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• Structure Causal Model (SCM)


• Causal Bayesian Network (CBN) / Causal Diagrams


• Effect Identification given a Causal Diagram


- Identification in Markovian Models


- Identification in Semi-Markovian Models


- Adjustment Formula: Parent, Backdoor Criterion


- Front-Door Criterion


- General Tools: Do-Calculus & ID-Algorithm


• Effect Identification in the Markov Equivalence Class


• Current Challenges and Open Problems



Prediction vs Effect of Interventions
Statistical Association vs Causation
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Predictive Tasks
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Correlation between severity of fire and 
number of firefighters in action
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X: Number of Firefighters in Action
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y = 2,3x - 1
R² = 0,92
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5
32

P(Y = y |X = x) ≠ P(Y = y)

Task: Can I guess the size of a fire by observing the number of firefighters?

Positive Correlation: 

: Number of firefighters in action 
: Size of the (initial) fire

X
Y

Yes!

  is a good predictor of ρXY ≠ 0 ⟹ X Y

Observational 
Probability Distribution More firefighters mean a bigger fire;  

Fewer firefighters mean a smaller fire.



Prediction  Decision-Making?⇒
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Should we reduce the number of firefighters to 
decrease the size of the fire?

Misleading correlation: It is the size of the fire that determines 
the number of firefighters needed, not the other way around.



Causal Effect  Effect of an Intervention≡
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Changing the number of firefighters through an 
action/intervention on ,  , does not 

affect the initial size of the fire ( ).
X do(X = x)

Y

In other words,  is not a cause of X Y

: Number of firefighters in action 
: (Initial) Severity of the fire

X
Y

{X = fX(Y, UX)
Y = fY(UY)

Underlying  
Structural Causal Model 

(SCM) 

 is not a function of Y X

The causal direction is determined by understanding the underlying reality.



Structural Causal Model (SCM)
EXPLAINABILITY AND THE DATA GENERATING MODEL
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Structural Causal Model (SCM)
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Definition:  A structural causal model  (or, data generating model) is a tuple 
, where


• : are endogenous variables


• : are exogenous variables 


• : are functions determining , i.e., , where


-   are endogenous causes (parents) of  


-  are exogenous causes of .


•  is the probability distribution over .


Assumption:   is recursive, i.e., there are no feedback (cyclic) mechanisms.

ℳ
⟨V, U, ℱ, P(u)⟩

V = {V1, …, Vn}

U = {U1, …, Um}

ℱ = {f1, …, fn} V vi ← fi(pai, ui)
Pai ⊆ V Vi

Ui ⊆ U Vi

P(U) U

ℳ



Structural Equation Model (SEM)

9

• Pre-specified causal order 
• Linear functions 
• Normal distribution 
• Markovianity / Causal Sufficiency: 

Error terms in  are independent of 
each other (diagonal covariance matrix).

Uℳ =

V = {X, Y, Z}
U = {ϵX, ϵY, ϵZ}

ℱ =
Z = βZ0 + ϵZ

X = βX0 + βXZZ + ϵX

Y = βY0 + βYZZ + βYXX + ϵY)

U ∼ 𝒩 0, Σ =
σX 0 0
0 σY 0
0 0 σZ

Full specification of an SCM requires parametric and distributional assumptions. 
Estimation of such models usually requires strong assumptions (e.g., Markovianity).



Statistical Association vs Causation
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do(X = x)

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Can we predict better the value of  after 
making an intervention ?

Y
do(X = x)

 is a cause of  X Y s.t. ∃x Pℳx
(Y = y) ≠ P(Y = y) ⟹P(Y = y |X = x) ≠ P(Y = y) ⟹

Can we predict better the value of  after 
observing that ?

Y
X = x

 is correlated to  X Y

  P(V) ≐ Pℳ(V) P(V |do(X = x)) ≐ Pℳx
(V)≠

Observational 
Distribution

Interventional 
Distribution



Causal Bayesian Network
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A DAG, possibly with latent confounders (ADMG),  
representing the causal and confounding relationships 

implied by an SCM



ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Bayesian Network (CBN)

Causal Diagram

C

DA

B
SES

Heart DiseaseDrug

Headache

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ



CBN: Encoder of Structural Causal Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B

Hypertension

SES

Heart DiseaseDrug

Headache

UCD

UA

UB UC

UD

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

Induced Causal Bayesian Network (CBN)

Causal Diagram

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ



CBN: Encoder of Structural Causal Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

HeadacheUA

UB UC

UD

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

Induced Causal Bayesian Network (CBN)

Causal Diagram

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U



CBN: Encoder of Structural Causal Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

Headache

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

Induced Causal Bayesian Network (CBN)

Causal Diagram

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U



CBN: Encoder of Structural Causal Knowledge
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P(V |do(X = x)) ≐ Pℳx
(V)Interventional 

Distribution

= ∑
u

∏
Vi∈V∖X

P(vi |pai, ui)P(u)
X=x

Truncated factorization 
implied by the SCM .ℳx

Let  be the collection of all interventional distributions , , including the null 
(observational) distribution . 


An Acyclic Directed Mixed Graph (ADMG)  is a CBN for  if for every intervention , 
, if it hold:

P* P(V |do(x)) X ⊆ V
P(V)

G P* do(X = x)
X ⊆ V

Semi-Markov relative to GX



Statistical Association vs Causation

17

Observational 
Data

Pℳ(V)
Observational 
Distribution

YX

UXY

Observational 
Causal Diagram

Interventional 
Data

Pℳx
(V) ≐

P(V |do(x))
Interventional 
Distribution

do(X = x)

Interventional 
Causal Diagram

YX
x

UXY

Loss of Information Loss of Information

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)



Randomized Experiments
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A well accepted way to access  is through a perfectly realized 
Randomized Experiments / Control Trials (e.g. RCT): 

P(Y |do(X = x))

YX

YX

Randomization of the 
’s assignmentX

𝔼[Y |do(X = x0)]

𝔼[Y |do(X = x1)]

Average Causal Effect: 𝔼[Y |do(X = x0)] − 𝔼[Y |do(X = x1)]

 ✂

 ✂

do(X = x0)

do(X = x1)



• Ethical concerns

• Practical limitations

• Logistical challenges

19

Can we always conduct randomized experiments?
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Causal Effect Identification  
given a Causal Diagram / CBN



Classical Causality Pipeline from a Causal Diagram
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Inference 
Engine

3 P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

2 Causal Contraints

YX

Z

Observational Distribution

𝔼(y |do(x)) = ∑
z

𝔼(y |x, z)P(z)

Causal Modeling / Causal Discovery Causal Effect Identification Causal Effect Estimation

�̂�(y |do(x)) = ∑
z

�̂�((y |x, z) ̂P(z)

Observational 
Data

Structural knowledge 
available



Causal Effect
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The causal effect of a (set of) treatment variable(s)  on a (set of) outcome variable(s)  is a quantity 
derived from  that tells us how much  changes due to an intervention .

X Y
P(Y |do(X)) Y do(X = x)

• Average Treatment Effect (ATE) for discrete treatments:


,


defined for two treatment levels  and  of . 

𝔼[Y |do(X = x′ )] − 𝔼[Y |do(X = x)]

x′ x X

Examples:

• Average Treatment Effect (ATE) for continuous treatments, 


, for all and .
∂𝔼[Yi |do(Xj = xj)]

∂xj
Yi ∈ Y, Xj ∈ X

Jacobian of , where 

, 

and  is the space of all possible values 
that  might take on

𝔼[Y |do(X = x)]

𝔼[Y |do(X = x)] = ∫Ωy

yP(y |do(x))dy

ΩY
Y

where  𝔼[Y |do(X = x)] = ∑
y∈ΩY

yP(y |do(x))

The derivative shows the rate of change of  w.r.t. Y do(X = x)



YX

Z

The Effect Identification Problem
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Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

 P(X, Y, Z)True Model ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

⋯  P(Y |do(X))

(Observed) (Inferred)(Unobserved)



The Effect Identification Problem
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Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

Identifiable Non-Identifiable



Tools for Causal Identification

25

1. Truncated Factorization / G-computation formula


2. Graphical criteria 

1. Parent adjustment

2. Backdoor Adjustment 

3. Front-door Adjustment


3. Do-Calculus (a.k.a Causal Calculus)

4. Identify Algorithm (a.k.a. ID algorithm)

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9780511803161

Markovian 
Models

A few interesting  
(albeit still constrained)  

scenarios 

General  
Semi-Markovian   

Scenarios 

http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161


Identification in Markovian Models
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Px(v) ≐ P(v |do(x)) = ∏
Vi∈V∖X

Px(vi |pai)
X=x

Truncated Factorization — Markovian: Let  be a causal diagram for the collection  of all 
interventional distributions , for any . It follows that  factorizes as:

G P*
Px(V) X ⊆ V Px(V)

Follows from  
being Markov relative to 

Px(v) ≐ P(v |do(x))
GX

= ∏
Vi∈V∖X

P(vi |pai)
X=x

Markovian SCMs have the modularity 
property, i.e., Px(vi |pai) = P(vi |pai)

• In Markovian Models, the joint interventional distribution (and hence any causal effect) is always identifiable. 

• This factorization is a.k.a “manipulation theorem” (Spirtes et al. 1993) or G-computation (Robins 1986, p. 1423).

P(y |do(x)) = ∑
V∖(Y∪X)

∏
Vi∈V∖X

P(vi |pai)
X=x

Causal Effect of  on :X Y



Example: Identifiable Effect
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do(X = x)

P(x, y, z) = P(z)P(x |z)P(y |x, z)

  ⟹ P(y |do(x)) = ∑
z

P(z)P(y |x, z)

YX

ZG

YX

ZGX

P(y |do(x)) = ∑
V∖(Y∪X)

∏
Vi∈V∖X

Px(vi |pai)
X=x

Causal Effect of  on :X Y

P(y, z |do(x)) = P(z)P(y |x, z)



Identification in Semi-Markovian Models
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Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Pax = {Z1, Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
PaX = {Z1, Z2}

X = {X}
Y = {Y}

Proof follows from the truncated 
factorization for Markovian models!

YX

Z3

Z1

Z2

Adjustment over parents:
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YX

Z3

Z1

Z2

Pax = {Z1, Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
PaX = {Z1, Z2}

X = {X}
Y = {Y}

After conditioning on the parents, the association 
between  and  is only due to the direct path. X Y

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:

Proof follows from the truncated 
factorization for Markovian models!

Identification in Semi-Markovian Models



Identification in Semi-Markovian Models
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Pax = {Z2}
Ux = {UX,Z2}

YX

Z3

Z1

Z2
P(y |do(x)) = ?

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:



Identification in Semi-Markovian Models
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Pax = {Z2}
Ux = {UX,Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
YX

Z3

Z1

Z2

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:



Identification in Semi-Markovian Models
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Pax = {Z2}
Ux = {UX,Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
YX

Z3

Z1

Z2

After conditioning on the , the association between 
 and  is also due to a spurious / confounding path. 

{Z1, Z2}
X Y

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:



Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z Z = {Z1, Z3}

Z = {Z1}

X = {X}
Y = {Y} YX

Z3

Z1

Z2



YX

Z3

Z1

Z2

Z = {Z1, Z2}

Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z

Z = {Z1}

X = {X}
Y = {Y}

Z = {Z1, Z3}



YX

Z3

Z1

Z2

Z = {Z1, Z2, Z3}

Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z

Z = {Z1}

X = {X}
Y = {Y}

Z = {Z1, Z3}



Counterfactual Interpretation of Backdoor
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Theorem 4.3.1, Pearl’s Primer Book 

Theorem: If a set  satisfies the backdoor criterion w.r.t. the ordered pair , 
then, for all , it holds that . 

Z (X, Y)
x Yx ⊥⊥ X |Z

Although the satisfiability of  to the 
backdoor criterion can be tested given 

a causal diagram or a PAG, the 
condition  is sometimes 

framed as an assumption, referred to 
as (conditional) ignorability, 

exchangeability or 
unconfoundedness.

Z

Yx ⊥⊥ X |Z

YX

Z

Yx

x

Yx ⊥⊥ X |Z

YX

Z



Estimation via Propensity Scores
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= ∑
z

P(y, x, z)
P(x |z)

Only if  is  
admissible for adjustment,  

Propensity Score can be used 
to estimate .

Z

P(y |do(x))

Consider the case in which the causal effect of  on  is identifiable through 
adjustment over a set of variables , i.e.,

X Y
Z

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

For  is binary/categorial:  
logistic/multinomial regression 

or ML-based classification  
For  continuous: ML-based 

regression techniques.

X

X

= ∑
z

P(y |x, z)P(x |z)P(z)
P(x |z)

Z = {Z1, Z3}

Z = {Z1}

YX

Z3

Z1

Z2

The interventional joint distribution can be easily derived by reweighing the 
observational joint distribution with the inverse of the propensity score!



Inverse Probability Weighting
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YX

Z

P(X |Z) ≠ P(X)

After reweighing the observational samples, we obtain pseudo interventional samples: 

Original Sample
P(X |Z)

X=0

(Control Group)

1/4 4
2/3 1.5

X = 1

(Treated Group)

3/4 1.33
1/3 3

1
P(X |Z)

Imbalanced

P(X |Z) = P(X)
YX

Z

Pseudo interventional Sample

X=0

(Control Group)

X = 1

(Treated Group)

Balanced

Reweighing samples 

with 
1

P(X |Z)



Inverse Probability Weighting
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The Average Treatment Effect (ATE) of a binary treatment can be estimated as:




=  

̂E(Y |do(X = 1)) − ̂E(Y |do(X = 0))

1
N

N

∑
i=1 (

yi1{xi=1}

̂P(X = 1 |zi)
−

yi1{xi=0}

̂P(X = 0 |zi) )

This gives us the following estimator of , from a sample : E(Y |do(x)) {xi, yi, zi}
N
i=1

 = ̂E(Y |do(x))
1
N

N

∑
i=1

yi1{xi=x}

̂P(xi |zi)

The mean of all values , 
inversely weighted according 

to the propensity score.

yi



Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  

If there exists a set  such that:


1.  intercepts all directed paths from any vertex  to any vertex ;

2. There is no unblocked back-door path from any vertex  to vertex ; and

3. All back-door paths from any vertex  to any vertex  are blocked by .


Then,  satisfies the front-door criterion and, then the effect of  on  is given by:


X Y G
M

M X ∈ X Y ∈ Y
X ∈ X M ∈ M

M ∈ M Y ∈ Y X
M X Y

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

What if backdoor adjustment does not work?

40

Identification via Front-Door Adjustment

YX M

M = {M}

X = {X}
Y = {Y}

YX M1

M2 M = {M1, M2}

YX M YX M



Many scenarios beyond back-door and front-door!
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YX

Z2

Z1

Napkin

And many others…. 

YX

Z2

Z1

M

Unnamed

P(y |do(x)) =
∑z2

P(x, y |z1, z2)P(z2)

∑z2
P(x |z1, z2)P(z2)

P(y |do(x)) = ∑
z2,z3

P(y |x, z1, z2, z3)P(z2)

∑
z1

P(z3 |x, z1)P(z1)

YX

Z

M

Conditional Front-Door

P(y |do(x)) = ∑
m,z

P(m |x, z)

∑
x′ 

P(y |m, x′ , z)P(x′ , z)
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 http://causalfusion.net

http://causalfusion.net


Do-Calculus (a.k.a. Causal Calculus) 
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Theorem: Let   be any disjoint subjects of variables.


Rule 1 (Insertion/Deletion of Observations)





Rule 2 (Exchange of Actions and Observations)





Rule 3 (Insertion/Deletion of Actions)


X, Y, Z, W

P(y |do(w), x, z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW

P(y |do(w), do(x), z) = P(y |do(w), x, z),  if (Y ⊥⊥ X |Z, W)GWX

P(y |do(w), do(x), z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW,X(Z)

Graphical conditions implying invariances between  
observational ( ) and interventional ( ) distributionsℒ1 ℒ2

: graph  after removing the incoming arrows into  and the outgoing arrows from ;

: set of -nodes that are not ancestors of any -node in . 

GWX G W X
X(Z) X Z GW

Pearl, 1995



Do-Calculus - Rule 1
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Theorem: Let   be any disjoint subjects of variables.


Rule 1 (Insertion/Deletion of Observations)


X, Y, Z, W

P(y |do(w), x, z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW

YW

X Z

(Y ⊥⊥ X |Z, W)GW

GW

YW

X Z

G

⟹ P(y |do(w), x, z) = P(y |do(w), z)

 is conditionally independent 
of  given  in the 
interventional model 

X
Y Z ∪ W

GW



Do-Calculus - Rule 2
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Theorem: Let   be any disjoint subjects of variables.


Rule 2 (Exchange of Actions and Observations)


X, Y, Z, W

P(y |do(w), do(x), z) = P(y |do(w), x, z),  if (Y ⊥⊥ X |Z, W)GWX

YX

Z W

G

⟹ P(y |do(w), do(x), z) = P(y |do(w), x, z)

GW

YX

Z W

 and  are unconfounded 
given  in the 

interventional model 

X Y
Z ∪ W

GW

(X ⊥⊥ Y |Z, W)GWX

GWX

YX

Z W



Do-Calculus - Rule 3
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Y X

W Z

G

 is not affected by any 
action on  given  in 
the interventional model 

Y
X Z ∪ W

GW

⟹ P(y |do(w), do(x), z) = P(y |do(w), z)

GW

Y X

W Z

(Y ⊥⊥ X |Z, W)GW,X(Z)

Y X

W Z

GW,X(Z)

Theorem: Let   be any disjoint subjects of variables.


Rule 3 (Insertion/Deletion of Actions)


X, Y, Z, W

P(y |do(w), do(x), z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW,X(Z)

: graph  after removing the incoming arrows into  and the outgoing arrows from ;

: set of -nodes that are not ancestors of any -node in . 

GWX G W X
X(Z) X Z GW



P(y |do(x)) = ∑
m

P(y |do(x), m)P(m |do(x))

= ∑
x′ 

∑
m

P(y |do(m), x′ )P(x′ |do(m))P(m |x)

= ∑
m

P(y |do(x), do(m))P(m |do(x))

= ∑
m

P(y |do(x), do(m))P(m |x)

= ∑
m

P(y |do(m))P(m |x)

= ∑
x′ 

∑
m

P(y |m, x′ )P(x′ |m)P(m |x)

= ∑
x′ 

∑
m

P(y |m, x′ )P(x′ |do(m))P(m |x)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Identification in Non-Markovian Models
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X YM

👍



The Identify (ID) Algorithm
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Inference 
Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

ID-Algorithm and many 
recent generalizations.



Advances on Effect Identification given a Causal Diagram

49

Identification from observational and experimental data: 

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary 
surrogate experiments. In Proceedings of the 35th Conference on Uncertainty in 
Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. 


J. Correa, S. Lee, E. Bareinboim. (2021) Nested Counterfactual Identification from 
Arbitrary Surrogate Experiments. In Proceedings of the 35th Annual Conference 
on Neural Information Processing Systems 


Identification of stochastic/soft (and possibly imperfect) interventions:


Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: 
Causal effect identification and surrogate experiments. In Proceedings of the 
34th AAAI Conference on Artificial Intelligence, New York, NY. AAAI Press. 



Advances on Effect Identification given a Causal Diagram
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Identification and Estimation via Deep Neural Networks: 


Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural 
connection: Expressiveness, learnability, and inference. Advances in Neural 
Information Processing Systems, 34. 


Xia, K., Pan, Y.,and Bareinboim, E. (2023) Neural Causal Models for Counterfactual 
Identification and Estimation. In Proceedings of the 11th International Conference 
on Learning Representations.


Partial Effect Identification: 


Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus; 
Stochastic Causal Programming for Bounding Treatment Effect. Proceedings of the 
Second Conference on Causal Learning and Reasoning, PMLR 213:142-176
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What if domain knowledge does not allow 
you construct a causal diagram?



Data-Driven Covariate Selection for Adjustment

52

Abhin Shah, Karthikeyan Shanmugam, and 
Kartik Ahuja. Finding valid adjustments under 
non-ignorability with minimal DAG knowledge. In 
International Conference on Artificial Intelligence 
and Statistics (AISTATS - 2022), pages 5538–5562. 
PMLR, 2022.

https://proceedings.mlr.press/v151/shah22a/shah22a.pdf
https://proceedings.mlr.press/v108/gultchin20a/gultchin20a.pdf


Effect Identification from Cluster DAGs (C-DAGs)
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Inference 
Engine

3 Data
P(x, m1, m2, m3, y)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
m123

P(m123 |x) ∑
x′ 

P(y |m123, x′ )P(x′ )

2 C-DAG

YX M1,2,3

Available 
(Observational) 

Distribution

Inferred 
(Interventional) 

Distribution 👍

Anand, T. V.*, Ribeiro A. H.*, Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster 
DAGs. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence.

 Extension of the ID and Ctf-ID 
algorithms to C-DAGs.



Effect Identification in Markov Equivalence Classes
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Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Can be constructed in a fully 
data-driven way!

Observational Distribution



Identification via Adjustment in Markov Equivalence Classes

55

Adjustment 
Criterion

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Observational Distribution

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and 
construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning 
Research 18 (2018) 1-62

Identification is possible only when the 
Generalized Adjustment Criterion applies.

https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf


General Identification in Markov Equivalence Classes
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IDP / CIDP

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) =
P(y1, y4, y5 |x1) . P(y2y3, y4, y5 |x2)

P(y4, y5)

2 PAG

X1

X2

Y1

Y2 Y3 Y4

Y5
Available 

(Observational) 
Distribution

Inferred 
(Interventional) 

Distribution 👍
Observational Distribution

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - 
Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information 
Processing Systems (NeurIPS 2022).

Complete algorithms,  
available at the PAGId R package:

https://github.com/adele/PAGId

https://github.com/adele/PAGId


Effect Identifiabiliy given a PAG
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An effect identifiable in a PAG  is identifiable in all causal diagrams  in the 
Markov Equivalence Class using the same identification formula!

𝒫 G

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

YX

ZW
𝒫

P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZW
G2

P(y |do(x)) =

∑
z

P(y |x, z)P(z)
YX

ZW
G1



Effect Non-Identifiabiliy given a PAG
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An effect not identifiable in a PAG  is not identifiable in at least one 
causal diagrams  in the Markov Equivalence Class

𝒫
G

𝒫
P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZWG1

YX

ZW

 is 
not identifiable
P(y |do(x))

G2

YX

ZW
 is 

not identifiable
P(y |do(x))



Causal Inference Workflow
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement



Causal Inference Workflow
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement



Current Challenges & Open Problems
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• Effect identification in more general equivalence classes. 


• Scalability through adaptive, goal-oriented data-driven identification tools.


• Causal effect estimation for general identification formula.


• Causal experimental design — what if a causal effect is not identified?


• Causal effects among abstractions: connection with causal abstraction 
and causal representation learning.


• Continual Causality - Integrating learning and effect identification



Additional Resources
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• Causality Tutorial:  https://github.com/adele/Causality-Tutorial/  
 Causal Effect Identification — Google Colab Notebook: (Link)


• Tutorials, talks, and complete lectures on YouTube: (Link)

→

adele.ribeiro@uni-marburg.de 

Feel free to reach out to me if you have any 
questions or are interested in collaborations. 

Thank you! :)

https://github.com/adele/Causality-Tutorial/
https://colab.research.google.com/github/adele/Causality-Tutorial/blob/main/Causal%20Effect%20Identification/CausalEffectIdentification.ipynb
https://www.youtube.com/@adelehelena
mailto:adele.ribeiro@uni-marburg.de

