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• Bayesian Networks — Encoders of Conditional Independencies

• Markov Equivalence Class

• D-Separation

• Causal Discovery — Score-Based & Constraint-Based Algorithms


- Fast Causal Inference (FCI) Algorithm

• Advances in Causal Discovery under Latent Confounding


- From Observational & Interventional Data / Multiple Environments

- Integration of Background Knowledge

- Probabilistic Approach for Modeling Uncertainty

- Parametric Approaches - Linear + Non-Gaussian / Additive Noise Models

- Dynamic Systems: Cycles and Time-Series Data


• Current Challenges and Open Problems



What Do Statistical Associations Reveal?
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“one user of the Reddit website posted the following graph”



What Do Statistical Associations Reveal?
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“Pairs of brooding storks in 
West Germany and the number 

of newborn human babies.”

“Perhaps the old tall tale is right: Perhaps storks do bring babies after all.”

The graph, titled “A New Parameter for Sex Education,” 
appeared in a humorous publication in Nature.



Correlation does not imply causation!

P(x, y) = ∑
ux,uy

P(x |y)P(y)P(ux, uy)

Conditional 
(in)dependencies

P(v)

X ⊥⊥ Y

P(x, y) = ∑
ux,uy

P(y |x)P(x)P(ux, uy)

Correlation does not 
imply causation!

Markov Equivalence Class 
(class of models implying the same 
set of conditional independencies)

YX

YX

YX

YX

YX

ℳ1 =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(X, UY)

P(U)

ℳN−1 =

V = {X, Y}
U = {Ux, UY, UX,Y}

ℱ = {
fX(Y, UX, UX,Y)
fY(UY, UX,Y)

P(U)

ℳN =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(UY)

P(U)

⋮
Data
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⋮
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ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

Loss of Information / Knowledge 

Observational DataPotential Causal Diagrams
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Multiple neural nets fit the data equally well, 
leading to different causal explanations!  



Association vs Causation
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https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by seeing more data? 

CancerMobile 
Phone CancerMobile 

Phoneor or CancerMobile 
Phone

?
CancerMobile 

Phoneor

Which type of data would helps us to derive more definite conclusions? 



How is then possible to learn causal relations  
solely from observational data?  
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Bayesian Network
A DAG, possibly with latent confounders (ADMG),  

representing the conditional independences  
implied by an SCM

10

 Acyclic Directed 
Mixed Graph

 Directed 
Acyclic Graph



Graphical Kinship Notation
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Z

X Y

W

 and  are parents of , i.e., X Y Z X, Y ∈ Pa(Z)
 is a child of , i.e.,  Z Y Z ∈ Ch(Y)

 is a descendent of , i.e.,   W X W ∈ De(X)

 is ancestor of , i.e., Y W Y ∈ An(W)

 is non-descendant of , i.e., Y X Y ∈ NDesc(X)Directed Acyclic Graph 
(DAG)



Graphical Kinship Notation
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Z

X Y

WA

 and  are parents of , i.e., X Y Z X, Y ∈ Pa(Z)
 is a child of , i.e.,  Z Y Z ∈ Ch(Y)

 is a descendent of , i.e.,   W X W ∈ De(X)

 is ancestor of , i.e., Y W Y ∈ An(W)

 is non-descendant of , i.e., Y X Y ∈ NDesc(X)Acyclic Directed Mixed 
Graph (ADMG)

 is spouse of A W



Bayesian Networks & Markov Condition
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A DAG  over  is a Bayesian Network for a joint probability distribution  if, for 
every , it holds that  and, therefore,  factorizes as follows:


G V P(V)
Vi ∈ V Vi ⊥⊥ NDesci |Pai P(v)

P(v) = ∏
Vi∈V

P(vi |vi−1, …, v1)

= ∏
Vi∈V

P(vi |pai)
Vi ⊥⊥ NDesci |Pai, Ui

Z
Y

X
WA

W ⊥⊥ X, Y, A |Z A ⊥⊥ Z |X, Y

P(v) = P(w |z, x, y, a) P(z |x, y, a) P(x |y, a) P(y |a) P(a)

Y ⊥⊥ X |A

= P(w |z) P(z |x, y) P(x |a) P(y |a) P(a)

It holds for any 
topological order of G

Chain Rule:

Edges have no 
causal semantics!

 is satisfies the 
Markov Condition 

w.r.t. 

P

G



Bayesian Networks & Semi-Markov Condition 
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An ADMG  over  is a Bayesian Network for a joint probability distribution  if, for 
every , it holds that  and, therefore,  factorizes as follows:


 
.

G V P(V)
Vi ∈ V Vi ⊥⊥ NDesci |Pa+

i P(v)

P(v) = ∏
Vi∈V

P(vi |pa+
i )

EDB

A
C

F

P(v) = P(e |d, c, b, a, f ) P(d |c, b, a, f ) P(c |b, a, f ) P(b |a, f ) P( f |a) P(a)
= P(e |d, c, a) P(d |c, b, a) P(c |a) P(b |a) P( f |a) P(a)

E ⊥⊥ F, B |D, C, A D ⊥⊥ F |B, C, A C ⊥⊥ F, B |A B ⊥⊥ F |A

The extended parents of  is defined as 
, 

where  and  is a 
maximal path entirely made of bidirected edges.

Vi
Pa+

i = Pa1({V ∈ C(Vi) : V ≤ Vi})∖{Vi}
Pa1(V ) = Pa(V ) ∪ V C(Vi)

 is satisfies the 
Semi-Markov Condition 

w.r.t. 

P

G
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Distribution Bayesian NetworksFactorization

X Y

X Y

X Y

X Y

X Y

i.e., X ⊥⊥ Y

 P(X, Y)

with   P(Y |X) ≠ P(Y) P(x, y) = P(x |y)P(y)

P(x, y) = P(y |x)P(x)

Markov 
Equivalent BNs

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence 
Class is a set of models that encode the same set of conditional independencies.

Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

X Y

X Y

X Y

X Y

X Y

i.e., X ⊥⊥ Y

 P(X, Y)

with   P(Y |X) ≠ P(Y) P(x, y) = P(x |y)P(y)

P(x, y) = P(y |x)P(x)

Markov 
Equivalent BNs

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence 
Class is a set of models that encode the same set of conditional independencies.

Markov Equivalence Class

All models imply no independence 
and no other invariance
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

⋮

⋮

⋮

Markov 
Equivalent

Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

⋮

⋮

⋮

Markov 
Equivalent

All models imply only  and  
Z is always a non-collider in such models.

X ⊥⊥ Y |Z

Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent

Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent

All models imply only  and  
Z is always a collider in such models, 

Note:  is never an ancestor of  or 

X ⊥⊥ Y

Z X Y

Markov Equivalence Class



D-Separation
Graphical Tool for Identifying Conditional Independencies  

implied by Bayesian Networks

21



Implied Conditional independencies
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X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |W

Z

YX

Obesity Baldness

Age

Fork
 as a common causeZ

Z YX

Family History 
of Diabetes StrokeDiabetes

Chain
 as a mediatorZ

Z

YX

Diet Physical 
Activity

Obesity

W
Heart 

Disease

V-Structure

 as a collider or common effectZ

Two Markov-equivalent models. 
Note that in both cases  is a non-collider!Z



Active and Inactive Triplets
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Definition (inactive):  A triplet  is said to be inactive 
relative to a set  if the middle node :


1. Is a non-collider and is in ; or

2. Is a collider and neither it nor any of its descendants in .

⟨Vi, Vm, Vj⟩
Z Vm

Z
Z

X W Y

X W Y

 is non-collider   
and 

W
W ∈ Z

X W Y

X W Y

X W Y

A

 is (descendant of) a 
collider and 
W

W, A ∉ Z



D-Separation
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Definition (d-separation): A path  in an ADMG  is said to be d-separated (or blocked) by a set 
of variables  if and only if  contains an inactive triplet in it.


A set  d-separates  and  if and only if   blocks every path between a node in  and a node in
. We denote that by . 

p G
Z p

Z X Y Z X
Y (X ⊥⊥ Y |Z)G

{B} {W} {B, W}{}X B W Y

X B W Y {B} {W} {B, W}{}

:Z

:Z

Does  d-separate  and  ?Z X Y

X B W Y {B} {W} {B, W}{}:Z

(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P
D-separations in  correspond to 
conditional independencies in 

G
P



Markov Blanket (Markovian)

25

Markov Blanket  (MB) of a Markovian BN over : the union of parents, children, 
and parents of the children .


V
V

mbG(V) = Pa(V) ∪ Ch(V) ∪ Pa(Ch(V))

V Markov Blanket of V

V ⊥⊥ V∖mbG(V) |mbG(V)



Markov Blanket (Semi-Markovian)
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Markov Blanket  (MB) of a Semi-Markovian BN over : is the district of  and the 
parents of the district of  (excluding  itself) i.e.: 


V V
V V

mbG(V) = disG(V) ∪ PaG(disG(V))∖{V}

Richardson, T. (2003). Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal of Statistics, 30(1), 145–157

V
Markov Blanket of V

V ⊥⊥ V∖mbG(V) |mbG(V)

District of , ,  is 
the set of variables 
connected with  

through an edge or a 
bidirected path.

V disG(V )

V



Causal Discovery
Learning the Markov equivalence class from observational data.
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Super-Exponential Growth
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The space of DAGs grows super-exponentially with the number n of variables, 
as shown by the following recurrence relation (Robinson, 1973):

|DAG(n) | =
n

∑
i=1

(n
1)2i(n−i) |DAG(n − 1) | 2 3

3 27

4 729

5 59,049

6

7

8

|DAG(n) |n

1.4349 × 107

1.0460 × 1010

2.2877 × 1013



Super-Exponential Growth
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|ADMG(n) | = |DAG(n) | × 2n(n−1)/2

The space of ADMGs also grows super-exponentially with the number n of 
variables, and it is much bigger than the space of DAGs:

2 3 6

3 27 216

4 729 46,656

5 59,049

6

7

8

|DAG(n) |n

1.4349 × 107

1.0460 × 1010

2.2877 × 1013

|ADMG(n) |

6.0457 × 107

4.7019 × 1011

2.1936 × 1016

6.1410 × 1021

|ADMG(n) | ≫ |DAG(n) |

Causal Discovery is not feasible 
through naive enumeration!



Learning the Markov Equivalence Class
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Identifiability: In non-parametric settings (i.e., without making parametric or 
distributional assumptions) and solely from observational data, causal discovery 
algorithms can only learn a graphical representation of a Markov equivalence class! 

Causal Sufficiency: assumption that all confounding variables have been observed — 
although strong, it has been widely employed to simplify causal discovery and inference.

Algorithms: Score-Based vs Constraint-Based

Systems: Causal Sufficient vs Causal Insufficient
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Strategy: search for the most probable causal structure by assessing 
goodness-of-fit scores of different possible structures.


Common Scores: Bayesian Information Criterion (BIC) for Gaussian variables 
and the BDeu score for multinomial variables.

Score-Based Causal Discovery Algorithms

Under causal sufficiency:

• GES: Greedy Equivalence Search, by Chickering, 2003.

• FGES: Fast GES, by Ramsey et al., 2017 — extension of the GES that 
improves the runtime of the algorithm by using parallelization.

https://www.jmlr.org/papers/volume3/chickering02b/chickering02b.pdf?ref=https://githubhelp.com
https://link.springer.com/article/10.1007/s41060-016-0032-z


Score-Based Causal Discovery Algorithms
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Accounting latent confounding:

• GSMAG: a greedy search algorithm for learning 
MAGs, by Triantafillou, S. and Tsamardinos, I., 2016.

• MAGSL: search based on dynamic programming and branch and bound, by 
Rantanen et al., 2021 — it is guaranteed to find a globally optimal MAG.

• Diff-discovery: solves a continuous optimization problem with differentiable 
procedures to find the best fitting ADMG, by Bhattacharya et al., 2021.

• N-ADMG: Neural ADMG Learning, by Ashman et al., 2013 — extends Diff-discovery 
to the setting where the true causal diagram is bow-free and corresponds to a non-
linear SCM with additive noise.

Use BIC, assuming 
linear Gaussian models

https://ceur-ws.org/Vol-1792/paper7.pdf
https://proceedings.mlr.press/v161/rantanen21a/rantanen21a.pdf
https://rohit-bhattacharya.com/research/dcd_paper.pdf
https://openreview.net/pdf?id=dcN0CaXQhT


Constraint-Based Causal Discovery Algorithms

33

Under causal sufficiency:

PC: Peter-Clark, by Spirtes and Glymour, 1991.

Strategy: construct a causal structure that aligns with all observed conditional 
independencies, identified using conditional independence tests.

Spirtes, P., Glymour, C., and Scheines, R. (2001).  
Causation, Prediction, and Search, 2nd edn. Cambridge, MA: MIT Press.

IC: Inductive Causation, by Verma and Pearl, 1990.

They start with an adjacency (skeleton) phase, based 
on conditional independence tests, followed by an 
orientation phase.

https://www.cse.sc.edu/~mgv/csce582sp14/presentations/SpirtesGlymourPC.pdf
https://ftp.cs.ucla.edu/tech-report/1991-reports/910020.pdf


Constraint-Based Causal Discovery Algorithms
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Accounting for latent confounding:

• FCI: Fast Causal Inference, by Spirtes et al., 1995 — most prominent extension of the 
PC and IC/IC* algorithms. Together with the additional rules by Zhang, J. (2008), is a 
complete algorithm accounting for both latent confounding and selection bias.

• FCI variants: Anytime FCI (AFCI), by Spirtes P., 2001, Conservative FCI (CFCI) and Really 
FCI (RFCI), by Colombo et al. 2012; and FCI+, by Claassen et al. 2013.

• ACI: Ancestral Causal Inference — a logic-based algorithm by Magliacane et al., 2016.

• SAT-Based: uses a Answer Set Programming (ASP) solver to find a causal structure that 
most satisfies the minimal observed conditional independencies, by Hyttinen et al., 2014.

https://arxiv.org/pdf/1302.4983
https://www.sciencedirect.com/science/article/pii/S0004370208001008
https://proceedings.mlr.press/r3/spirtes01a.html
https://arxiv.org/pdf/1104.5617
https://arxiv.org/pdf/1309.6824
https://staff.science.uva.nl/j.m.mooij/articles/6266-ancestral-causal-inference.pdf
https://www.cs.helsinki.fi/u/mjarvisa/papers/hyttinen-eberhardt-jarvisalo.uai14.pdf


Causal Discovery: Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data
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ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

⋮



Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

Causal Discovery: Learning Structural Invariances
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ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Z YX

Partial Ancestral Graph 
MEC Representation

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

Causal 
Discovery

e.g. FCI 
Algorithm

⋮

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and 
selection bias. Artificial Intelligence, 172(16):1873–1896. Link

        non-ancestor of 

        non-ancestor of 

X Z ⟹ Z X
Y Z ⟹ Z Y

http://dx.doi.org/10.1016/j.artint.2008.08.001


FCI Algorithm - Pipeline
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X W YZ

FCI Rules
(R1) − (R10)

X W YZ

Partial Ancestral Graph 
(PAG)

X W YZ

Skeleton

Conditional 
Independence Tests

True causal 
diagram

X W YZ

Complete Graph

 is not an ancestor of  or .Z X W
  and  are ancestors of .Z W Y

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the PAG 
using m-separation

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the ADMG 
using d-separation

By faithfulness, are correctly 
observed in the data

X ⊥⊥ W
X ⊥⊥ Y |Z, W

  is not confounded with .Z Y

Unknown Reality

V

       B non-ancestor of A

       A ancestror of B

       spurious association

A B ⟹
A B ⟹
A B ⟹

                selection bias A B ⟹



Conditional Independence Tests
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Gaussian errors and independent observations: partial correlation test

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test 
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p. 804–13

R package: https://cran.r-project.org/web/packages/CondIndTests

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, 
Statistics in Medicine. 
R package: https://github.com/adele/FamilyBasedPGMs

Kernel-based non-parametric test:

Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample. 
R package: https://cran.r-project.org/web/packages/pcalg/

Gaussian errors and correlated observations (family data) :

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression 
• Tsagris, M., Borboudakis, G., Lagani, V. et al.  (2018) Constraint-based causal discovery with mixed 

data. Int J Data Sci Anal 6, 19–30. (Link)

• R package: https://cran.r-project.org/web/packages/MXM/

https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/


PAG: Representation of the Markov Equivalence Class
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X W YZ

Partial Ancestral Graph 
(PAG)

True  
(unknown)  

causal diagram

 is not an ancestor of  or .Z X W

  and  are ancestors of .Z W Y

  is not confounded with .Z Y

X W YZ

X W YZ

X W YZ

⋮ X ⊥⊥ W
X ⊥⊥ Y |Z, W

V



Fast Causal Inference (FCI) Algorithm
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Z YX

Underlying Causal Diagram Partial Ancestral Graph

Z YX Z YX

Z YX

X
Z

W
YA X

Z

W
YA

Z YX W

FCI
Data E.C.

YX ZWYX ZW

Z YX W



FCI - Skeleton

41

Form a complete graph on the set of variables, in which there is a circle-circle 
edge between every pair of variables; 

V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5



FCI - Skeleton
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V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

V2V1 V3

V4

V5

   and  V1 ⊥⊥ V3 |V4 V4 ⊥⊥ V5 |V1, V2, V3

For every pair of variables  and , if exists a set  such that , 
then remove the edge between  and  and add  in Sepset .  

V1 V2 S1,2 V1 ⊥⊥ V2 |S1,2
V1 V2 S1,2 (V1, V2)



FCI - Orienting the Colliders
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If  is unshielded and Sepset , then⟨V1, V2, V3⟩ V2 ∉ (V1, V3)R0:

  and  V1 ⊥⊥ V3 |V4 V1 ⊥⊥ V3 |V4, V2

V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

V2V1 V3

V4

V5

That is the only way for the path 
between  and  to be blocked when 

not conditioning on V2
V1 V3V2V1 V3* *



FCI - Orienting the Colliders
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  and  V1 ⊥⊥ V3 |V4 V1 ⊥⊥ V3 |V4, V5

V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

V2V1 V3

V4

V5

If  is unshielded and Sepset , then⟨V1, V2, V3⟩ V2 ∉ (V1, V3)R0:

We apply R0 until no more 
collider can be oriented!V2V1 V3* *



Applying Mark Inference Rules
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V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

After Skeleton + R0

V2V1 V3

V4

V5

Applying R3

V2V1 V3
where  and  are not adjacentV1 V3

⟹
R3:

V4

V2V1 V3

V4
* *

** ** ** **



Applying Mark Inference Rules
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V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

After Skel + R0 + R3

V2V1 V3

V4

V5

Applying R1

where  and  are not adjacentV1 V3

⟹R1: V2V1 V3*V2V1 V3* *



Applying Mark Inference Rules
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V2V1 V3

V4

V5
True, unknown ADMG

R4: X

Y

Z2
⟹W Z1

X ∈ Sepset(W, Y)

X

Y

Z2W Z1
 is a 

discriminating path for 
⟨W, Z1, Z2, X, Y⟩

X

*

V2V1 V3

V4

V5
After Skel + R0 + R3 + R1



Applying Mark Inference Rules
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V2V1 V3

V4

V5
True, unknown ADMG

V2V1 V3

V4

V5

V2V1 V3

V4

V5
 is a discriminating path for  and 

  — 
⟨V4, V2, V3, V5⟩ V3

V3 ∈ Sepset(V4, V5) V4 ⊥⊥ V5 |V1, V2, V3

R4: X

Y

Z2
⟹W Z1

X ∈ Sepset(W, Y)

X

Y

Z2W Z1
 is a 

discriminating path for 
⟨W, Z1, Z2, X, Y⟩

X

*



Applying Mark Inference Rules
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V2V1 V3

V4

V5
True, unknown ADMG

V2V1 V3

V4

V5

V2V1 V3

V4

V5
 is a discriminating path for  and 

  — 
⟨V4, V2, V1, V5⟩ V1

V1 ∈ Sepset(V4, V5) V4 ⊥⊥ V5 |V1, V2, V3

R4: X

Y

Z2
⟹W Z1

X ∈ Sepset(W, Y)

X

Y

Z2W Z1
 is a 

discriminating path for 
⟨W, Z1, Z2, X, Y⟩

X

*



Final PAG
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V2V1 V3

V4

V5

True, unknown ADMG

V2V1 V3

V4

V5

Final PAG

After Skel + R0 + R3 + R1 + R4 + R4

V1 ⊥⊥ V3 |V4

V4 ⊥⊥ V5 |V1, V2, V3

V1 ⊥⊥ V3 |V4

V4 ⊥⊥ V5 |V1, V2, V3

V



FCI - Complete Set of Mark Inference Rules
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where  and  are not adjacentV1 V3

⟹R1: V2V1 V3*V2V1 V3* *

⟹R2:

or
⟹

V2V1 V3**

V2V1 V3**

V2V1 V3**

V2V1 V3**

V2V1 V3
where  and  are not adjacentV1 V3

⟹

R3:
V4

V2V1 V3

V4
* *

** ** ** **
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⟹
X ∈ Sepset(W, Y)

X

Y

Z2W Z1

⟹
X ∉ Sepset(W, Y)

X

Y

Z2W Z1

Definition (discriminating path): A path  in a MAG is a discriminating path for  if

(i)  includes at least three edges;

(ii)  is a non-endpoint vertex on p, and is adjacent to Y on p; and

(iii)  is not adjacent to  , and every vertex between  and  is a collider on  and is a parent of .

p = ⟨X, …, W, V, Y⟩ V
p
V
X Y X V p Y

 is a non-collider 
in 

X
⟨Z2, X, Y⟩

 is a collider 
in 
X

⟨Z2, X, Y⟩

R4:

X

Y

Z2W Z1

 is a 
discriminating path for 

⟨W, Z1, Z2, X, Y⟩
X

*

FCI - Complete Set of Mark Inference Rules
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R5: ⟹

 is an 
uncovered circle path

⟨V1, V2, …, Vk−1, Vk⟩

V2V1 VkVk−1
…

 and  are not adjacentV1 Vk−1

 and  are not adjacentV2 Vk

V2V1 VkVk−1
…

R6: ⟹V2V1 V3

 and  may or may 
not be adjacent

V1 V3

V2V1 V3* *

FCI - Complete Set of Mark Inference Rules
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R7: ⟹V2V1 V3

 and  are not adjacentV1 V3

V2V1 V3* *

R8: V2V1 V3
⟹

V2V1 V3

or

V2V1 V3

V2V1 V3
⟹

FCI - Complete Set of Mark Inference Rules
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R9: ⟹
 is an uncovered potentially 

directed path from  to 
⟨V1, V2, …, Vk−1, Vk⟩

V1 Vk

V2V1 VkVk−1
…

 and  are not adjacentV2 Vk

V2V1 VkVk−1
…

…

R10: ⟹

 is an uncovered potentially directed path from  to  (  may be )⟨V1, A1, …, Ak⟩ V1 Ak A1 Ak

Ak

V1 V2

Bj…

A1

B1

 is an uncovered potentially directed path from  to  (  may be )⟨V1, B1, …, Bk⟩ V1 Bk B1 Bk

 and  and  are not adjacentA1 ≠ B1 A1 B1

Ak

V1 V2

Bj…

A1

B1

FCI - Complete Set of Mark Inference Rules



Another Example
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V1

V4

V2

True, unknown 
Causal Diagram

V3

V5

V1

V4

V2 V3

V5

Corresponding PAG

Hint: apply Rules 0, 1, 2, 4 and then Rule 9 three times.  

V1 ⊥⊥ V3 |V2, V4, V5
V1 ⊥⊥ V5 |V4
V2 ⊥⊥ V4 |V1, V5

V1 ⊥⊥ V3 |V2, V4, V5
V1 ⊥⊥ V5 |V4
V2 ⊥⊥ V4 |V1, V5



Available Implementations of the FCI

57

R Packages: 

• pcalg R package: 


- https://cran.r-project.org/web/packages/pcalg/


-  https://github.com/cran/pcalg/


• RPy-Tetrad (Wrapper in R): https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R


Python Packages: 

• Do-discover in PyWhy: https://github.com/py-why/dodiscover 


• Causal-Learn: https://causal-learn.readthedocs.io/en/latest/index.html 


• Py-Tetrad (Wrapper in Python): https://github.com/bd2kccd/py-causal

https://cran.r-project.org/web/packages/pcalg/
https://github.com/cran/pcalg/
https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R
https://github.com/py-why/dodiscover
https://causal-learn.readthedocs.io/en/latest/index.html
https://github.com/bd2kccd/py-causal


Other Causal Discovery Algorithms
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• M3HC: Max-Min Hill Climbing, by Tsirlis et al., 2018 —  extends GSMAG by introducing 
a constraint-based first phase that greatly reduces the space of structures to investigate.

• GFCI: Greedy FCI, by Ogarrio et al., 2016 — combines FGES and FCI. The skeleton and 
orientation phases are firstly performed using FGES and then refined by using the FCI.

Hybrid approaches accounting for latent confounding:

Parametric approaches under causal sufficiency — Identifiable Structure

• LiNGAM: Linear, non-Gaussian, and Acyclic Model, by Shimizu et al., 2006 — leverage 
distributional asymmetries with linear causal mechanisms are non-Gaussian error terms.

• ANM:  Non-linear additive noise model (Hoyer et al., 2009; Zhang and Hyvärinen, 2009a) 
— leverage distributional asymmetries with non-linear mechanisms and additive noise. 

https://www.sciencedirect.com/science/article/pii/S0888613X17307090
https://proceedings.mlr.press/v52/ogarrio16.html
https://jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf
https://arxiv.org/pdf/1205.2599


Advances in Causal Discovery with Unobserved Confounding
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1. Causal Discovery with Interventional Data

• Jaber, A., Kocaoglu, M., Shanmugam, K. and Bareinboim, E., (2020). Causal discovery from soft 

interventions with unknown targets: Characterization and learning. Advances in neural information 
processing systems, 33, pp.9551-9561.


• A. Li, A. Jaber, E. Bareinboim. Causal discovery from observational and interventional data across 
multiple environments. (2023) In Proceedings of the 37th Annual Conference on Neural Information 
Processing Systems — NeurIPS-23. 

Going Beyond the Markov Equivalence Class:



Advances in Causal Discovery with Unobserved Confounding
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Going Beyond the Markov Equivalence Class:

2. Causal Discovery with Prior Knowledge


• Wang, T. Z., Qin, T. and Zhou, Z.H., (2022). Sound and complete causal identification with 
latent variables given local background knowledge. Advances in Neural Information Processing 
Systems, 35, pp.10325-10338.


• Venkateswaran, A., & Perkovic, E. (2024). Towards Complete 
Causal Explanation with Expert Knowledge.  
arXiv preprint arXiv:2407.07338. 

3. Human-in-the-Loop Probabilistic Causal Discovery


• da Silva, T., Silva, E., Ribeiro, A., Góis, A., Heider, D.,  
Kaski, S., & Mesquita, D. (2023). Human-in-the-Loop  
Causal Discovery under Latent Confounding using  
Ancestral GFlowNets. arXiv preprint arXiv:2309.12032.

https://arxiv.org/abs/2407.07338
https://arxiv.org/pdf/2309.12032


Advances in Causal Discovery with Unobserved Confounding
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4. Causal Discovery in Linear Models

• Tashiro, T., Shimizu, S., Hyvärinen, A., & Washio, T. (2014). 

ParceLiNGAM: A causal ordering method robust against latent 
confounders. Neural computation, 26(1), 57-83.


• Wang, Y. S., & Drton, M. (2023). Causal discovery with 
unobserved confounding and non-Gaussian data. Journal of 
Machine Learning Research, 24(271), 1-61.

Relax the causal sufficiency 
assumption of LinGAN by  

Shimizu et al., 2006: 
order / ancestral identifiability 

under linear systems with  
non-gaussian error terms

FCI-CDC: causal direction 
criterion (CDC) allows pairwise 
orientation in (weakly) additive 
noise models with independent 

causal mechanisms.

5. Causal Discovery for Additive Noise Models

• Van Diepen, M. M., Bucur, I. G., Heskes, T., & Claassen, T. (2023). 

Beyond the Markov Equivalence Class: Extending Causal Discovery 
under Latent Confounding. In Conference on Causal Learning and 
Reasoning (pp. 707-725). PMLR.

Going Beyond the Markov Equivalence Class:



Advances in Causal Discovery with Unobserved Confounding
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1. Causal Discovery with Cycles


• Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models 
with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.


• Claassen, T.  &; Mooij, J.M.. (2023). Establishing Markov equivalence in cyclic directed graphs. 
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 
216:433-442, 2023.


2. Causal Discovery from Time-Series Data


• Gerhardus, A., & Runge, J. (2020). High-recall causal discovery for autocorrelated time series with 
latent confounders. Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 
12615-12625.


Learning Dynamic Systems:



Current Challenges & Open Problems
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• Robustness in real-world scenarios, with small (unfaithful) datasets.


• Scalability in insufficient systems — development of adaptive approaches.


• Uncertainty modeling, lack of ground-truth in real-world applications.


• Integration of expert / human knowledge — completeness results.


• Causal experimental design — what if a causal relation is not identified?


• Learning from multi-modal datasets — connection with causal abstraction 
and causal representation learning.


• Continual causal discovery



Additional Resources
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• Causality Tutorial:  https://github.com/adele/Causality-Tutorial/  
 Causal Discovery — Google Colab Notebook: (Link)


• Tutorials, talks, and complete lectures on YouTube: (Link)

→

adele.ribeiro@uni-marburg.de 

Feel free to reach out to me if you have any 
questions or are interested in collaborations. 

Thank you! :)

https://github.com/adele/Causality-Tutorial/
https://colab.research.google.com/github/adele/Causality-Tutorial/blob/main/Causal%20Discovery/CausalDiscovery_FCI.ipynb
https://www.youtube.com/@adelehelena
mailto:adele.ribeiro@uni-marburg.de

