2nd European Summer School on Artificial Intelligence (ESSAI) July 22-26, 2024

Adèle H. Ribeiro

adele.ribeiro@uni-marburg.de <https://adele.github.io/> GitHub: [@adele](https://github.com/adele) | Youtube: [@adelehelena](https://www.youtube.com/@adelehelena) | X: [@adelehr](https://x.com/adelehr)

Machines Climbing Pearl's Ladder of Causation Lecture III - Causal Effect Identification & Estimation

Faculty of Mathematics and Computer Science, Philipps-University of Marburg Institute of Medical Informatics, University of Münster

Outline

- Structure Causal Model (SCM)
- Causal Bayesian Network (CBN) / Causal Diagrams
- Effect Identification given a Causal Diagram
	- Identification in Markovian Models
	- Identification in Semi-Markovian Models
		- Adjustment Formula: Parent, Backdoor Criterion
		- Front-Door Criterion
		- General Tools: Do-Calculus & ID-Algorithm
- Effect Identification in the Markov Equivalence Class
- Current Challenges and Open Problems

Prediction vs Effect of Interventions Statistical Association vs Causation

Predictive Tasks

X: Number of Firefighters in Action

$$
P(Y = y | X = x) \neq P(Y = y)
$$

Probability Distribution
 Probability Distribution Fewer firefighters mean a smaller fire.

Task: Can I **guess** the size of a fire by **observing** the number of firefighters?

Positive Correlation:

: Number of firefighters in action *X* : Size of the (initial) fire *Y*

 $\rho_{XY} \neq 0 \implies X$ is a good predictor of *Y*

Yes!

Observational

Prediction ⇒ Decision-Making?

Should we reduce the number of firefighters to decrease the size of the fire?

Misleading correlation: It is the size of the fire that determines the number of firefighters needed, not the other way around.

Causal Effect ≡ Effect of an Intervention

The causal direction is determined by understanding the underlying reality.

Changing the number of firefighters through an action/intervention on X , $do(X = x)$, does not affect the initial size of the fire (Y) .

In other words, *X* **is not a cause of** *Y*

: Number of firefighters in action *X* : (Initial) Severity of the fire *Y*

 \bigcup $X = f_X(Y, U_X)$ $Y = f_Y(U_Y)$

Underlying Structural Causal Model (SCM)

Y is not a function of *X*

Structural Causal Model (SCM) EXPLAINABILITY AND THE DATA GENERATING MODEL

Structural Causal Model (SCM)

 $\langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$, where

- $V = \{V_1, ..., V_n\}$: are endogenous variables
- $\mathbf{U} = \{U_1, ..., U_m\}$: are exogenous variables
- $\mathscr{F} = \{f_1, ..., f_n\}$: are functions determining V , i.e., $v_i \leftarrow f_i(p a_i, u_i)$, where
	- $Pa_i \subseteq V$ are endogenous causes (parents) of V_i
	- U_i ⊆ **U** are exogenous causes of V_i .
- $P(U)$ is the probability distribution over U .

Definition: A structural causal model M (or, data generating model) is a tuple

Assumption: M is recursive, i.e., there are no feedback (cyclic) mechanisms.

Structural Equation Model (SEM)

- **• Pre-specified causal order**
- **• Linear functions**
- **• Normal distribution**
- **Markovianity** / **Causal Sufficiency**: each other (diagonal covariance matrix).

$$
\mathcal{M} = \begin{cases}\n\mathbf{V} = \{X, Y, Z\} & \mathbf{P} \text{re-specified causal order} \\
\mathbf{U} = \{\epsilon_X, \epsilon_Y, \epsilon_Z\} & \mathbf{P} \text{linear functions} \\
\mathcal{F} = \begin{cases}\nZ = \beta_{Z0} + \epsilon_Z & \mathbf{Normal distribution} \\
X = \beta_{X0} + \beta_{XZ}Z + \epsilon_X & \mathbf{Narkovianity} / \text{ Causal Sufficiency:} \\
Y = \beta_{Y0} + \beta_{YZ}Z + \beta_{YX}X + \epsilon_Y & \text{Error terms in U are independent of each other (diagonal covariance mat) \\
\mathbf{U} \sim \mathcal{N} \\
0, \Sigma = \begin{bmatrix}\n\sigma_X & 0 & 0 \\
0 & \sigma_Y & 0 \\
0 & 0 & \sigma_Z\n\end{bmatrix}\n\end{cases}
$$

Full specification of an SCM requires parametric and distributional assumptions. Estimation of such models usually requires strong assumptions (e.g., Markovianity).

Statistical Association vs Causation

$$
\mathcal{M} = \begin{cases} \mathbf{V} = \{X, Y\} & \text{do}(X \\ \mathbf{U} = \{U_{XY}, U_X, U_Y\} & \text{do}(X) \\ \mathcal{F} = \begin{cases} X = f_X(U_X, U_{XY}) \\ Y = f_Y(X, U_Y, U_{XY}) \end{cases} \\ P(\mathbf{U}) \end{cases}
$$

Pre-Interventional/ Observational SCM

Pre-Interventional/C	Post-Interventional/C
Observational SCH	Interventional SCM
$\begin{cases}\nV = \{X, Y\} \\ U = \{U_{XY}, U_X, U_Y\} \\ \varnothing = \begin{cases}\nX = f_X(U_X, U_{XY}) \\ Y = f_Y(X, U_Y, U_{XY})\n\end{cases}$ \n	$\mathcal{M}_x = \begin{cases}\nV = \{X, Y\} \\ U = \{U_{XY}, U_X, U_Y\} \\ \varnothing = \begin{cases}\nX = x \\ Y = f_Y(x, U_Y, U_{XY})\n\end{cases}$ \n
Observational Distribution	Distribution
Observational Distribution	Distribution
$P(V) \doteq P_{\mathcal{M}}(V)$	$P(V \mid do(X = x)) \doteq P_{\mathcal{M}_x}(V)$ \n
<i>predict</i> better the value of <i>Y</i> after observing that <i>X</i> = <i>x</i> ?	Can we predict better the value of <i>Y</i> after making an intervention do(<i>X</i> = <i>x</i>)?
$x \Rightarrow y \neq P(Y = y) \Rightarrow X$ is correlated to <i>Y</i>	$\exists x \text{ s.t. } P_{\mathcal{M}_x}(Y = y) \neq P(Y = y) \Rightarrow X$ is a cause of

Observational Distribution

$$
P(\mathbf{V}) \doteq P_{\mathcal{M}}(\mathbf{V})
$$

Can we *predict* better the value of Y after observing that $X = x$?

 $P(Y = y | X = x) \neq P(Y = y) \implies X$ is correlated to Y $\exists x \text{ s.t. } P_{\mathscr{M}_x}$

Causal Bayesian Network

11

A DAG, possibly with latent confounders (ADMG), representing the **causal and confounding relationships** implied by an SCM

$$
\mathcal{M} = \begin{cases}\n\mathbf{V} = \{A, B, C, D\} \\
\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \\
\mathcal{A} = \begin{cases}\nA \leftarrow f_A(U_A) \\
B \leftarrow f_B(A, D, U_B) \\
D \leftarrow f_Z(U_D, U_{CD}) \\
C \leftarrow f_X(B, U_C, U_{CD})\n\end{cases}\n\end{cases}
$$

An SCM $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

Structural Causal Model (SCM) $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$

CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$

13

$$
\mathcal{M} = \begin{cases}\n\mathbf{V} = \{A, B, C, D\} \\
\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \\
\mathcal{A} = \begin{cases}\nA \leftarrow f_A(U_A) \\
B \leftarrow f_B(A, D, U_B) \\
D \leftarrow f_Z(U_D, U_{CD}) \\
C \leftarrow f_X(B, U_C, U_{CD})\n\end{cases}\n\end{cases}
$$

An SCM $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

Structural Causal Model (SCM) $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$

14

 $V_i \leftrightarrow V_j$ if the corresponding $U_i, U_j \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}.$

$$
\mathcal{M} = \begin{cases}\n\mathbf{V} = \{A, B, C, D\} \\
\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \\
\mathcal{A} \leftarrow f_A(U_A) \\
B \leftarrow f_B(A, D, U_B) \\
D \leftarrow f_Z(U_D, U_{CD}) \\
C \leftarrow f_X(B, U_C, U_{CD}) \\
P(\mathbf{U})\n\end{cases}
$$

An SCM $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

Structural Causal Model (SCM) $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$

$$
\mathcal{M} = \begin{cases}\n\mathbf{V} = \{A, B, C, D\} \\
\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \\
\mathcal{A} \leftarrow f_A(U_A) \\
B \leftarrow f_B(A, D, U_B) \\
D \leftarrow f_Z(U_D, U_{CD}) \\
C \leftarrow f_X(B, U_C, U_{CD}) \\
P(\mathbf{U})\n\end{cases}
$$

An SCM $\mathscr{M} = \langle \mathbf{V}, \mathbf{U}, \mathscr{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$. $V_i \leftrightarrow V_j$ if the corresponding $U_i, U_j \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}.$

Let P_* be the collection of all interventional distributions $P(V | do(x)), X \subseteq V$, including the null (observational) distribution $P(\mathbf{V})$.

An Acyclic Directed Mixed Graph (ADMG) G is a CBN for \mathbf{P}_* if for every intervention $do(\mathbf{X}=\mathbf{x})$, $\mathbf{X} \subseteq \mathbf{V}$, if it hold:

16

Distribution

 $P(V|do(X = x)) \doteq P_{\mathcal{M}_x}$ Interventional
 $P(V | do(X = x)) \doteq P_{\mathcal{M}_x}(V)$

$$
P_{\mathcal{M}_x}(V) = P_{\mathcal{M}_x}(V)
$$

=
$$
\sum_{\mathbf{u}} \prod_{V_i \in V \backslash \mathbf{X}} P(v_i | pa_i, u_i) P(\mathbf{u}) \Big|_{\mathbf{X} = \mathbf{X}}
$$

Semi-Markov relative to $G_{\overline{X}}$

Truncated factorization implied by the SCM ℳ **.** *^x*

Statistical Association vs Causation

Randomized Experiments

A well accepted way to access $P(Y|do(X=x))$ is through a *perfectly realized* Randomized Experiments / Control Trials (e.g. RCT):

Randomization of the

X's assignment

Average Causal Effect: $E[Y|do(X = x_0)] - E[Y|do(X = x_1)]$

- Ethical concerns
- Practical limitations
- Logistical challenges

Can we always conduct randomized experiments?

Scientists vs. normal people

Causal Effect Identification given a Causal Diagram / CBN

Classical Causality Pipeline from a Causal Diagram

Causal Effect

22

- *Average Treatment Effect* (ATE) for discrete treatments: defined for two treatment levels x' and x of X . $\mathbb{E}[Y|do(X = x')] - \mathbb{E}[Y|do(X = x')]$
- *Average Treatment Effect* (ATE) for continuous treatments, , for all $Y_i \in \mathbf{Y}$, and $X_j \in \mathbf{X}$. $\partial E[Y_i|do(X_j = x_j)]$ ∂x_i The derivative shows the rate of change of Y w.r.t. $do(X = x)$

The $\bf{causal effect}$ of a (set of) treatment variable(s) \bf{X} on a (set of) outcome variable(s) \bf{Y} is a quantity derived from $P(Y|do(X))$ that tells us how much Y changes due to an intervention $do(X = x)$.

Examples:

$$
\mathbf{x} \mathbf{y} = \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{z}
$$
\nwhere $\mathbb{E}[\mathbf{Y} | do(\mathbf{X} = \mathbf{x})] = \sum_{\mathbf{y} \in \Omega_{\mathbf{Y}}} \mathbf{y} P(\mathbf{y} | do(\mathbf{x}))$

Jacobian of
$$
\mathbb{E}[Y|do(X = x)]
$$
, where

$$
\mathbb{E}[Y|do(X = x)] = \int_{\Omega_y} yP(y|do(x))dy
$$

and $\Omega_{\rm Y}$ is the space of all possible values that $\mathbf Y$ might take on

The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome variable(s) \bf{Y} is said to be identifiable from a causal diagram G and the probability of the observed variables $P(V)$ if the interventional distribution $P(Y|do(X))$ is *uniquely computable,* i.e., if for every pair of SCMs \mathscr{M}_1 and M_2 that induce G and $P^{\mathcal{M}_1}(\mathbf{V}) = P^{\mathcal{M}_2}(\mathbf{V}) = P(\mathbf{V}) > 0$, $P^{\mathcal{M}_1}(\mathbf{Y} | do(\mathbf{X})) = P^{\mathcal{M}_2}(\mathbf{Y} | do(\mathbf{X})) = P(\mathbf{Y} | do(\mathbf{X})).$

In words, causal effect identifiability means that, no matter the form of true SCM, for all models \mathcal{M} agreeing with $\langle G, P(\mathbf{V}) \rangle$, they also agree in $P(\mathbf{y} | do(\mathbf{x}))$.

The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome variable(s) \bf{Y} is said to be identifiable from a causal diagram G and the probability of the observed variables $P(V)$ if the interventional distribution $P(Y|do(X))$ is *uniquely computable,* i.e., if for every pair of SCMs \mathscr{M}_1 and M_2 that induce G and $P^{\mathcal{M}_1}(\mathbf{V}) = P^{\mathcal{M}_2}(\mathbf{V}) = P(\mathbf{V}) > 0$, $P^{\mathcal{M}_1}(\mathbf{Y} | do(\mathbf{X})) = P^{\mathcal{M}_2}(\mathbf{Y} | do(\mathbf{X})) = P(\mathbf{Y} | do(\mathbf{X})).$

In words, causal effect identifiability means that, no matter the form of true SCM, for all models \mathcal{M} agreeing with $\langle G, P(\mathbf{V}) \rangle$, they also agree in $P(\mathbf{y} | do(\mathbf{x}))$.

Tools for Causal Identification

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. [http://](http://dx.doi.org/10.1017/CBO9780511803161) dx.doi.org/10.1017/CBO9780511803161

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.

interventional distributions $P_{\mathbf{x}}(\mathbf{V})$, for any $\mathbf{X} \subseteq \mathbf{V}.$ It follows that $P_{\mathbf{x}}(\mathbf{V})$ factorizes as:

Markovian SCMs have the modularity property, i.e., $P_{\mathbf{x}}(v_i | pa_i) = P(v_i | pa_i)$

$$
P_{\mathbf{x}}(\mathbf{v}) \doteq P(\mathbf{v} | do(\mathbf{x})) = \prod_{V_i \in \mathbf{V} \setminus \mathbf{X}} P_{\mathbf{x}}(v_i | pa_i) \Big|_{\mathbf{X} = \mathbf{x}}
$$

$$
= \prod_{V_i \in \mathbf{V} \setminus \mathbf{X}} P(v_i | pa_i) \Big|_{\mathbf{X} = \mathbf{x}}
$$

 $P(y|do(X)) =$ **Causal Effect of X on Y:**

- In Markovian Models, the joint interventional distribution (and hence any causal effect) is always identifiable.
-

Truncated Factorization – Markovian: Let G be a causal diagram for the collection P_* of all

Follows from $P_{\mathbf{x}}(\mathbf{v}) \doteq P(\mathbf{v} | do(\mathbf{x}))$ being *Markov* relative to $G_{\overline{\mathbf{X}}}$

• This factorization is a.k.a "manipulation theorem" (Spirtes et al. 1993) or G-computation (Robins 1986, p. 1423).

$$
\sum_{\mathbf{V} \setminus (\mathbf{Y} \cup \mathbf{X})} \prod_{V_i \in \mathbf{V} \setminus \mathbf{X}} P(v_i | pa_i) \Bigg|_{\mathbf{X} = \mathbf{x}}
$$

Example: Identifiable Effect

 $P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{y} \in \mathcal{Y}}$ **V**∖(**Y**∪**X**) ∏ *Vi* ∈**V**∖**X** $P_{\mathbf{x}}(v_i|pa_i)$ **X**=**x**

 $P(x, y, z) = P(z)P(x | z)P(y | x, z)$

 $P(y, z | do(x)) = P(z)P(y | x, z)$

Causal Effect of X on Y:

Let G be a causal graph with no unmeasured parents. Then, the effect of $\mathbf X$ on $\mathbf Y$ is given by: $P(y | do(x)) = \sum P(y | x, pa_x) P(pa_x)$ **pa x**

 $P(y | do(x)) = \sum P(y | x, z_1, z_2) P(z_1, z_2)$ $\textbf{Pa}_{\textbf{X}} = \{Z_1, Z_2\}$ $X = \{X\}$ $Y = {Y}$ Proof follows from the truncated factorization for Markovian models!

*z*1,*z*²

 $Pa_x = \{Z_1, Z_2\}$

 $Pa_x = \{Z_1, Z_2\}$

 $P(\gamma)$

$$
do(x)) = \sum_{z_1, z_2} P(y | x, z_1, z_2) P(z_1, z_2)
$$

$$
\mathbf{X} = \{X\}
$$

$$
\mathbf{Y} = \{Y\}
$$

$$
\mathbf{Pa}_{\mathbf{X}} = \{Z_1, Z_2\}
$$

Let G be a causal graph with no unmeasured parents. Then, the effect of $\mathbf X$ on $\mathbf Y$ is given by: $P(y | do(x)) = \sum P(y | x, pa_x) P(pa_x)$ **pa x**

> After conditioning on the parents, the association between *X* and *Y* is only due to the direct path.

Adjustment over parents:

Proof follows from the truncated factorization for Markovian models!

Identification in Semi-Markovian Models

 $Pa_x = \{Z_2\}$ $U_x = \{U_{X,Z2}\}$ $P(y | do(x)) = ?$

Let G be a causal graph with no unmeasured parents. Then, the effect of $\mathbf X$ on $\mathbf Y$ is given by: $P(y | do(x)) = \sum P(y | x, pa_x) P(pa_x)$ **pa x**

$P(y | do(x)) = \sum P(y | x, z_1, z_2) P(z_1, z_2)$ *z*1,*z*²

Let G be a causal graph with no unmeasured parents. Then, the effect of $\mathbf X$ on $\mathbf Y$ is given by: $P(y | do(x)) = \sum P(y | x, pa_x) P(pa_x)$ **pa x**

 $Pa_x = \{Z_2\}$ $U_x = \{U_{X,Z2}\}$

$$
P(y | do(x)) = \sum_{z_1, z_2} P(y | x, z_1, z_2) P(z_1, z_2)
$$

After conditioning on the $\{Z_1,Z_2\}$, the association between X and Y is also due to a spurious / confounding path.

Let G be a causal graph with no unmeasured parents. Then, the effect of $\mathbf X$ on $\mathbf Y$ is given by: $P(y | do(x)) = \sum P(y | x, pa_x) P(pa_x)$ **pa x**

Identification via Backdoor Criterion

Let $\mathbf X$ be a set of treatment variables and $\mathbf Y$ a set of outcome variables in the causal graph G . If there exists a set $\mathbb Z$ such that:

-
-

Then, \bf{Z} satisfies the *backdoor criterion* for (\bf{X}, \bf{Y}) and, then the effect of \bf{X} on \bf{Y} is given by:

 $P(\mathbf{y} | do(\mathbf{x})) = \sum$

33

paths are severed

1. $\,$ Z d-separates $\rm X$ and $\rm Y$ in the graph $G_{\rm \underline{X}}$, i.e., the graph resulting from cutting the arrows out of $\rm X$

2. $\,$ no node in \mathbf{Z} is a descendant of a variable $X \in \mathbf{X}$ in G (all variables in \mathbf{Z} are pre-treatment)

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

backdoor adjustment

Identification via Backdoor Criterion

Let $\mathbf X$ be a set of treatment variables and $\mathbf Y$ a set of outcome variables in the causal graph G . If there exists a set $\mathbb Z$ such that:

- 1. $\,$ Z d-separates $\rm X$ and $\rm Y$ in the graph $G_{\rm \underline{X}}$, i.e., the graph resulting from cutting the arrows out of $\rm X$
- 2. $\,$ no node in \mathbf{Z} is a descendant of a variable $X \in \mathbf{X}$ in G (all variables in \mathbf{Z} are pre-treatment)

Then, \bf{Z} satisfies the *backdoor criterion* for (\bf{X}, \bf{Y}) and, then the effect of \bf{X} on \bf{Y} is given by:

 $P(\mathbf{y} | do(\mathbf{x})) = \sum$

paths are severed

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for **Z** backdoor adjustment

Identification via Backdoor Criterion

Let $\mathbf X$ be a set of treatment variables and $\mathbf Y$ a set of outcome variables in the causal graph G . If there exists a set $\mathbb Z$ such that:

- 1. $\,$ Z d-separates $\rm X$ and $\rm Y$ in the graph $G_{\rm \underline{X}}$, i.e., the graph resulting from cutting the arrows out of $\rm X$
- 2. $\,$ no node in \mathbf{Z} is a descendant of a variable $X \in \mathbf{X}$ in G (all variables in \mathbf{Z} are pre-treatment)

Then, \bf{Z} satisfies the *backdoor criterion* for (\bf{X}, \bf{Y}) and, then the effect of \bf{X} on \bf{Y} is given by:

 $P(\mathbf{y} | do(\mathbf{x})) = \sum$

In $G_{\underline{X}}$, all non-backdoor paths are severed

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for **Z** backdoor adjustment

Counterfactual Interpretation of Backdoor

then, for all x , it holds that $Y_x \perp \!\!\! \perp X | \mathbf{Z}$.

Theorem 4.3.1, Pearl's Primer Book

Theorem: If a set \mathbf{Z} satisfies the *backdoor criterion* w.r.t. the ordered pair (X, Y) ,

Although the satisfiability of $\boldsymbol{\mathsf{Z}}$ to the *backdoor criterion* can be tested given a causal diagram or a PAG, the X condition $Y_x \perp \!\!\! \perp X|$ \mathbf{Z} is sometimes framed as an assumption, referred to as **(conditional) ignorability**, **exchangeability** or **unconfoundedness**.

Yx ⊥⊥ *X*|*Z*

Estimation via Propensity Scores

Consider the case in which the causal effect of X on Y is identifiable through adjustment over a set of variables Z , i.e.,

 $P(y | do(x)) =$

Only if Z is admissible for adjustment, Propensity Score can be used to estimate $P(y | do(x))$.

$$
= \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})
$$
\n
$$
= \sum_{\mathbf{z}} \frac{P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z} | \mathbf{z}) P(\mathbf{z})}{P(\mathbf{x} | \mathbf{z})}
$$
\n
$$
= \sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} | \mathbf{z})}
$$
\nFor X is binary/categorial:
\nor ML-based classification
\nFor X continuous: ML-based

regression techniques.

*Z*3

The interventional joint distribution can be easily derived by reweighing the observational joint distribution with the inverse of the propensity score!

Inverse Probability Weighting

After reweighing the observational samples, we obtain *pseudo* interventional samples:

Inverse Probability Weighting

= $E(Y | do(X = 1)) - E$ 1 *N* \sum_{i}^{N} $\int y_i \mathbf{1}_{\{x_i\}}$ ∑ $\sum_{i=1}$ $P(X = 1 | \mathbf{Z}_i)$

The Average Treatment Effect (ATE) of a binary treatment can be estimated as:

This gives us the following estimator of $E(Y|do(x))$, from a sample $\{x_i, y_i, \mathbf{z_i}\}_{i=1}^N$: $\int_{i=1}^{N}$ *i*=1

> $E(Y|do(x)) =$ ̂

$$
E(Y|do(X = 0))
$$

$$
x_{i=1}
$$

$$
y_{i}1_{\{x_{i}=0\}}
$$

$$
= 1 | \mathbf{z}_{i}) - \hat{P}(X = 0 | \mathbf{z}_{i})
$$

The mean of all values y_i , inversely weighted according to the propensity score.

$$
= \frac{1}{N} \sum_{i=1}^{N} \frac{y_i \mathbf{1}_{\{x_i = x\}}}{\hat{P}(x_i | \mathbf{Z}_i)}
$$

What if backdoor adjustment does not work?

2. There is no unblocked back-door path from any vertex $X \in \mathbf{X}$ to vertex $M \in \mathbf{M}$; and 3. All back-door paths from any vertex $M \in \mathbf{M}$ to any vertex $Y \in \mathbf{Y}$ are blocked by $\mathbf{X}.$

$$
P(\mathbf{m} \mid \mathbf{x}) \sum_{\mathbf{x}'} P(\mathbf{y} \mid \mathbf{m}, \mathbf{x}') P(\mathbf{x}')
$$

Identification via Front-Door Adjustment

Let $\mathbf X$ be a set of treatment variables and $\mathbf Y$ a set of outcome variables in the causal graph G . If there exists a set M such that:

- 1. $\mathbf M$ intercepts all directed paths from any vertex $X \in \mathbf X$ to any vertex $Y \in \mathbf Y;$
-
-

Then, $\mathbf M$ satisfies the *front-door criterion* and, then the effect of $\mathbf X$ on $\mathbf Y$ is given by:

Many scenarios beyond back-door and front-door!

Napkin

And many others….

Unnamed

$$
\frac{\sum_{z_2} P(x, y | z_1, z_2) P(z_2)}{\sum_{z_2} P(x | z_1, z_2) P(z_2)}
$$

$$
P(y | do(x)) = \sum_{z_2, z_3} P(y | x, z_1, z_2, z_3)
$$

$$
\sum_{z_1} P(z_3 | x, z_1) P(z_1)
$$

$$
P(y | do(x)) = \sum_{m,z} P(m | x, z) \qquad P(y | do(x)) =
$$

$$
\sum_{x'} P(y | m, x', z) P(x', z)
$$

Conditional Front-Door

<http://causalfusion.net>

Do-Calculus (a.k.a. Causal Calculus)

Theorem: Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{W}$ be any disjoint subjects of variables. **Rule 1** (Insertion/Deletion of Observations) **Rule 2** (Exchange of Actions and Observations) **Rule 3** (Insertion/Deletion of Actions) $P(y|do(w), \mathbf{x}, \mathbf{z}) = P(y|do(w), \mathbf{z})$, if $(Y \perp \perp \mathbf{X} | \mathbf{Z}, \mathbf{W})_{G_{\overline{\mathbf{W}}}}$ $P(\mathbf{y} | do(\mathbf{w}), do(\mathbf{x}), \mathbf{z}) = P(\mathbf{y} | do(\mathbf{w}), \mathbf{x}, \mathbf{z})$, if $(\mathbf{Y} \perp \mathbf{X} | \mathbf{Z}, \mathbf{W})_{G_{\mathbf{W}\mathbf{X}}}$ $P(\mathbf{y} | do(\mathbf{w}), do(\mathbf{x}), \mathbf{z}) = P(\mathbf{y} | do(\mathbf{w}), \mathbf{z}),$ if $(\mathbf{Y} \perp \mathbf{X} | \mathbf{Z}, \mathbf{W})_{G_{\overline{\mathbf{W}}, \overline{\mathbf{X}}(\overline{\mathbf{Z}})}}$

 $\mathbf{X}(\mathbf{Z})$: set of $\mathbf{X}\text{-nodes}$ that are not ancestors of any $\mathbf{Z}\text{-node}$ in $G_{\overline{\mathbf{W}}}.$

- Graphical conditions implying invariances between observational (\mathscr{L}_1) and interventional (\mathscr{L}_2) distributions
	-
	-
	-
	-
	-
	-

 $G_{\overline{\mathbf{W}}\mathbf{X}}$: graph G after removing the incoming arrows into \mathbf{W} and the outgoing arrows from $\mathbf{X};$

Do-Calculus - Rule 1

Theorem: Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{W}$ be any disjoint subjects of variables.

Rule 1 (Insertion/Deletion of Observations)

 $P(y|do(w), \mathbf{x}, \mathbf{z}) = P(y|do(w), \mathbf{z})$, if $(Y \perp \perp \mathbf{X} | \mathbf{Z}, \mathbf{W})_{G_{\mathbf{W}}}$

Do-Calculus - Rule 2

Do-Calculus - Rule 3

Rule 3 (Insertion/Deletion of Actions)

$$
P(y | do(x)) = \sum_{m} P(y | do(x), m)P(m | do(x))
$$

=
$$
\sum_{m} P(y | do(x), do(m))P(m | do(x))
$$

=
$$
\sum_{m} P(y | do(x), do(m))P(m | x)
$$

=
$$
\sum_{m} P(y | do(m))P(m | x)
$$

=
$$
\sum_{x'} \sum_{m} P(y | do(m), x')P(x' | do(m))P(m | x)
$$

=
$$
\sum_{x'} \sum_{m} P(y | m, x')P(x' | do(m))P(m | x)
$$

=
$$
\sum_{x'} \sum_{m} P(y | m, x')P(x' | m)P(m | x)
$$

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Identification in Non-Markovian Models

The Identify (ID) Algorithm

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National

Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Advances on Effect Identification given a Causal Diagram

49

Identification from observational and experimental data:

- Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In *Proceedings of the 35th Conference on Uncertainty in*
- J. Correa, S. Lee, E. Bareinboim. (2021) Nested Counterfactual Identification from Arbitrary Surrogate Experiments. In Proceedings of the 35th Annual Conference

Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press.

on Neural Information Processing Systems

Identification of stochastic/soft (and possibly imperfect) interventions:

Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal effect identification and surrogate experiments. In *Proceedings of the 34th AAAI Conference on Artificial Intelligence*, New York, NY. AAAI Press.

Advances on Effect Identification given a Causal Diagram

Identification and Estimation via Deep Neural Networks:

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural connection: Expressiveness, learnability, and inference. *Advances in Neural Information Processing Systems*, 34.

Xia, K., Pan, Y.,and Bareinboim, E. (2023) Neural Causal Models for Counterfactual Identification and Estimation. In Proceedings of the 11th International Conference on Learning Representations.

Partial Effect Identification:

Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus; Stochastic Causal Programming for Bounding Treatment Effect. Proceedings of the Second Conference on Causal Learning and Reasoning, PMLR 213:142-176

What if domain knowledge does not allow you construct a causal diagram?

Data-Driven Covariate Selection for Adjustment

Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge

Abhin Shah MIT abhin@mit.edu

Karthikeyan Shanmugam **IBM** Research karthikeyan.shanmugam2@ibm.com

Limor Gultchin

Matt J. Kusner The Alan Turing Institute The Alan Turing Institute The Alan Turing Institute The Alan Turing Institute

Kartik Ahuja Mila kartik.ahuja@mila.quebec

Abhin Shah, Karthikeyan Shanmugam, and Kartik Ahuja. Finding valid adjustments under non-ignorability with minimal DAG knowledge. In *International Conference on Artificial Intelligence and Statistics (AISTATS - 2022)*, pages 5538–5562. PMLR, 2022.

Differentiable Causal Backdoor Discovery

Varun Kanade

Ricardo Silva University of Oxford University College London University of Oxford University College London

Effect Identification from Cluster DAGs (C-DAGs)

Anand, T. V.*, **Ribeiro A. H.*,** Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster DAGs. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence.

54

Identification via Adjustment in Markov Equivalence Classes

Adjustment Criterion **Solution** no

$$
P(y | do(x)) = \sum_{z} P(y | x, z) P(z)
$$

Inferred
(Interventional)
Distribution
Distribution
Distribution
Distribution

[Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. \(2018\). Complete graphical characterization and](https://www.jmlr.org/papers/volume18/16-319/16-319.pdf) [construction of adjustment sets in Markov equivalence classes of ancestral graphs.](https://www.jmlr.org/papers/volume18/16-319/16-319.pdf) Journal of Machine Learning Research 18 (2018) 1-62

Identification is possible only when the Generalized Adjustment Criterion applies.

General Identification in Markov Equivalence Classes

Jaber A., **Ribeiro A. H.,** Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022).

Effect Identifiabiliy given a PAG

An effect identifiable in a PAG $\mathscr P$ is identifiable in all causal diagrams G in the Markov Equivalence Class using the same identification formula!

$$
P(y | do(x)) = \sum_{z} P(y | x, z) P(z)
$$

Effect Non-Identifiabiliy given a PAG

 $P(y | do(x)) =$ ∑ *z*

 $P(y | do(x))$ is not identifiable

An effect not identifiable in a PAG $\mathscr P$ is not identifiable in at least one causal diagrams G in the Markov Equivalence Class

 $G₂$

 $P(y | do(x))$ is not identifiable

Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

new discoveries $(t+1)$

Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

Current Challenges & Open Problems

- Effect identification in more general equivalence classes.
- Scalability through adaptive, goal-oriented data-driven identification tools.
- Causal effect estimation for general identification formula.
- Causal experimental design what if a causal effect is not identified?
- Causal effects among abstractions: connection with causal abstraction and causal representation learning.
- Continual Causality Integrating learning and effect identification

Additional Resources

-
- Tutorials, talks, and complete lectures on YouTube: [\(Link\)](https://www.youtube.com/@adelehelena)

adele.ribeiro@uni-marburg.de

• Causality Tutorial: <https://github.com/adele/Causality-Tutorial/> → Causal Effect Identification — Google Colab Notebook: [\(Link\)](https://colab.research.google.com/github/adele/Causality-Tutorial/blob/main/Causal%20Effect%20Identification/CausalEffectIdentification.ipynb)

Feel free to reach out to me if you have any questions or are interested in collaborations.

Thank you! :)