ ]〉). By repeatedly
applying this claim, starting with the defect (u, 〈[γ ]〉), we eventually reach a leaf l such that (l , 〈[γ ]〉)
is a defect generated by the defect (u, 〈[γ ]〉), and is still a defect in N ′.

So, let (w, 〈[γ ]〉) be a non-leaf defect of N , such that (w, 〈[γ ]〉) is still a defect of N ′. Suppose,
for a contradiction, that for all the children v of w , (v, 〈[γ ]〉) is not a defect ofN ′. This means that
for all children v of w in N , and hence for all children of w in N ′ since N � N ′, there is some
kv for which the eventuality 〈[γ ]〉 is partially fulfilled in kv

steps at v in N . Let K be the maximum of these numbers kv , which exists since the set of
successors of w is finite. By one-step coherence of the network N ′ it follows that 〈[γ ]〉 is partially
fulfilled in K + 1 steps at w in N ′, witnessed by the labelling function L of N regarded as a
marking of N ′. Thus, we have reached a contradiction, which completes the proof. �

8.3.3 Step 3: Removing Defects. We now show how to remove defects from a network:

Proposition 16. Let (u,φ) be a defect of some finite, one-step coherent network N . Then there
exists a finite, one-step coherent network N ′ such that N � N ′, and such that (u,φ) is not a defect
of N ′.

Proof. By Proposition 15, we may assume w.l.o.g. that the defect (u,φ) is such thatu is a leaf: if
we can show how to remove the defect φ at a single leaf, then, clearly, we can repeat the procedure
to remove φ at each leaf in the set {v1, . . . ,vk }. (Note that our procedure for removing a defect at a
single leaf v given below will not affect any other leaves, i.e., each leaf in the original network be-
sidesv will still be a leaf in the new network.) Combined with Proposition 15 this proves the result.

So, suppose that (u,φ) is a defect and u is a leaf. It is sufficient to show that there is a finite,
one-step coherent network N ′′ in which the root has the same label as u in N , and in which the
eventuality φ is partially fulfilled. We can then simply identify the root of the network N ′ with
the leaf u in N to form a finite, one-step coherent network N ′ such that N ′′ � N ′ and N � N ′.
By Proposition 12, the eventuality φ is partially fulfilled at u in N ′.

Consider the Φ-atoms Ψ such that φ ∈ Ψ and there exists a finite, one-step coherent network in
which the root is labelled by Ψ and the eventuality φ is partially fulfilled. Let δ be the disjunction
of all conjunctions of the form

∧
Ψ for all such Φ-atoms Ψ. (This is well-defined since the set

of all such conjunctions is finite, as long as we disallow conjunctions with redundant multiple
occurrences of the same conjunct.) The result then follows from the following claim, which is
proved in the appendix. �

Claim 2. � φ → δ .

8.3.4 Final Step: Putting Everything Together. The following proposition is proved in the
appendix.

Proposition 17. LetN be a finite, one-step coherent Φ-network. Then there exists a finite, one-step
coherent Φ-network N ′ such that

(1) N � N ′,
(2) no leaf of N is a leaf of N ′,
(3) no defect of N is a defect of N ′.
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Proposition 18. Every Φ-atom is the label of the root of some perfect Φ-network.

Proof. Take any Φ-atom Ψ. We construct an infinite chain of finite one-step coherent Φ-
networks N0 � N1 � · · · inductively as follows.

We start with N0 = (T0,L0,G0) where T0 = {u0} is a singleton, L0 (u0) = Ψ and G0 is empty
(there are no non-leaf nodes). This is trivially one-step coherent.

Suppose, we have constructed the finite one-step coherent Φ-networks N0 � N1 � · · · Nn .
Then we apply Proposition 17 to construct a finite, one-step coherent network Nn+1 such that
Nn � Nn+1, no leaves in Nn are still leaves in Nn+1, and no defects in Nn are still defects in Nn+1.

Finally, we construct the networkN as the union of the chainN0 � N1 � · · · . Clearly, it is still
one-step coherent and has no leaves and no defects, i.e., it is perfect. �

We can now state and prove the completeness theorem.

Theorem 5 (Completeness of AxTLCGA). Let Γ be a finite AxTLCGA-consistent set of TLCGA-
formulae. Then Γ is satisfied in some concurrent game model.

Proof. Let Φ be the extended Fischer-Ladner closure of Γ and let Γ∗ be a Φ-atom containing Γ
(which exists, by a standard version of Lindenbaum’s lemma). By Proposition 18, Γ∗ is the label of
the root of some perfect Φ-network. Then, by Proposition 13, Γ∗ is true at the respective state of
the modelM (N ) induced by that network. �

9 FINITE MODEL PROPERTY AND DECIDABILITY

In this section, we show finite model property and decidability for our logic TLCGA. Since we have
a truth-preserving and effective translation of the languageLTLCGA into the fixpoint logicLXCGA

μ , it
suffices to prove finite model property and decidability for the latter. Here, we will avail ourselves
of some abstract results from the literature on coalgebraic modal fixpoint logic. In particular, a
general bounded-size model property for coalgebraic μ-calculi was proved in [21], and sinceLXCGA

μ

is an instance of coalgebraic μ-calculus, we are almost done. There is one subtlety that we need
to deal with, concerning the notion of “finiteness” of a model. There are two distinct notions of
“finite model” that we may consider:

Definition 26. LetM = (S,Act, g, out,V ) be a concurrent game model. We say thatM is state-
finite if S is a finite set. We say thatM is action-finite if Act is a finite set. We say thatM is finite
if it is both state-finite and action-finite.

We get the following “state-finite model property”, as a direct corollary of the general finite
model theorem from [21]:

Theorem 6. Any satisfiable formula of LXCGA
μ is satisfiable in a state-finite model.

However, what we want is a proper finite model property. We can obtain this with a little bit of
extra work. First, we obtain the following “action-finite model property”:

Lemma 1. Any satisfiable formula of LTLCGA is satisfiable in an action-finite model.

Proof. Since the size of the set of actions in the game forms constructed in the proof of the
one-step completeness theorem (Theorem 4) has an exponential upper bound that depends on the
size of a finite consistent modal one-step theory, and since the our construction of a model for a
consistent LTLCGA-formula can easily be seen to provide an action-finite model. �

Theorem 7 (Finite Model Property). Any satisfiable formula ofLTLCGA is satisfiable in a finite
model.
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Proof. Let φ be a satisfiable formula of LTLCGA. By soundness of our proof system φ is consis-
tent, and hence is satisfiable in a modelM = (S,Act, g, out,V ) where the set Act is finite. Hence
the corresponding equivalent formula φ ′ in LXCGA

μ is satisfiable in this model too.

But the frame (S,Act, g, out) can be equivalently represented as a coalgebra f : S → GActS

for a functor GAct in which the set of actions Act is explicitly encoded, so the triple (S, f ,V ) is
a GAct-model in which φ ′ is satisfiable. By the finite model property theorem proved in [21], φ ′

is satisfiable in a GAct-model (S′, f ′,V ′) for which S′ is finite. This model can equivalently be
represented as a concurrent game model (S′,Act, g′, out′) in which φ ′ is satisfiable, hence also φ.
Since S′ is finite and Act is finite, this is a finite model for φ. �

Together with our completeness result for TLCGA, this implies:

Theorem 8. The satisfiability problem for TLCGA is decidable.

Note that there is no need for an explicit bound on the size of a satisfying finite model for this
result; completeness for TLCGA ensures that we can computably enumerate the valid formulas of
LTLCGA, and the finite model property means that we can computably enumerate the non-valid
formulas as well. Hence, the set of valid formulas is a computable set.

Since the logic TLCGA+ also embeds into LXCGA
μ , we get a further corollary:

Theorem 9. The logic TLCGA+ has the finite model property.

The proof of Theorem 8 took a detour via finite model property for the languageLXCGA
μ . We shall

now look closer at the latter language and obtain an upper bound on the complexity of satisfiability
for LXCGA

μ , under the assumption that the set Agt of agents is fixed. Decidability of TLCGA+ will
then follow as a corollary. To obtain these results, we will require a closer analysis of the one-step
satisfiability problem.

Definition 27. Let V be a fixed set of proposition variables. The set of positive one-step for-

mulas over V is generated by the following grammar:

〈[γ0]〉 | ¬〈[γ1]〉 | φ ∧ φ | φ ∨ φ,

whereγ0 is a goal assignment such that for each coalitionC in the support ofγ0 we haveγ0 (C ) = Xp
for some p ∈ V , called a positive goal assignment, and γ1 is a goal assignment such that for each
coalition C in the support of γ0 we have γ1 (C ) = X¬p for some p ∈ V , called a negative goal

assignment.
A positive one-step sequent overV is a finite set Γ of formulas, each of which is either of the

form 〈[γ0]〉where γ0 is a positive goal assignment, or of the form ¬〈[γ1]〉where γ1 is a negative goal
assignment.

Let Γ be a positive one-step sequent overV . A redistribution of Γ is a tuple (C1,γ1, . . . ,Cn ,γn )
where C1, . . . ,Cn is a set of pairwise disjoint coalitions and each γi is a positive goal assignment
with 〈[γi ]〉 ∈ Γ. The intuition behind this notion is as follows: suppose that γ1, . . . ,γn are positive
goal assignments with 〈[γi ]〉 ∈ Γ for each i ∈ {1, . . . ,n}. Then according to the sequent Γ, there
are action profiles ζ1, . . . , ζn such that for each ζi , every coalitionC ensures its goal formula γi (C )
with respect to the action profile ζi . But then, ifC1, . . . ,Cn are any pairwise disjoint coalitions, the
coalitionC1 ∪ . . .∪Cn has a joint action in which each coalitionCi ensures its goal formula γi (Ci ),
by playing in accordance with the action profile ζi . In other words, the action profiles ζ1, . . . , ζn can
be combined into a joint action forC1∪ . . .∪Cn be restricting each action profile ζi to the coalition
Ci , and then “gluing together” the resulting joint actions into a joint action forC1 ∪ . . . ∪Cn . The
set of redistributions of Γ can be viewed as a set of notations, for each of the different ways that
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action profiles corresponding to the positive goal assignments occurring in Γ can be combined in
this manner.

Note that a redistribution (C1,γ1, . . . ,Cn ,γn ) of Γ can be uniquely represented by a map:

f : P Agt→ Γ ∪ {∗},
defined by setting f (Ci ) = 〈[γi ]〉 and f (B) = ∗ for B � {C1, . . . ,Cn }. Hence, there are at most
( |Γ | + 1)k redistributions of Γ, where k = 2 | Agt | . Recall that the set Agt is fixed, so 2 | Agt | is a
constant, giving a polynomial bound on the number of redistributions.

A goal assignment γ with 〈[γ ]〉 ∈ Γ or ¬〈[γ ]〉 ∈ Γ we be called a relevant goal assignment for
Γ. Given a redistribution R = (C1,γ1, . . . ,Cn ,γn ), we let F (R) denote the set:

{p | ∃i,B ⊆ Ci : γi (B) = Xp}.
Intuitively, F (R) is the set of goals forced by coalitions that have formed in the action profile

represented by the redistribution R. Given a triple (R,γ ′,C ′) consisting of a redistribution R =
(C1,γ1, . . . ,Cn ,γn ), a negative relevant goal assignment γ ′, and a coalition C ′ such that γ ′(C ′) =
X¬q, we denote by F (R,γ ′,C ′) the set:

{p | ∃i,B ⊆ Ci ∩C ′ : γi (B) = Xp} ∪ {q}.
Intuitively, the set F (R,γ ′,C ′) is the minimal set of variables that have to be in the outcome of
a strategy profile ζ , in which each coalition Ci ∈ {C1, . . . ,Cn } acts towards its goal with respect
to the goal assignment γi , and at the same time the players in Agt \C ′ act to block the goal of C ′

according to the goal assignment γ ′.

Definition 28. LetV be a given set of proposition variables. A satisfiability constraint overV
is a subset of P (V ). Given a positive one-step sequent Γ over V and a satisfiability constraint S
over V , we say that Γ is S-satisfiable if there exists a game form G = (Act, act,P (V ), out) such
that

— If 〈[γ ]〉 ∈ Γ then there exists an action profile ζ such that, for every coalitionC , if γ (C ) = Xp
then p ∈ out(ζ ′) for every ζ ′ ∼C ζ .

— If ¬〈[γ ]〉 ∈ Γ then for every action profile ζ , there is some coalitionC and some ζ ′ ∼C ζ such
that p ∈ out(ζ ′), where γ (C ) = X¬p.

— For every action profile ζ , there is some V ′ ∈ S with out(ζ ) ⊆ V ′.
— For every V ′ ∈ S there is some action profile ζ with out(ζ ) ⊆ V ′.

Given a game form G satisfying these conditions, we say that G S-satisfies Γ.

The following proposition reduces the question of whether a positive one-step sequent Γ is S-
satisfiable to checking of a few relatively simple combinatorial conditions on the set S. The proof
is in the appendix.

Proposition 19. Given a set V of variables, a satisfiability constraint S over V and a positive
one-step sequent Γ over V , Γ is S-satisfiable if and only if

(1) For each redistribution R of Γ, there is Z ∈ S with F (R) ⊆ Z .
(2) For each redistribution R of Γ and each negative relevant goal assignment γ ′, there is some

C ′ ⊆ Agt such that
— either C ′ = Agt and q ∈ Z for every Z ∈ S, where γ ′(Agt) = X¬q, or
—C ′ � Agt and there is some Z ∈ S such that F (R,γ ′,C ′) ⊆ Z .

To illustrate this proposition, let Agt = {a, b}, V = {p,q, r } and let:

Γ = {〈[{a} � Xp]〉, 〈[{b} � Xq]〉,¬〈[{b} � X¬r ]〉}.
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Then Γ is S-satisfiable for S = {{p,q}, {q, r }}. However, Γ is not S-satisfiable for {{p,q}, {p, r }}.
Consider the redistribution R in which a “votes” for {〈[{a} �Xp]〉 and b votes for 〈[{b} �Xq]〉. Then a

forcesp on their own, and b forcesq on their own, so there should be a possible outcome containing
bothp andq—which there is. But b should not be able force¬r on their own since¬〈[{b}�X¬r ]〉 ∈ Γ,
so there should be some outcome containingq, which b is forcing on their own, but also r . Formally,
this is captured by F (R,γ , {b}) = {q, r }, where 〈[γ ]〉 = 〈[{b} � X¬r ]〉.

Proposition 20. LetV be a fixed set of proposition variables andS a fixed satisfiability constraint.
Then the problem of checking whether a given positive one-step sequent Γ is S-satisfiable is solvable
in polynomial time.

Proof. An easy consequence of Proposition 19: we only have to check the conditions (1) and
(2) on S for each redistribution of Γ and each negative relevant goal assignment. Recalling that
there are at most polynomially many redistributions of Γ, the result follows. �

We extend the notion of S-satisfiability to arbitrary positive one-step formulas over V in the
obvious manner. Let V be a set of proposition variables and S ⊆ V a satisfiability constraint. The
one-step satisfiability problem for V ,S is given a positive one-step formula φ over V , decide
whether φ is S-satisfiable.

Proposition 21. The one-step satisfiability problem for givenV ,S can be solved in nondetermin-
istic polynomial time (measured in the length of a given formula φ).

Proof. The procedure for checking S-satisfiability of φ can be done as follows: we keep in
memory a list of formulas L, beginning with the singleton list [φ]. If the leftmost formula in the
memory L that is not “atomic”, i.e., not of the form 〈[γ ]〉 or ¬〈[γ ]〉 for some γ , has ∨ as main connec-
tive, then we guess one of the disjuncts non-deterministically and replace the disjunction by the
guessed disjunct. If the main connective of the leftmost non-atomic formula is ∧ then we remove
that formula and instead add each conjunct to the list. Clearly, this reduction can only go on for a
number of steps that are bounded by the length of the formula φ, and once each formula in the list
is atomic, we apply Proposition 20 to check whether the one-step sequent read off from the list is
S-satisfiable. �

It follows from a general result in [21] that, if the one-step satisfiability problem for fixed V ,S
is solvable in exponential time, then the satisfiability problem for the full μ-calculus language is
in double exponential time. From Proposition 21 we thus get

Theorem 10. The satisfiability problem for LXCGA
μ is in 2ExpTime.

As a corollary, we get:

Theorem 11. The logic TLCGA+, (hence, also TLCGA) is decidable in 3ExpTime.

Proof. The translation from TLCGA+ to LXCGA
μ increases the size of a formula by at most a

single exponential, so the result follows from Theorem 10. �

We do not know whether the 2ExpTime bound given by Theorem 10 is tight. Many variants
of the μ-calculus share the same ExpTime-complete complexity of the satisfiability problem as
the standard modal μ-calculus, as demonstrated in [15]. However, the conditions under which the
general ExpTime-bound of [15] holds are not trivial to verify; in fact we believe they may fail for
the language LXCGA

μ . Furthermore, even if the satisfiability problem for LXCGA
μ happens to be in

ExpTime, this bound does not immediately transfer to the language LTLCGA, since our translation
of LTLCGA into LXCGA

μ can produce an exponential blowup in the formula size. In summary, the
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2ExpTime-bound for satisfiability in LXCGA
μ stated above is the best we can currently claim for

sure about the complexity of that satisfiability problem. The problem of determining the precise
complexity of satisfiability, both forLTLCGA and for LXCGA

μ , may very well turn out to be a difficult
one. We leave this as a question for future research.

10 CONCLUDING REMARKS

The present work falls in the line of research employing formal logical methods for modelling,
expressing, and reasoning about strategic interactions in multi-agent systems, and in particular
multiplayer games, initiated with the introduction of logics such as CL, ATL, and Strategy Logic.
The coalitional goal assignment operator 〈[·]〉 introduced here covers as special cases the modal
operators for strategic abilities featuring in CL and ATL. Furthermore, whereas these strategic op-
erators assume purely adversarial behaviour of the opposing agents and coalitions, and express
unconditional ability of the proponent coalition to achieve its objective against any such objective,
the operator 〈[·]〉 expresses a natural combination of cooperative and non-cooperative interactions
which is more common and realistic in “real-life” multi-agent scenarios. Whereas this operator is
already quite expressive, it formalises but one general and important pattern of such interaction.
Other such patterns, formalising variants of conditional strategic reasoning, have been proposed
and studied in [24], and certainly, more are currently being identified and studied. The patterns of
strategic interaction formalised by 〈[·]〉 also enable the expression of new versions of socially rele-
vant solution concepts, such as co-equilibrium, discussed in Section 4, opening new perspectives
towards a formal analysis of multi-agent strategic interaction.

On the more technical aspects of our work, we note that, while the most important logical ques-
tions about TLCGA have been resolved here, there is still substantial technical follow-up work to
do, including complete axiomatizations of important variations and extensions, such as TLCGA+

and possibly the full LXCGA
μ , as well as development of practically efficient tableau-based algo-

rithmic methods for deciding satisfiability and well as for solving the relevant model checking
problems. In particular, identifying the exact complexities of these problems, for which reasonable
upper bounds have been established in Section 9, is yet to be completed. For solving these prob-
lems and exploring further research directions, we hope that the interaction with fragments of
Strategy logic, initiated in Section 3.4, will prove fruitful both ways. In particular, the distinction
between path-based and play-based semantics established in Section 3.3 suggests that the latter
type of semantics is worth exploring in the context of Strategy logic, too.

Lastly, we note that in this article we have mainly explored the theoretical foundations and
the purely logical and computational aspects of the logics TLCGA, TLCGA+, and LXCGA

μ , whereas
their potential for applications to game-theory and, more generally, to formal modelling and rea-
soning about multi-agent strategic interaction has only been indicated in Section 4, but is yet to
be unfolded in future work.

APPENDIX

A ELECTRONIC APPENDIX

A.1 Proof of Proposition 6

Proof. We prove each implication of the equivalence separately.

Right to left: By Theorem 1, the truth set of 〈[γ ]〉 is a fixpoint of the operator defined by the
formula ind(γ , z). Therefore, μz.ind(γ , z) → 〈[γ ]〉 is semantically valid.

Left to right: Conversely, suppose that M,v � 〈[γ ]〉. Since γ is a long-term temporal goal
assignment of type U, we can assume that its support is F = {C1, . . . ,Cn ,D1, . . . ,Dm }, and that it
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maps each Ci to αi Uβi , and maps each D j to Gχj . Then γ is witnessed by some strategy profile Σ,
such for each i ∈ {1, . . . ,n}, the formula αi Uβi holds on every computation path in paths(v, Σ,Ci )
and for each j ∈ {1, . . . ,m}, the formula Gχj holds on every computation path in paths(v, Σ,D j ).
We define a set T of histories as follows: we set (v0τ0v1 . . .vh−1τh−1vh ) ∈ T if and only if

(i) v0 = v and the word v0 . . .vh is an initial segment of some computation path in paths

(v, Σ,
⋃F ), and

(ii) there are no indices i, j such that 0 ≤ j < h and 0 ≤ i ≤ n andM,vj � βi .

It is clear that v ∈ T , and that T can be viewed as a tree rooted at v where the successors of
a node �w in T are the elements of T of the form �wu for some u. Furthermore, since Σ,v � γ
and Ci ⊆

⋃F for each i ∈ {1, . . . ,n}, the formula αi Uβi holds on each computation path in
paths(v, Σ,

⋃F ). Hence, the treeT is Noetherian, i.e., it has no infinite branches. This means that
we may reason by bar induction: to show that a property P (x ) holds for every element of T , we
show that P (l ) holds if l is a leaf, and that if P (�w · w ′) holds for every child �w · w ′ ∈ T of some
non-leaf node �w of T , then P (�w ) holds as well.

We shall prove the following statement by bar induction: for every word �w inT with last element
u, we haveM,u � μz.ind(γ , z). It follows eventually thatM,v � μz.ind(γ , z), as required.

Case 1: �w is a leaf. Since �w is a leaf inT , the last elementu of �w must satisfy one of the formulae
β1, . . . , βn , since otherwise the extension �w · out((Σ(a) (�w )a∈Agt),u) (where (Σ(a) (�w )a∈Agt) is the
action profile assigned by Σ at u) would be a child of �w inT . Furthermore, none of these formulae
are true in any elements of �w except the last one, since �w ∈ T . Since, for every computation path π ∈
paths(u, Σ,

⋃F ), the infinite word �w · π belongs to paths(v, Σ,
⋃F ) ⊆ paths(v, Σ,Ci ), it follows

that for each i ∈ {1, . . . ,n} the formula αi Uβi holds for all computation paths in paths(u, Σ,Ci ).
Likewise, for each j ∈ {1, . . . ,m} the formula Gχj holds for all computation paths in paths(u, Σ,D j ).
Let us fix some βi that holds at u. We get:

M,u � βi ∧ 〈[γ \Ci ]〉,

where the conjunct on the right is witnessed by the strategy profile Σ. Since this formula is in
Finish(γ ), we haveM,u � μz.ind(γ , z) as required.

Case 2: �w is not a leaf, and the inductive hypothesis (IH) holds for all of its children in T .
Since �w is not a leaf inT , it has some child inT . By definition ofT this means that the formulae

β1, . . . , βn are false on every state in �w , including its last element, which we denote by u. Let us
pick any B �

⋃F . It is not hard to show that the following formula

〈[B1 � γ (B1), . . . ,Bk � γ (Bk )]〉,

where B1, . . . ,Bk are the coalitions in F that are contained in B, holds for each u ′ ∈ out(u, Σ,B),
witnessed by the strategy profile Σ. The key thing to note is that, if Ci ∈ {B1, . . . ,Bk } for some
i ∈ {1, . . . ,n}, then for every u ′ ∈ out(u, Σ,B) and every path π ∈ paths(u ′, Σ,Ci ), the path
�w · π is in paths(v, Σ,Ci ) and, therefore, satisfies the path formula αi Uβi . But, since βi was false
everywhere in �w , this means that the path formula αi Uβi holds on the computation path π as well.

It now follows that for all B �
⋃F , the path formula

X〈[B1 � γ (B1), . . . ,Bk � γ (Bk )]〉,

where B1, . . . ,Bk are as above, holds for each computation path in paths(u, Σ,B). Furthermore,
by the bar induction hypothesis the path formula Xμz.ind(γ , z) holds for all π ∈ paths(u, Σ,

⋃F ),
since for every such path us0s1s2 . . . the word �w · s0 is a child of �w in T . Putting all this together,
we get:

M,u �
〈[

Δγ
[⋃
F � Xμz.ind(γ , z)

] ]〉
,
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witnessed by the strategy profile Σ. Besides, each αi for i ∈ {1, . . . ,n} and each χj for j ∈ {1, . . . ,m}
holds at u, since �w ∈ T , so we get:

M,u �
(
α1 ∧ · · · ∧ αn ∧ χ1 ∧ · · · ∧ χm ∧

〈[
Δγ

[⋃
F � Xμz.ind(γ , z)

] ]〉)
.

This is a disjunct of the unfolding of the fixpoint formula μz.ind(γ , z), and so we get
M,u � μz.ind(γ , z), as required. This concludes the proof. �

A.2 Proof of Proposition 7

Proof. Given a model M = (S,Act, g, out,V ), we prove separately each implication of the
equivalence inM. The proof structure is dually analogous to the proof of Proposition 6, but the
argument is different.

Left to right: By Theorem 1, the truth set of 〈[γ ]〉 is a fixpoint of the operator defined by the
formula ind(γ , z). Therefore, 〈[γ ]〉 → νz.ind(γ , z) is semantically valid.

Right to left: Let θ = νz.ind(γ , z) and suppose M,v � θ . Consequently, we get M,v �
ind(γ ,θ ), where ind(γ ,θ ) = χ1 ∧ . . . ∧ χm ∧ 〈[Δγ {θ }]〉, where γ is supported by F = {D1, . . . ,Dm },
respectively mapped to Gχ1, . . . ,Gχn .

Thus,M,v � χi for each i andM,v � 〈[Δγ {θ }]〉.
So, there exists a strategy profile Σ0 such that Σ0,v � Δγ {θ },
hence, for each Di ∈ F and every play π ∈ Plays(v, Σ0,Di ), we haveM,π � Δγ {θ }(Di ).
Recall that for each C �

⋃F , the respective goal of Δγ {θ } is

Δγ {θ }(C ) = Δγ (C ) = X
〈[(

D j � Gχj

)
D j ⊆C

]〉
and note that (D j � Gχj )D j ⊆C is precisely γ |C . Thus, for each such C and every state w ∈

Out[v, Σ0 |C ] we haveM,w � 〈[γ |C ]〉. Let Σw,C be a strategy profile witnessing γ |C at w.
Now we will define a strategy profile Σ that witnesses γ at v . Intuitively, for each player a, Σ

will combine Σ0 atv with the strategies Σw,C for a ∈ C , ensured to exist at the respective outcome
statesw , applied on the respective histories passing throughw . For any player a ∈ ⋃F we define
Σ(a) as follows, on any history h inM starting at v .

(1) If h has length 0, i.e., h = v , we define Σ(a,h) := Σ0 (a,v ).
(2) Let h = vζh′, where h′ = v1ζ1 . . .vn−1ζn−1vn . We first compare the action profile ζ with the

action profile ζ0 = Σ0 (v ) prescribed by Σ0 at v . Let Cζ be the set of players in
⋃F whose

actions in ζ and ζ0 are the same. Then v1 ∈ Out[v, Σ0 |Cζ
], soM,v1 � 〈[γ |Cζ

]〉. If a � Cζ ,
then Σ(a,h) is defined arbitrarily. Suppose a ∈ Cζ .

If Cζ �
⋃F , then we use the strategy σa for player a from the strategy profile Σv1,Cζ to

define Σ(a,h) := σa (h′).
In the case when Cζ =

⋃F , we have that Δγ {θ }(⋃F ) = Xθ , henceM,v1 � θ . In this
case, we define Σ(a,h) := Σ1 (a,h′), where Σ1 is the strategy recursively defined by the same
procedure on paths starting from v1. Note that this definition is correct because for every
path h, being finite, the procedure will eventually reach the case (1) of a subpath of length 0,
where the strategy is defined explicitly.

For all other histories h, the action Σ(a,h) is defined arbitrarily.

By virtue of the construction of Σ, for D j ∈ F and every play π ∈ Plays(v, Σ,D j ), we have
M,π � Gχj . The proof is direct for all D j �

⋃F , while for D j =
⋃F , if applicable, it follows

from the fact, proved by induction on n, thatM,vn � χj , where v0 = v and π = v0ζ0v1ζ1v2ζ2 . . ..
Therefore, Σ,v � γ , henceM,v � 〈[γ ]〉. �
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A.3 Proof of Proposition 11

Proof. The proof can be done by several nested inductions: first, on the number of formulae
in Φ, then—in the inductive step—by structural induction on the additional formula φ. The only
non-trivial point now is when φ = 〈[γ ]〉, where γ is a long-term temporal goal assignment, to
show that φ adds finitely many formulae to ecl(Φ) when recursively taking components. Let F
be the support of γ . We can assume that γ ∈ TypeU, as the case of γ ∈ TypeG is similar but
simpler. We will prove the claim by a 3rd nested induction on the number of coalitions in F =
{C1, . . . ,Cn ,D1, . . . ,Dm } (we can assume m > 0) Let γ (C1) = α1Uβ1, . . . ,γ (Cn ) = αnUβn and
γ (D1) = Gχ1, . . . ,γ (Dm ) = Gχm . Then the component of γ added to ecl(Φ) is (by Proposition 5)
ind(γ , 〈[γ ]〉) = unfold(γ ) =

∨
Finish(γ ) ∨ (

∧
UHolds(γ ) ∧∧

GHolds(γ ) ∧ 〈[Δγ ]〉). By the (nested)
inductive hypothesis in the structural induction on φ and the innermost inductive hypothesis,
every disjunct (βi∧〈[γ \Ci ]〉) ∈ Finish(γ ) adds only finitely many new components to ecl(Φ). Again
by the inductive hypothesis on the structure of φ, all subformulae αi and χj , hence all formulae in
UHolds(γ ) and GHolds(γ ), add only finitely many new components, too. Finally, note that Δγ is
a goal assignment and all goals in it are either X -prefixed goals in γ or Xγ , hence 〈[Δγ ]〉 only adds
finitely many new components, too. The case of negated goal assignment φ = ¬〈[γ ]〉, is completely
analogous. That completes all inductive steps of the nested inductions, and the proof itself. �

A.4 Proof of Proposition 13

Proof. We prove, by structural induction on all formulae φ ∈ Φ, that for every u ∈ T , φ ∈ L(u)
iffM (N ),u � φ. The clauses for propositional variables and Boolean connectives are standard,
so we omit them. Since all formulae in Φ are assumed to be in normal form, for each formula in Φ
of the shape 〈[γ ]〉, the goal assignment γ is either next time or long-term temporal. The induction
step in the first case follows from the fact that the networkN is assumed to be one-step coherent
and the IH. Indeed, since L(u) is a Φ-atom, exactly one of 〈[γ ]〉 and ¬〈[γ ]〉 is in L(u). Then, since γ is
next time and Φ is closed, for every coalition C , γ (C ) = Xψ whereψ ∈ Φ. Now, if 〈[γ ]〉 ∈ L(u) then
the marking L verifies γ at u and, by the IH applied to all γ (C ), we obtain thatM (N ),u � 〈[γ ]〉.
Likewise, if ¬〈[γ ]〉 ∈ L(u), then the marking L refutes γ at u and, by the IH applied to all γ (C ), we
obtain thatM (N ),u � 〈[γ ]〉. This completes the case.

Now, we focus on the case where γ is long-term temporal. The claim will be proved by a sub-
induction on the size (number of coalitions) of the support F of γ .

Base case: F = ∅. Then γ is the trivial goal assignment, and since a perfect network has no
leaves this case is trivial.

Induction step: We now suppose that F = {C1, . . . ,Cn } is of size n, and that the induction hy-
pothesis holds for allγ ′ with support of size < n. We divide the proof that the induction hypothesis
holds for γ into two sub-cases, depending on the type of γ . We will first prove the easier sub-case.

Case: γ is in TypeG. Let γ be supported by F = {D1, . . . ,Dm } and defined by: γ (D1) = Gχ1, . . . ,
γ (Dm ) = Gχm .We claim that the set

[〈[γ ]〉]N := {u ∈ T | 〈[γ ]〉 ∈ L(u)},

is the greatest post-fixpoint ν f of the monotone map f induced by ind(γ , z) inM (N ), defined by

f (Z ) =
{
u ∈ T | M (N ),u �[z �→Z ] ind(γ , z)

}
.

By Proposition 7, the greatest post-fixpoint ν f defined above is equal to [[〈[γ ]〉]]M (N ) , whence the
case will follow.
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For the inclusion [〈[γ ]〉]N ⊆ ν f , we reason by co-induction. That is, we prove that the set
[〈[γ ]〉]N is a post-fixpoint of f . Recall that ind(γ , z) = χ1 ∧ . . . ∧ χm ∧ 〈[Δγ {z}]〉, where Δγ {ϕ}
denotes Δγ [

⋃F � Xϕ]. To show that [〈[γ ]〉]N is a post-fixpoint of f , suppose that u ∈ [〈[γ ]〉]N ,
i.e., that 〈[γ ]〉 ∈ L(u). Since Φ is closed under taking components, ind(γ , 〈[γ ]〉) ∈ Φ, and hence
〈[Δγ {〈[γ ]〉}]〉 ∈ Φ whenever 〈[γ ]〉 ∈ Φ. By the post-fixpoint axiom Fix and Proposition 5 we have
ind(γ , 〈[γ ]〉) ∈ L(u), as well.

Since L(u) is an atom, it follows that χi ∈ L(u) for each i = 1, . . . ,n and 〈[Δγ {〈[γ ]〉}]〉 ∈
L(u). Then, by the inductive hypothesis, it follows (note that z does not occur free in χi ) that
M (N ),u �[z �→[〈[γ ]〉]N ] χi for each i = 1, . . . ,n. Furthermore, using one-step coherence of the
network N , and since 〈[Δγ {〈[γ ]〉}]〉 ∈ L(u), we have M (N ),u �[z �→[〈[γ ]〉]N ] 〈[Δγ {z}]〉. To see this,
Δγ {〈[γ ]〉} is a next time goal assignment, so one-step coherence guarantees that there is some
Σ ∈ Πa∈Agt such that, for every C in the support of Δγ {〈[γ ]〉} such that Δγ {〈[γ ]〉}(C ) = Xψ and
for every strategy profile Σ′ with Σ′ ∼C Σ, we have ψ ∈ L(out(Σ′),u). In particular, this means
that for each C �

⋃F in the support of Δγ {〈[γ ]〉}, each Di ⊆ C , and each Σ′ ∼C Σ, we have
χi ∈ L(out(Σ′,u)), and so by the induction hypothesis M (N ), out(Σ′,u) �[z �→[〈[γ ]〉]N ] χi . Also,
for each Σ′ ∼⋃ F Σ, we have 〈[γ ]〉 ∈ L(out(Σ′,u)), and hence M (N ), out(Σ′,u) �[z �→[〈[γ ]〉]N ] z
by definition of [〈[γ ]〉]N . Putting these facts together we get M (N ),u �[z �→[〈[γ ]〉]N ] 〈[Δγ {z}]〉 as
claimed. We now getM (N ),u �[z �→[[〈[γ ]〉]]L ] ind(γ , z), hence u ∈ f ([〈[γ ]〉]N ). Thus, [〈[γ ]〉]N is a
post-fixpoint of f .

For the converse inclusion ν f ⊆ [〈[γ ]〉]N , we reason contrapositively: suppose that v is some
node in T that does not belong to [〈[γ ]〉]N . This means that 〈[γ ]〉 � L(v ), hence ¬〈[γ ]〉 ∈ L(v ) since
L(v ) is an atom over Φ, and Φ is a closed set of formulas and hence closed under single negations.
We will prove that v � ν f . Since ν f is the intersection of its approximants f ξ (T ) where ξ ranges
over ordinals, it suffices to find a finite ordinal k < ω such that v � f k (T ). Here we recall that
f k (T ) is defined inductively by f 0 (T ) = T , f i+1 = f ( f i (T )).

Note that the formula ¬〈[γ ]〉 is a TypeG-eventuality. So, since N was assumed to be a perfect
network, there is some k < ω for which this eventuality is partially fulfilled in k steps atv . Hence it
suffices to prove, by induction on k , that for allw ∈ [¬〈[γ ]〉]N , if the eventuality ¬〈[γ ]〉 is fulfilled in
k steps atw thenw � f k+1 (T ). We refer to the induction hypothesis onk as the innermost induction
hypothesis. We refer to the induction hypothesis of the structural induction on complexity of
formulas as the outermost induction hypothesis.

For the base case of the innermost induction, when k = 0, let w be some element of [¬〈[γ ]〉]N
at which the eventuality ¬〈[γ ]〉 is partially fulfilled in 0 steps. If w ∈ f 1 (T ) = f (T ), then
M (N ),w �[z �→T ] ind(γ , z), hence M (N ),w � χi for each χi . By the outermost induction hy-
pothesis on χi , each χi is in L(w ). Since the eventuality ¬〈[γ ]〉 is partially fulfilled in 0 steps at w
and w ∈ [¬〈[γ ]〉]N , we have χi ∈ L(w ) for some χ , which contradicts the consistency of L(w ).
Hence w � f (T ).

For the induction step, suppose k = j + 1 and the innermost induction hypothesis holds
for j. Let w be some element of [¬〈[γ ]〉]N at which the eventuality ¬〈[γ ]〉 is partially fulfilled
in k steps. Suppose, for a contradiction, that w ∈ f k+1 (T ) = f ( f k (T ))) = f ( f j+1 (T )). Then
M (N ),w �[z �→f j+1 (T )] ind(γ , z). Let F j be the set of all x ∈ [¬〈[γ ]〉]N such that ¬〈[γ ]〉 is partially
fulfilled in j steps at x . By the innermost induction hypothesis on j, we get f j+1 (T ) ∩ F j = ∅. Since
¬〈[γ ]〉 is partially fulfilled in k = j + 1 steps at w , either χi ∈ L(w ) for some χi or there exists a
marking m that refutes 〈[Δγ ]〉 atw , and such that for allw ′ ∈ T such thatw ′ is a child ofw ,w ′ ∈ F j

whenever ¬〈[γ ]〉 ∈ m(w ′). In the former case we immediately get a contradiction. So we focus on
the latter case.

Since M (N ),w �[z �→f j+1 (T )] ind(γ , z), we have M (N ),w �[z �→f j+1 (T )] 〈[Δγ {z}]〉. Let Σ
be a witnessing strategy profile for Δγ {z} at w . Then, for every Σ′ ∼⋃ F Σ we have
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M (N ), out(Σ′,w ) �[z �→f j+1 (T )] z, i.e., out(Σ′,w ) ∈ f j+1 (T ). Furthermore, for each C �
⋃F in

the support of Δγ {z}, each Di ⊆ C and each Σ′ ∼C Σ we haveM (N ), out(Σ′,w ) �[z �→f j+1 (T )] χi ,
and so χi ∈ L(out(Σ′,w )) by the outermost induction hypothesis on χi . On the other hand, since
the marking m refutes 〈[Δγ ]〉 atw there must be someC∗ in the support of Δγ = Δγ {〈[γ ]〉} and some

Σ′ ∼C∗ Σ such that ψ ∈ m(out(Σ′,w )), where Δγ {〈[γ ]〉}(C∗) = Xψ . If C∗ =
⋃F then ψ = 〈[γ ]〉 so

ψ = ¬〈[γ ]〉, so¬〈[γ ]〉 ∈ m(out(Σ′,w )). Recall that m was such thatw ′ ∈ F j whenever¬〈[γ ]〉 ∈ m(w ′),
so we get out(Σ′,w ) ∈ F j . But, since Σ′ ∼⋃ F Σ, we must also have out(Σ′,w ) ∈ f j+1 (T ), which is
a contradiction since f j+1 (T ) ∩ F j = ∅. On the other hand, if C∗ �

⋃F , then, since C∗ is in the
support of Δγ , there must be some Di in the support of γ with Di ⊆ C∗, and so χi is a conjunct of

ψ and therefore inconsistent withψ ∈ m(out(Σ′,w )) ⊆ L(out(Σ′,w )). But, since Σ′ ∼C∗ Σ, we get
χi ∈ L(out(Σ′,w )), which is a contradiction since L(out(Σ′,w )) is consistent by assumption. So, in
either case we get a contradiction, hence we have shown that w � f j+1 (T ), as desired.

Case: γ is in TypeU. The argument is similar to the above, but somewhat more complicated. Let
γ be supported by F = {C1, . . . ,Cn ,D1, . . . ,Dm } and defined by

γ (C1) = α1Uβ1, . . . ,γ (Cn ) = αnUβn ,

and
γ (D1) = Gχ1, . . . ,γ (Dm ) = Gχm .

Since γ is in TypeU we have {C1, . . . ,Cn } � ∅.
We claim that the set

[〈[γ ]〉]N := {u ∈ T | 〈[γ ]〉 ∈ L(u)},
is the least pre-fixpoint μ f of the monotone map f induced by ind(γ , z) inM (N ), defined by

f (Z ) =
{
u ∈ T | M (N ),u �[z �→Z ] ind(γ , z)

}
.

By Proposition 7, the least pre-fixpoint μ f is equivalent to [[〈[γ ]〉]]M (N ) , whence the case will
follow.

For the inclusion μ f ⊆ [〈[γ ]〉]N , we reason by least fixpoint induction. That is, we prove that
the set [〈[γ ]〉]N is a pre-fixpoint of f . Recall that

ind(γ , z) =
∨

1≤i≤n

(βi ∧ 〈[γ \Ci ]〉) ∨ �
∧

1≤i≤n

αi ∧
∧

1≤i≤m

χi ∧ 〈[Δγ {z}]〉�� ,
where Δγ {ϕ} denotes Δγ [

⋃F � Xϕ]. To show that [〈[γ ]〉]N is a pre-fixpoint of f , suppose that
u ∈ f ([〈[γ ]〉]N ). We need to show that u ∈ [〈[γ ]〉]N , i.e., that 〈[γ ]〉 ∈ L(u). By definition of f , either
there is some i ∈ {1, . . . ,n} for whichM (N ),u �z �→[〈[γ ]〉]N βi ∧〈[γ \Ci ]〉, orM (N ),u �z �→[〈[γ ]〉]N αi

for each i ∈ {1, . . . ,n},M (N ),u �z �→[〈[γ ]〉]N χi for each i ∈ {1, . . . ,m}, andM (N ),u �z �→[〈[γ ]〉]N
〈[Δγ {z}]〉.

In the former case, the induction hypothesis on βi gives βi ∈ L(u), and since the support of γ \Ci

is smaller than that ofγ , the induction hypothesis for the induction on the size of the support gives
〈[γ \Ci ]〉 ∈ L(u). Since Φ is a closed set, we have βi ∧ 〈[γ \Ci ]〉 ∈ Φ, and since L(u) is an atom we get
βi ∧ 〈[γ \Ci ]〉 ∈ L(u). It follows, again by closure of Φ and L(u) being an atom, that 〈[γ ]〉 ∈ L(u) as
required.

In the latter case, the induction hypotheses on α1, . . . ,αn and χ1, . . . , χm ensure that these for-
mulas are all in L(u). We will show that 〈[Δγ {〈[γ ]〉}]〉 ∈ L(u), from which it will follow using the fact
that L(u) is an atom and Φ is closed that 〈[γ ]〉 ∈ L(u). To prove this, we use thatM (N ),u �z �→[〈[γ ]〉]N
〈[Δγ {z}]〉. It suffices to show that the marking L does not refute 〈[Δγ {〈[γ ]〉}]〉, because by one-step
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coherence it follows that ¬〈[Δγ {〈[γ ]〉}]〉 � L(u) and hence 〈[Δγ {〈[γ ]〉}]〉 ∈ L(u). So suppose, for a
contradiction, that L refutes 〈[Δγ {〈[γ ]〉}]〉. SinceM (N ),u �z �→[〈[γ ]〉]N 〈[Δγ {z}]〉, there is a witnessing
strategy profile Σ such thatMN , out(Σ′,u) �z �→[〈[γ ]〉]N z, and hence 〈[γ ]〉 ∈ L(out(Σ′,u)), for each
coalition Σ′ ∼⋃ F Σ, and M (N ), out(Σ′,u) �z �→[〈[γ ]〉]N ψ for each E �

⋃F in the support of
Δγ {z} with Δγ {z}(E) = Xψ . On the other hand, since L refutes 〈[Δγ {〈[γ ]〉}]〉, there must be some E∗

in the support of 〈[Δγ {〈[γ ]〉}]〉 (which is the same as the support of Δγ {z}), and some Σ′ ∼E∗ Σ such
thatψ � out(Σ′,u) where Δγ {〈[γ ]〉}(E∗) = Xψ . If E∗ =

⋃F , thenψ = 〈[γ ]〉, so 〈[γ ]〉 � L(out(Σ′,u)).
But we already know that 〈[γ ]〉 ∈ L(out(Σ′,u)) for each Σ′ ∼⋃ F Σ, so this is a contradiction.
On the other hand, suppose that E∗ �

⋃F . Then ψ = 〈[γ |E∗]〉, so 〈[γ |E∗]〉 � L(out(Σ′u)). But
the support of γ |E∗ is smaller than that of γ since E∗ �

⋃F , so the induction hypothesis for
the induction on the size of supports applies, and we get M (N ), out(Σ′,u) �z �→[〈[γ ]〉]N 〈[γ |E∗]〉.
But, since Δγ {〈[γ ]〉}(E∗) = X 〈[γ |E∗]〉 and Σ′ ∼E∗ Σ, we haveM (N ), out(Σ′,u) �z �→[〈[γ ]〉]N 〈[γ |E∗]〉,
so we get a contradiction again. Thus, we have shown that u ∈ [〈[γ ]〉]N , as required. Therefore,
μ f ⊆ [〈[γ ]〉]N .

Now for the converse inclusion, [〈[γ ]〉]N ⊆ μ f , suppose u ∈ [〈[γ ]〉]N , i.e., 〈[γ ]〉 ∈ L(u). Note that
〈[γ ]〉 is a TypeU-eventuality. So, sinceN is perfect, there is some k < ω such that the eventuality is
partially fulfilled in k steps atu. Since the least fixpoint μ f is the union of its ordinal approximants
f ξ (∅), where ξ ranges over ordinals, it suffices to show by induction onk that for allw ∈ 〈[γ ]〉, if the
eventuality 〈[γ ]〉 is fulfilled in k steps at w thenw ∈ f k+1 (∅). We have several nested inductions at
this point, so we refer to the induction hypothesis for the structural induction on complexity of for-
mulas as the outermost induction hypothesis, that of the induction on the size of supports as the mid-
dle induction hypothesis, and the induction hypothesis on k as the innermost induction hypothesis.

For the base case, where k = 0, if 〈[γ ]〉 is fulfilled in 0 steps at w then there is some Ci

with βi ∧ 〈[γ \Ci ]〉 ∈ L(u). The outermost induction hypothesis on βi and the middle induction
hypothesis on 〈[γ \Ci ]〉, together with closure of Φ and L(w ) being an atom, immediately give
M (N ),w � βi ∧ 〈[γ \Ci ]〉, and thereforeM (N ),w �[z �→∅] ind(γ , z), since the variable z does not
appear in βi or 〈[γ \Ci ]〉. By definition we get w ∈ f (∅) = f 1 (∅).

Now let w ∈ [〈[γ ]〉]N , and suppose 〈[γ ]〉 is partially fulfilled in k = j + 1 steps at w where the
induction hypothesis holds for j. If 〈[γ ]〉 is partially fulfilled in j steps at w then the innermost
induction hypothesis applies and we are done. Otherwise, since 〈[γ ]〉 is partially fulfilled in
k = j + 1 steps at w , we have αi ∈ L(w ) for all i ∈ {1, . . . ,n}, and χj ∈ L(w ) for all j ∈ {1, . . . ,m},
and there exists a marking m that verifies 〈[Δγ {〈[γ ]〉}]〉 at w and is such that for every child w ′

of w with 〈[γ ]〉 ∈ m(w ′) the eventuality 〈[γ ]〉 is partially fulfilled in j steps at w ′. The outermost
induction hypothesis gives M (N ),w � αi for all i ∈ {1, . . . ,n}, and M (N ),w � χj for all
j ∈ {1, . . . ,m}. Since z does not appear in any of these formulas we getM (N ),w �[z �→f j (∅)] αi

for all i ∈ {1, . . . ,n}, andM (N ),w �[z �→f j (∅)] χj for all j ∈ {1, . . . ,m}.
Let Σ be some strategy profile witnessing that the marking m verifies 〈[Δγ {〈[γ ]〉}]〉 at w . Let

E be some coalition in the support of Δγ {z}, which is the same as the support of Δγ {〈[γ ]〉}. If
E =

⋃F , let Σ′ ∼⋃ F Σ. Then 〈[γ ]〉 ∈ m(out(Σ′,w )), so 〈[γ ]〉 is partially fulfilled in j steps at
w . By the innermost induction hypothesis, out(Σ′,w ) ∈ f j (∅). SoM (N ), out(Σ′,w ) �z �→f j (∅) z.
On the other hand, if E �

⋃F , then Δγ {z}(E) is of the form X 〈[γ |E]〉. So, if Σ′ ∼E Σ then
〈[γ |E ]〉 ∈ m(out(Σ′,w )) ⊆ L(out(Σ′,w )). Since the support of γ |E is smaller than that of
γ , the middle induction hypothesis applies and we get M (N ), out(Σ′,w ) � 〈[γ |E ]〉. Since
the variable z does not appear in 〈[γ |E ]〉 we get M (N ), out(Σ′,w ) �[z �→f j (∅)] 〈[γ |E ]〉. So,
we get M (N ),w �z �→f j (∅) 〈[Δγ {z}]〉. Collecting all the facts we have established, we get

M (N ),w �[z �→f j (∅)] ind(γ , z), so w ∈ f ( f j (∅)) = f j+1 (∅) = f k (∅) as required.
We have thus shown that [〈[γ ]〉]N ⊆ μ f , and the proof is completed. �
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A.5 Proof of Theorem 2

Proof. Structural induction on φ. We prove further, in Corollary 2, that every TLCGA-formula
is equivalent to one in normal form, so we can assume thatφ is in a normal form. The Boolean cases
are routine, so we only consider the case for φ = 〈[γ ]〉, where γ is either a next time assignment,
or a long-term temporal assignment in TypeU or in TypeG.

(1) We first consider the case of next time assignments. Let γ be a next time assignment defined
by γ (C1) = Xϕ1, . . . ,γ (Cn ) = Xϕn . Suppose thatM, s1 � 〈[γ ]〉, witnessed by a joint action ζ 1 for
Agt at s1. Let ζ 2 be some joint action for Agt at s2 witnessing the Forth condition with respect to
ζ 1. We need to show that Out[s2, ζ

2
Ci

] ⊆ [[ϕi ]] for each i ∈ {1, . . . ,k }. Suppose v ∈ Out[s2, ζ
2
Ci

].

Apply the LocalBack condition to find v ′ ∈ Out[s1, ζ
1
Ci

] with v ′βv . Since Out[s1, ζ
1
Ci

] ⊆ [[ϕi ]] we
getM,v � ϕi by the induction hypothesis on ϕi , as required. Thus,M, s2 � 〈[γ ]〉.

The converse direction is proved in the same way.

(2) Next, we claim that for any goal assignment γ , if the bisimulation invariance claim holds
for 〈[γ ]〉 and for all proper subformulae9 of 〈[γ ]〉 and all pairs of bisimilar states s1, s2 in the state
space S ofM, then it also holds likewise for 〈[Δγ ]〉, because this is a special case of a next time
assignment, involving only 〈[γ ]〉 and subformulae of 〈[γ ]〉. This claim we will use further, when
proving the inductive steps for long-term assignments.

(3) Let γ ∈ TypeG and assume that the bisimulation invariance claim holds for all proper sub-
formulae of 〈[γ ]〉 and all pairs of bisimilar states s1, s2 in the state space S ofM. We will prove the
bisimulation invariance of 〈[γ ]〉 for all such pairs of states by using the fixpoint characterisation in
Proposition 7 and proving the claim for νz.ind(γ , z), instead.

To prove that claim we hereafter treat ind(γ ,Z ) as a (monotone) operator on sets of states and
use the characterisation of greatest fixed points given by Knaster–Tarski theorem, according to
which νz.ind(γ , z) =

⋂
α ∈Ord ind(γ ,Zα ), where the family {Zα }α ∈Ord of subsets of S is defined by

transfinite induction, as usual:
Z 0 = S; Zα+1 = ind(γ ,Zα ); Z λ =

⋂
α<λ ind(γ ,Zα ) for limit ordinals λ.

For technical convenience we will treat each Zα both as a set of states and as a formula for
which this set is its extension inM, noting that bisimulation invariance of a formula ϕ in a model
M is equivalent to the closure under bisimulation of its extension [[ϕ]]M .

It suffices to prove bisimulation invariance (respectively, bisimulation closure) of each approxi-
mant formula Zα , as the closure under bisimulation is preserved in the intersection of any family
of sets. We prove these closures by a nested transfinite induction on α . The only non-trivial case
is that of successor ordinals.

Recall that, for a goal assignment γ ∈ TypeG, we have ind(γ ,ϕ) =
∧

GHolds(γ ) ∧ 〈[Δγ {ϕ}]〉.
Thus, Zα+1 = ind(γ ,Zα ) =

∧
GHolds(γ ) ∧ 〈[Δγ {Zα }]〉. Since each formula in GHolds(γ ) is a

proper subformula of 〈[γ ]〉, its bisimulation invariance follows from the inductive hypothesis of the
main induction, so it only remains to show the bisimulation invariance of 〈[Δγ {Zα }]〉, assuming
the bisimulation invariance of Δγ {Zα }. This claim is a particular case of the claim 2 for next time
extensions of goal assignments, proved above.

This completes the inductive step for 〈[γ ]〉 with γ ∈ TypeG.

(4) Lastly, the inductive step for 〈[γ ]〉 with γ ∈ TypeU is analogous, with the respective changes:

— Using the fixpoint characterisation in Proposition 6 we prove the claim for μz.ind(γ , z),
instead.

9Note that the proper subformulae of 〈[γ ]〉 are all formulae assigned as goals by γ and their subformulae.
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— To prove that claim we use the characterisation of least fixed points given by Knaster–
Tarski theorem, according to which μz.ind(γ , z) =

⋃
α ∈Ord ind(γ ,Zα ), where the family

{Zα }α ∈Ord is defined by transfinite induction, as usual: Z 0 = ∅; Zα+1 = ind(γ ,Zα );
Z λ =

⋃
α<λ ind(γ ,Zα ) for limit ordinals λ.

— Again, it suffices to prove the bisimulation invariance (respectively, bisimulation closure)
of each approximant formula Zα , which we do by a nested transfinite induction on α , with
the only non-trivial case being that of successor ordinals, for which we use the definition
of ind(γ ,ϕ) for γ ∈ TypeU and the inductive hypotheses for Zα , and the case of next time
extensions of goal assignments. The differences from the previous case of γ ∈ TypeG,
coming from the additional subformulae in Finish(γ ) and UHolds(γ ), are inessential.

This completes the structural induction and the whole proof. �

A.6 Full Proof of Proposition 16

Proof. By Proposition 15, we may assume w.l.o.g. that the defect (u,φ) is such thatu is a leaf: if
we can show how to remove the defect φ at a single leaf, then, clearly, we can repeat the procedure
to remove φ at each leaf in the set {v1, . . . ,vk }. (Note that our procedure for removing a defect at
a single leaf v given below will not affect any other leaves, i.e., each leaf in the original network
besides v will still be a leaf in the new network.) Combined with Proposition 15 this proves the
result.

So, suppose that (u,φ) is a defect and u is a leaf. It is sufficient to show that there is a finite,
one-step coherent network N ′′ in which the root has the same label as u in N , and in which the
eventuality φ is partially fulfilled. We can then simply identify the root of the network N ′ with
the leaf u in N to form a finite, one-step coherent network N ′ such that N ′′ � N ′ and N � N ′.
By Proposition 12, the eventuality φ is partially fulfilled at u in N ′.

Consider the Φ-atoms Ψ such that φ ∈ Ψ and there exists a finite, one-step coherent network in
which the root is labelled by Ψ and the eventuality φ is partially fulfilled. Let δ be the disjunction
of all conjunctions of the form

∧
Ψ for all such Φ-atoms Ψ. (This is well-defined since the set of

all such conjunctions is finite, as long as we disallow conjunctions with multiple occurrences of
the same conjunct.) The result then follows from the following claim:

Claim 3. � φ → δ .

To prove the claim, we consider the two cases for the eventuality φ.

Case:φ is a TypeU eventuality. Thenφ is of the form 〈[γ ]〉, whereγ is a goal assignment supported
by a set of coalitions F for which γ (C ) is an U-formula for at least one C ∈ F . Say that F =
{C1, . . . ,Cn ,D1, . . . ,Dm } and γ is defined by

γ (C1) = α1Uβ1, . . . , γ (Cn ) = αnUβn ,

and (ifm > 0)

γ (D1) = Gχ1, . . . , γ (Dm ) = Gχm .

Our aim is to prove:

� ind(γ ,δ ) → δ ,

and thereafter apply the induction rule to conclude the Claim. It suffices to show that, if Ψ is any
atom that is consistent with ind(γ ,δ ), then

∧
Ψ is, in fact, one of the disjuncts of δ . Indeed, suppose

that � ind(γ ,δ ) → δ ; by Lindenbaum’s Lemma there exists a maximal consistent set of formulae
Γ containing ind(γ ,δ ) but also the negation of δ . Then Γ ∩ Φ is a Φ-atom that is consistent with
ind(γ ,δ ), but

∧
(Γ ∩ Φ) cannot be a disjunct of δ since that would make Γ inconsistent.

ACM Transactions on Computational Logic, Vol. 23, No. 4, Article 21. Publication date: October 2022.



21:52 S. Enqvist and V. Goranko

So, suppose Ψ is a Φ-atom for which the set Ψ ∪ {ind(γ ,δ )} is consistent. Then Ψ is consistent
with at least one of the disjuncts of ind(γ ,δ ).

If Ψ is consistent with one of the disjuncts βi ∧ 〈[γ \Ci ]〉) then, in fact, this disjunct must be a
member of Ψ, since Ψ is a Φ-atom and each formula βi ∧ 〈[γ \Ci ]〉) belongs to Φ. In this case, it is
trivial to construct a (singleton) network in which 〈[γ ]〉 is partially fulfilled in 0 steps.

If Ψ is consistent with α1 ∧ . . .∧αn ∧ χ1 ∧ . . .∧ χm ∧ 〈[Δγ {δ }]〉, then α1, . . . ,αn , χ1, . . . , χm ∈ Ψ
and the set Ψ+ := Ψ ∪ {〈[Δγ {δ }]〉} is consistent. Let Φ+ be the extended Fischer-Ladner clo-
sure of the set Φ ∪ {δ }, and let Θ be the maximal modal one-step theory that is contained in
Ψ+. Then, since Θ ⊆ Ψ+, it is consistent by our assumption, and it is a one-step theory over
Φ+. By one-step completeness (Theorem 4), there exists a finite maximal consistent game form
M (Θ) = (Act, act,P (Φ+), out) for Φ+ such that, for every goal assignment γ ′:

(1) If 〈[γ ′]〉 ∈ Θ, then there is an action profile ζ ∈ Πa∈Agt acta such that for all C in the support
of γ ′, and all ζ ′ ∼C ζ , we haveψ ∈ out(ζ ′), where γ ′(C ) = Xψ .

(2) If ¬〈[γ ′]〉 ∈ Θ, then for every profile ζ ∈ Πa∈Agt acta there is someC in the support of γ ′, and

some ζ ′ ∼C ζ , for whichψ ∈ out(ζ ′), where γ ′(C ) = Xψ .

Since 〈[Δγ {δ }]〉 ∈ Θ, the first clause ensures that there is a profile ρ ∈ Πa∈Agt acta such that for all
C in the support of Δγ [

⋃F � Xδ], and all ζ ′ ∼C ρ, we haveψ ∈ out(ζ ′), where Δγ {δ }(C ) = Xψ .
In particular, for C =

⋃F this entails that δ ∈ out(ζ ′) for all ζ ′ ∼⋃ F ρ.
We now construct a network showing that

∧
Ψ is a disjunct of δ as follows. For each action

profile ζ ∈ Πa∈Agt acta , we pick a Φ-network Nζ according to the following rule.

— if ζ ∼⋃ F ρ, then letNζ be a network of which the root is labelled out(ζ ) ∩Φ, and in which
the eventuality 〈[γ ]〉 is partially fulfilled at the root. Such a network exists since, if ζ ∼⋃ F ρ
then δ ∈ out(ζ ), hence

∧
(out(ζ ) ∩ Φ) is a disjunct of δ .

— Otherwise, let Nζ be a network consisting of a single node labelled out(ζ ) ∩ Φ.

We form the network N = (T ,L,G) by taking the disjoint union of the networks Nζ , for each
action profile ζ ∈ Πa∈Agt acta , together with a new root r labelled Ψ, with an edge to the root of
each Nζ , and letting G (r ) := (Act, act,T , out′) where out′ maps each action profile ζ to the root
of Nζ . Note that Nζ � N for each ζ , and that for each profile ζ we have L(out′(ζ )) = out(ζ ) ∩ Φ.

Since Πa∈Agt acta is a finite set, each Nζ is one-step coherent, and due to the clauses (1) and
(2) of Theorem 4, the network N is a finite and one-step coherent network. Moreover, to see that
the eventuality 〈[γ ]〉 is partially fulfilled at the root r , we define a marking m by setting

m(v ) :=
{
θ ∈ Φ | there exists C ⊆

⋃
F such that Δγ (C ) = Xθ and ζ ∼C ρ

}
,

ifv is the root of the networkNζ for some ζ ∈ Πa∈Agt acta , and m(v ) := ∅ otherwise. By definition,
this marking verifies Δγ , witnessed by the action profile ρ. Furthermore, if 〈[γ ]〉 ∈ m(v ) then, since
Δγ (C ) � X〈[γ ]〉 for all C �

⋃
F , v must be the root of some network Nζ where ζ ∼⋃

F ρ. This
means that 〈[γ ]〉 is partially fulfilled at v in Nζ , hence in N , since Nζ � N . It follows that 〈[γ ]〉 is
partially fulfilled in at most k + 1 steps at r inN , where k is the maximum number such that 〈[γ ]〉
is partially fulfilled in at most k steps at the root of one of the finitely many networks Nζ .

Case: φ is a TypeG eventuality. Then φ is of the form ¬〈[γ ]〉, where γ is a goal assignment sup-
ported by a set of coalitions F and γ (C ) is an G-formula for allC ∈ F . Say that F = {D1, . . . ,Dm }
and γ is defined by γ (D1) = Gχ1, . . . , γ (Dm ) = Gχm . Our aim is to prove:

� ¬δ → ind(γ ,¬δ ),

and thereafter apply the co-induction rule to conclude that � ¬δ → 〈[γ ]〉, hence � ¬〈[γ ]〉 → δ , as
required. It suffices to show that, if Ψ is any atom that is consistent with ¬ind(γ ,¬δ ), then

∧
Ψ is,
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in fact, one of the disjuncts of δ . Indeed, suppose that � ¬δ → ind(γ ,¬δ ). Then � ¬ind(γ ,¬δ ) → δ
so by Lindenbaum’s Lemma there exists a maximal consistent set of formulae Γ containing
¬ind(γ ,¬δ ) but also the negation of δ . Then Γ ∩Φ is a Φ-atom that is consistent with ¬ind(γ ,¬δ ),
but

∧
(Γ ∩ Φ) cannot be a disjunct of δ since that would make Γ inconsistent.

We recall that ind(γ ,¬δ ) is the formula χ1 ∧ . . . ∧ χm ∧ 〈[Δγ [
⋃F � X¬δ]]〉, so ¬ind(γ ,¬δ ) is

provably equivalent to χ 1∨ · · · ∨¬χm ∨¬〈[Δγ [
⋃F �X¬δ]]〉. So, suppose Ψ is a Φ-atom for which

the set Ψ ∪ {¬ind(γ ,¬δ )} is consistent. Then Ψ is consistent with at least one of the disjuncts of
¬ind(γ ,¬δ ). If Ψ is consistent with one of the disjuncts χ i then, in fact, this disjunct must be a
member of Ψ, since Ψ was a Φ-atom and each formula χ i belongs to Φ. In this case, it is trivial to
construct a (singleton) network in which ¬〈[γ ]〉 is partially fulfilled in 0 steps. If Ψ is consistent
with ¬〈[Δγ [

⋃F � X¬δ]]〉, then the set Ψ+ := Ψ ∪ {¬〈[Δγ [
⋃F � X¬δ]]〉} is consistent. Let Φ+

be the extended Fischer-Ladner closure of the set Φ ∪ {¬δ }, and let Θ be the set of all one-step
formulae over Φ+ belonging to Ψ+. Then, since Θ ⊆ Ψ+, it is consistent by our assumption, and it
is a one-step theory over Φ+. By one-step completeness (Theorem 4), there exists a finite maximal
consistent game formM (Θ) = (Act, act,P (Φ+), out) such that, for every goal assignment γ ′:

(1) If 〈[γ ′]〉 ∈ Θ, then there is a profile ζ ∈ Πa∈Agt acta such that for all C in the support of γ ′,
and all ζ ′ ∼C ζ , we haveψ ∈ out(ζ ′), where γ ′(C ) = Xψ .

(2) If ¬〈[γ ′]〉 ∈ Θ, then for every profile ζ ∈ Πa∈Agt acta there is someC in the support of γ ′, and

some ζ ′ ∼C ζ , for which we haveψ ∈ out(ζ ′), where γ ′(C ) = Xψ .

Since ¬〈[Δγ [
⋃F � X¬δ]]〉 ∈ Θ, the second clause ensures that for every profile ρ ∈ Πa∈Agt acta

there is someC in the support of Δγ [
⋃F �X¬δ], and some ζ ′ ∼C ρ, for which we haveψ ∈ out(ζ ′),

where γ ′(C ) = Xψ . We pick a choice function selecting such a pair (c (ρ), f (ρ)) for each ρ, where

c (ρ) ∈ F , ρ ∼c (ρ ) f (ρ) andψ ∈ out( f (ρ)), where γ (c (ρ)) = Xψ .
We now construct a network showing that

∧
Ψ is a disjunct of δ as follows. For each action

profile ζ ∈ Πa∈Agt acta , we pick a Φ-network Nζ according to the following rule.

— if ζ = f (ρ) for some ρ such that c (ρ) =
⋃F , then let Nζ be a network of which the root is

labelled out(ζ ) ∩Φ, and in which the eventuality ¬〈[γ ]〉 is partially fulfilled at the root. Such

a network exists since, if ζ = f (ρ) for some ρ then γ (
⋃F ) = X¬δ and so ¬δ = δ ∈ out(ζ ),

hence
∧

(out(ζ ) ∩ Φ) is a disjunct of δ .
— Otherwise, let Nζ be a network consisting of a single node labelled out(ζ ) ∩ Φ.

We form the network N = (T ,L,G) by taking the disjoint union of the networks Nζ , for each
action profile ζ ∈ Πa∈Agt acta , together with a new root r labelled Ψ with an edge to the root of
each Nζ , and letting G (r ) = (Act, act,T , out′) where out′ maps each action profile ζ to the root
of Nζ . Note that Nζ � N for each ζ , and that for each profile ζ we have L(out′(ζ )) = out(ζ ) ∩ Φ.
Since Πa∈Agt acta is a finite set, each Nζ is one-step coherent, and due to the clauses (1) and (2)
of Theorem 4, the networkN is a finite and one-step coherent network. Moreover, to see that the
eventuality ¬〈[γ ]〉 is partially fulfilled at the root r , we define a markingm by setting

m(v ) :=
{
θ ∈ Φ | there exists ρ such that Δγ (c (ρ)) = Xθ and f (ρ) = ζ

}
,

ifv is the root of the networkNζ for some ζ ∈ Πa∈Agt acta , and m(v ) = ∅ otherwise. By definition,
this marking refutes Δγ . Furthermore, if ¬〈[γ ]〉 ∈ m(v ) then, since Δγ (C ) � X〈[γ ]〉 for allC �

⋃F ,
there must be some ρ such that c (ρ) =

⋃F , and v is the root of Nf (ρ ) . This means that ¬〈[γ ]〉
is partially fulfilled at v in Nf (ρ ) , hence in N , since Nf (ρ ) � N . It follows that ¬〈[γ ]〉 is partially
fulfilled in at most k + 1 steps at r in N , where k is the maximum number such that ¬〈[γ ]〉 is
partially fulfilled in at most k steps at the root of one of the finitely many networks Nζ . �
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A.7 Proof of Proposition 17

Proof. Repeated use of Propositions 14 and 16, as follows. First, we fix an enumeration L =
l1, l2, . . . , lk of all leaves in N and an enumeration D = (u1,ϕ1), . . . , (ud ,ϕd ) of all defects in N .
Then, we construct a finite chain of finite one-step coherent networksN0 � N1 � . . . , inductively
as follows.

We begin withN0 = N . Suppose, we have constructed the finite one-step coherent Φ-networks
N0 � N1 � . . .Nn and let Ln be an enumeration of all leaves of N that are still in Nn and Dn be
an enumeration of all defects in N that are still in Nn . Then we do the following.

(1) If Dn is non-empty, we pick the first defect (u,ϕ) listed in it and apply Proposition 16 to
construct a finite, one-step coherent network Nn+1 such that Nn � Nn+1 and (u1,ϕ1) is not a
defect in Nn+1. Then we update the list Dn to Dn+1 by removing (u,ϕ) and all other defects in
that list that may have been resolved inNn+1. Note that, by Proposition 12, newly occurring defects
inNn+1 may only occur at newly added nodes. We update likewise the listLn toLn+1 by removing
the leaves in Nn that are no longer leaves in Nn+1.

(2) If Dn is empty, but Ln is non-empty, then we pick the first leaf l currently listed in Ln and
apply Proposition 14 to construct a finite, one-step coherent network Nn+1 such that Nn � Nn+1

and l is not a leaf inNn+1. Then we update the listLn toLn+1 by removing l and all other leaves in
Nn that are no longer leaves inNn+1. Note that, again by Proposition 12, newly occurring defects
in Nn+1 may only occur at newly added nodes, so the list of original defects in N remains empty.

(3) If both Dn and Ln are empty, the last constructed network Nn is the desired N ′.
Note that both listsL andD are finite, neither of them gets extended in any step, and at least one

of them strictly decreases in each step. Therefore, they will both become empty in finitely many
steps, hence the construction is guaranteed to terminate. Clearly, once the procedure terminates,
we obtain a network none of whose leaves are leaves of N and such that none of its defects are
defects in N . �

A.8 Proof of Proposition 19

Proof. For the direction left to right, suppose G = (Act, act,P (V ), out) is some game form that
S-satisfies Γ. By assumption, for each action profile ζ there is some Z ∈ S with out(ζ ) ⊆ Z . We
show that S satisfies both conditions (1) and (2).

For (1), let R = (C1,γ1, . . . ,Cn ,γn ) be a redistribution of Γ. Since γ1, . . . ,γn are positive relevant
goal assignments, there must be strategy profiles ζ1, . . . , ζn such that for each ζi , coalition C and
ζ ′ ∼C ζi , we have p ∈ out(ζ ′) where γi (C ) = Xp. Define the new strategy profile ζ ∗ by setting
ζ ∗a = (ζi )a if a ∈ Ci , and ζ ∗a arbitrarily chosen if a � C1∪· · ·∪Cn . It is easy to see that F (R) ⊆ out(ζ ∗),
hence F (R) ⊆ Z for some Z ∈ S.

For (2), let R = (C1,γ1, . . . ,Cn ,γn ) be a redistribution of Γ and let γ ′ be a negative relevant goal
assignment. Let ζ1, . . . , ζn and ζ ∗ be defined as before, so that F (R) ⊆ out(ζ ∗). Since G S-satisfies
Γ, there must be some coalition C and some ζ ′ ∼C ζ ∗ such that q ∈ out(ζ ′) where γ ′(C ) = Xq. If
C = Agt then q must belong to the outcome of every action profile, hence to every member of S.
If C � Agt, then we get F (R,γ ′,C ) ⊆ out(ζ ′) ⊆ Z for some Z ∈ S.

For right to left, suppose S satisfies the constraints stated in the proposition. Enumerate Agt as
a0, . . . , a | Agt |−1. Let G = (Act, act,P (V ), out) be defined as follows. First, given an agent a ∈ Agt,
we define the set of actions acta to be the set of triples (γ , f ,k ) where

—γ is either a positive relevant goal assignment, or a distinguished symbol ∗,
— k ∈ {0, . . . , | Agt | − 1),
— f is a map sending each redistribution R of Γ to some element Z of S with F (R) ⊆ Z .
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Note that each player has the same set of actions, and the set of actions is non-empty since, by
assumption, for each redistribution R of Γ there is some element Z of S with F (R) ⊆ Z .

Given an action profile ζ we say that a coalition C has formed behind a positive relevant

goal assignment if that goal assignment was chosen by every member of C in ζ . A given action
profile ζ thus partitions Agt into disjoint coalitions {C1, . . . ,Cn } where each coalitionCi is a max-
imal one that has formed behind some positive relevant goal assignment (or the special symbol
∗). Given an action profile ζ with corresponding partition of the form {C1, . . . ,Cn }, where each
coalition Ci has formed behind the goal assignment γi , or possibly of the form {C1, . . . ,Cn ,D},
where each coalition Ci has formed behind the goal assignment γi and each player in D has
played an action with ∗ as first component, we define the redistribution red(ζ ) induced by ζ to be
R = (C1,γ1, . . . ,Cn ,γn ). Suppose each a ∈ Agt has chosen the action (γa,Za,ka). Then let

bet(ζ ) =
∑

a∈Agt

ka mod | Agt |.

We now define the outcome function by setting out(ζ ) = f (red(ζ )), where f is the function chosen
by player ai for i = bet(ζ ). Informally speaking, each agent picks a goal assignment that they want
to act towards, and also votes on a function intended to pick the actual outcome of an action profile
depending on which coalitions have formed in favor of which goal assignments. To decide which
voter gets to determine the outcome of an action profile, each player also has to bet on a number
k , and the winner of this bet is the agent indexed by

∑
a∈Agt ka mod | Agt |.

We now show that G S-satisfies Γ.
It clearly holds that out(ζ ) ∈ S for every action profile ζ and, conversely, for each Z ∈ S,

Z is the outcome of the profile in which each player chooses the action (∗,Z , 0). Now suppose
〈[γ ]〉 ∈ Γ for some positive goal assignment γ . We need to find an action profile ζ such that for
every coalition C , and every ζ ′ ∼C ζ , we have p ∈ out(ζ ′) where γ (C ) = Xp. But this is easy: the
action profile ζ defined by ζa = (γ ,Z ,k ) for all a ∈ Agt, with Z ,k arbitrarily chosen, clearly does
the job.

On the other hand, suppose ¬〈[γ ′]〉 ∈ Γ for some negative goal assignment γ ′. Let ζ be an
arbitrary action profile in G. We want to find some coalition B and some ζ ′ ∼B ζ such that q ∈
outΓ (ζ ′), where γ ′(B) = X¬q. Let R = (C1,γ1, . . . ,Cn ,γn ) be the redistribution of Γ defined to
consist of thoseCi ,γi such thatCi has formed in ζ behind the goal assignmentγi , and eachCi ⊆ C ′.
By the second condition on S, there is some coalition C ′ such that:

(i) either C ′ = Agt and q ∈ Z for every Z ∈ S, where γ ′(Agt) = X¬q, or
(ii) C ′ � Agt and there is some Z ∈ S such that F (R,γ ′,C ′) ⊆ Z .

In the first case, we have ζ ∼Agt ζ and q ∈ out(ζ ) ∈ S. In the second case,C ′ � Agt and there is
some Z ∈ S such that F (R,γ ′,C ′) ⊆ Z . Let R′ = {C ′1,γ ′1, . . . ,C ′m ,γ ′m } be the redistribution defined
by {C ′1, . . . ,C ′m } = {Ci ∩ C ′ | i ∈ {1, . . . ,n} & Ci ⊆ C ′}, and let γ ′j be γi for C ′j = Ci ∩ C ′. This is
well-defined since {C1, . . . ,Cn } consists of pairwise disjoint sets. Furthermore, note that F (R′) = Z ,
since:

F (R′) = {p | ∃i,B ⊆ C ′i : γ ′i (C ′i ) = Xp}
⊆ {p | ∃i,B ⊆ Ci ∩C ′ : γi (B) = Xp}
⊆ {p | ∃i,B ⊆ Ci ∩C ′ : γi (B) = Xp} ∪ {q}
= F (R,γ ′,C ′)

⊆ Z .
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Define a new action profile ζ ′ as follows: pick some function f with f (R′) = Z , and pick some
distinguished player c ∈ Agt \C ′. For each a ∈ C ′, set ζ ′a = ζa. For a ∈ Agt \C ′, set ζ ′a = (∗, f , 0)
if a � c. Finally set ζ ′c = (∗, f ,k ), where k is chosen to ensure that bet(ζ ′) is the index of player
c. Clearly, ζ ′ ∼C ′ ζ , and it remains only to show q ∈ out(ζ ′). But q ∈ Z , and since R′ = red(ζ ′)
we get out(ζ ′) = f (R′) = Z . Informally, what happens here is that the players in Agt \C ′ pick
one member among them, c, that will do the actual work towards ensuring that the outcome of ζ ′

contains q. So that player picks Z containing q as the outcome, and the other players in Agt \C ′
lay down their bets by betting on 0 so that c can make sure to win the bet, thus ensuring that the
outcome is Z . �
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