
Neuro-Symbolic
Knowledge Representation

and
Reasoning

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

Preamble

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

3

• introductory
• aimed at general computer scientist

• taught by
• Jiaoyan Chen - days 3-5
• Uli Sattler - days 1-2

• explores combination/integration/collaboration of
• neural &
• symbolic

• approaches to knowledge representation, reasoning, ML, …

This course is

4

• is rather intensive
• 5 * 90mins
• no coursework, example classes, exercises

• requires a lot of attention
• please ask if something is unclear…

• is selective
• we cannot cover all approaches/applications/views

This course

5

Overview of this course

Day Topic Concepts Technologies

1 Knowledge Graphs parsing/serialisation, queries, schemas,
validation & reasoning RDF(S), SPARQL, SHACL,

2 Ontologies Facts & background knowledge,

entailments, reasoning & materialisation OWL, OWL API, Owlready, Protégé

3 Knowledge Graph
Embeddings

Classis Es, literal-aware Es, variants,
evaluation TransE, TransR

4 Ontology Embeddings Geometric embeddings, literal-aware OEs,

soundness & completeness

ELEm, BoxEL, Box2EL,  
OWL2Vec*, HiT

5 Applications & Outlook Preprocessing, materialisation, evaluation DeepOnto, mOWL

Motivation

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

7

• in relational database
✓ manipulation via SQL
✓ very fast access
✓ highly optimised DBMSs
✓ proven technology, well understood properties
✓ with ACID guarantees
‣ requires schema, certain normal forms, joins
‣ tricky for
‣ sharing/spontaneous usage
‣ many many-to-many relations
‣ navigational/path queries

How do we store/access data?

8

• as graphs/in graph database
• for objects and their relations
• manipulation:

• programmatically
• via query languages

• relatively new, but powerful DBMSs available
• often built ‘on top’ of RDMSs

• doesn’t require schema or normal forms or joins
• suitable for

• data with many many-to-many relations
• navigational/path queries
• sharing/integrating data

How do we store/access data?

jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

9

• objects + relations = knowledge?
• context
• meaning
• understanding

• data: factual, about individuals
• knowledge: conceptual, about

• concepts
• their relations

Data Graph or Knowledge Graph?

jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

dom
ain

range

domain

Person

Agentknows

title

Postgraduate

Sub
Clas

sO
f

SubClassOf

worksWith
SubPropOf

10

• store/access knowledge
• factual, about individuals
• conceptual

• relevant concepts
• their relations

• hierachical/logical
• domain dependent

• reason about it
• draw conclusions from the

explicitly stated knowledge

Knowledge Representation & Reasoning

jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

dom
ain

range

domain

Person

Agentknows

title

Postgraduate

Sub
Clas

sO
f

SubClassOf

worksWith
SubPropOf

11

• draw conclusions from the
explicitly stated knowledge

• E.g.,
• jchen is of type Person
• sattler is of type Person
• sattler knows npaton
• npaton is of type Person
• jchen is of type Postgraduate
• sattler is of type Agent
• …

Reasoning

type

type

ty
pe

type

type

jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

dom
ain

range

domain

Person

Agentknows

title

Postgraduate

Sub
Clas

sO
f

SubClassOf

worksWith
SubPropOf

kn
ow

s

via well-understood algorithms
implemented in powerful reasoners

12

• in KR&R, we use symbols for
• concepts

• eg Person, Postgraduate, …
• relations

• eg title, knows
• individuals
• …and build intelligent systems to deal with these

‣ where does our knowledge (graph) come from?
• domain experts, database, …

‣ what do we do with our knowledge?
• use them to harmonise KGs

KR&R and symbolic AI

capable of
reasoning

add inferred
types & links

13

• make explicit knowledge explicit
• reflect background knowledge

• no need to guess/predict links
• increase regularity in KG

➡ improve machine learnability

Harmonise KGs to…

jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

type
type

ty
petype

kn
ow

s

Person

Postgraduate

type

harmonise
jchen

sattler
knows

npaton

knows
work

sW
ith

title

“Dr.”
title

typetype

PersonPostgraduate

14

In sub-symbolic AI, we
• build/train a model

• artificial/deep/graph neural networks
• statistical methods
• …
to spot/learn regularities/patterns from data

• don’t need to
• formulate explicit rules
• identify the right terms/symbols

• get amazing results/performance

Sub-symbolic AI — Machine Learning

15

In sub-symbolic AI, we
• need huge amounts of data for training

• costly
• not always available

• bias in training data goes into model
• find it hard to analyse behaviour

• other than testing it
• independent on data

Sub-symbolic AI — Machine Learning

16

combines approaches
• neural/sub-symbolic and
• symbolic

Neuro-symbolic KR&R

• symbolic sub-symbolic
• inject background knowledge

into ML models
• informed embeddings

⇒ • sub-symbolic symbolic
• learn rules from data
• learn facts
• learn how to reason

⇒

17

• Knowledge Graphs
• RDF
• factual and conceptual knowledge

• Querying of and Reasoning with KGs
• SPARQL
• RDFS
• SHACL
• Materialisation of reasoning results

Today:

Day 1
Knowledge Graphs

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

19

come in different shapes
• Google KG

• both GDB and content
• Neo4J
• Amazon Neptune
• Arango
• RDF

• a W3C standard for KGs
• …

(Knowledge) Graphs

• nodes
• edges - between nodes
• labels - on edges and nodes

20

are everywhere
• “knows” on people

• social networks
• “isRelatedTo” in genealogy
• “interactsWith” on proteins

• bio-chemistry
• “educatedAt” etc in Wikidata
• …

(Knowledge) Graphs

21

• A graph G = (V,E) is a pair with
– V a set of vertices (also called) nodes, and
– E ⊆ V × V a set of edges

• Variants:
– (in)finite graphs: V is a (in)finite set
– (un)directed graphs: E (is) is not a symmetric relation

• i.e., if G is undirected, then (x,y) ∈ E implies (y,x) ∈ E.
– node/edge labelled graphs: a label set S, labelling

function(s)
• L: V → S (node labels)
• L: E → S (edge labels)

Graph Basics

Example:
G = ({a,b,c,d},
 {(a,b), (b,c), (b,d), (c,d)})

– where are a,….,d in this
graph’s picture?

22

• Example: node-labelled graph
– L: V → {A,P}

• Example: edge-labelled graph
– L: E → {p,r,s}

• Example: node-and-edge-labelled graph
– L: V → {A,P}
– L: E → {p,r,s}

Graph Basics (2)
A

A

P

A

p

p
p

r

p
p

r
pA

A

P

A

23

• Nodes ~ entities
• possibly with attributes for

 features of nodes
• Edges ~ relations between entities

• edge labels to describe kind

• Great for
• many-to-many relations
• cyclic relations
• path queries

Knowledge Graph

UliSattler

JiaoyanChen
knows

x

knows

title
Dr.

title
Count

Dracula lastName

Chen

las
tN

am
e

Sattler

las
tN

am
e

kn
ow

s

title
Dr.

title

Dr.

• Pictures are a bad external representations for graphs

24

Graph Basics: External Representation

A

A

P

A
A

A

P
A

=

G = ({a,b,c,d},
 {(a,b), (b,c), (b,d), (b,c)},
 L: V → {A,P}
 L: a ↦ A, b ↦ P, c ↦ A, d ↦A)

= =

= …

25

• Pictures are a bad external representations for graphs
• capture loads of irrelevant information

• colour
• location, geometry,
• shapes, strokes, …

• what if labels are more complex/structured?
• how do we parse a picture into an internal representation?

• what is a good internal representation?

Graph Basics: External Representation

A

A

P
A

Day 1: RDF
a graph-shaped data model

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

27

• RDF is an
• independent data model
• standardised by W3C
• supported by various of the about GBDMSs

• other graph formalisms/data models are available, eg
• Neo4J
• GraphDB
• MongoDB

A Graph Formalism: RDF…why?

28

• Resource Description Framework
• a graph-based data structure formalism
• a W3C standard for the representation of graphs
• comes with various syntaxes for External Representation
• is based on triples (subject, predicate, object)

A Graph Formalism: RDF

ObjectSubject

predicate

JiaoyanUli

knows
For example

29

• an RDF graph G is a set of triples

• where each
- si ∈ U ∪ B
- pi ∈ U
- oi ∈ U ∪ B ∪ L

RDF: basics

{(si, pi, oi) | 1 ≤ i ≤ n}

U: URIs, incl. rdf:type, B: Blank nodes, L: Literals

ObjectSubject predicate

U: URIs (for resources), incl. rdf:type
B: Blank nodes
L: Literals

30

• an RDF graph G is a set of triples

• where each
- si ∈ U ∪ B
- pi ∈ U
- oi ∈ U ∪ B ∪ L

RDF: basics

{(si, pi, oi) | 1 ≤ i ≤ n}

a graph
???

abbreviate: ex: for http://www.cs.man.ac.uk/
 foaf: for http://xmlns.com/foaf/0.1/

{(ex:jchen, foaf:knows, ex:sattler),
 (ex:jchen, rdf:type, foaf:Person),
 (ex:jchen, rdf:type, foaf:Agent),
 (ex:sattler, foaf:title, “Dr.”),
 (ex:sattler, foaf:lastName, “Sattler”),
 (ex:jchen, foaf:title, “Dr.”),
 (ex:sattler, foaf:knows, ex:npaton),
 (ex:jchen, foaf:knows, ex:npaton) }

U: URIs (for resources), incl. rdf:type
B: Blank nodes
L: Literals

http://xmlns.com/foaf/0.1/

31

• an RDF graph G is a set of triples

• where each
- si ∈ U ∪ B
- pi ∈ U
- oi ∈ U ∪ B ∪ L

RDF: basics

{(si, pi, oi) | 1 ≤ i ≤ n}

a graph
!!!

abbreviate: ex: for http://www.cs.man.ac.uk/
 foaf: for http://xmlns.com/foaf/0.1/

ex:jchen

ex:sattler

rdf:type

foaf:Person

foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

rdf:type

foaf:Agent

foaf:tit
le

“Dr.” foaf:title

foaf:title

“Sattler”

U: URIs (for resources), incl. rdf:type
B: Blank nodes
L: Literals

{(ex:jchen, foaf:knows, ex:sattler),
 (ex:jchen, rdf:type, foaf:Person),
 (ex:jchen, rdf:type, foaf:Agent),
 (ex:sattler, foaf:title, “Dr.”),
 (ex:sattler, foaf:lastName, “Sattler”),
 (ex:jchen, foaf:title, “Dr.”),
 (ex:sattler, foaf:knows, ex:npaton),
 (ex:jchen, foaf:knows, ex:npaton) }

http://xmlns.com/foaf/0.1/

32

RDF syntaxes

• “serialisation formats”
– for ExtRep of RDF graphs

– graphs are IntReps!
• there are several:

–Turtle
–N-Triples
–JSON-LD
–N3
–RDF/XML
–…

ex:jchen

ex:sattler

rdf:type

foaf:Person

foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

rdf:type

foaf:Agent

foaf:tit
le

“Dr.” foaf:title

{(ex:jchen, foaf:knows, ex:sattler),
 (ex:jchen, rdf:type, foaf:Person),
 (ex:jchen, rdf:type, foaf:Agent),
 (ex:sattler, foaf:title, “Dr.”),
 (ex:sattler, foaf:lastName, “Sattler”),
 (ex:jchen, foaf:title, “Dr.”),
 (ex:sattler, foaf:knows, ex:npaton),
 (ex:jchen, foaf:knows, ex:npaton) }

33

RDF syntaxes

• “serialisation formats”
– for ExtRep of RDF graphs

– graphs are IntReps!
• there are several:

–Turtle
–N-Triples
–JSON-LD
–N3
–RDF/XML
–…

@prefix rdf: <http://www.w3.org/
1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://www.cs.man.ac.uk/> .

ex:sattler
 foaf:title "Dr." ;
 foaf:lastName “Sattler" ;
 foaf:knows ex:jchen ;
 rdf:type foaf:Person ;
ex:jchen
 foaf:title "Dr." ;
 foaf:knows ex:npaton ;
 foaf:knows ex:sattler ;
.

7 triples in Turtle:

ex:jchen

ex:sattler

rdf:type

foaf:Person

foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

rdf:type

foaf:Agent

foaf:tit
le

“Dr.” foaf:title

{(ex:jchen, foaf:knows, ex:sattler),
 (ex:jchen, rdf:type, foaf:Person),
 (ex:jchen, rdf:type, foaf:Agent),
 (ex:sattler, foaf:title, “Dr.”),
 (ex:sattler, foaf:lastName, “Sattler”),
 (ex:jchen, foaf:title, “Dr.”),
 (ex:sattler, foaf:knows, ex:npaton),
 (ex:jchen, foaf:knows, ex:npaton) }

• “serialisation formats”
– for ExtRep of RDF graphs

– graphs are IntReps!
• there are several:

–Turtle
–N-Triples
–JSON-LD
–N3
–RDF/XML
–…

34

RDF syntaxes
ex:jchen

ex:sattler

rdf:type

foaf:Person

foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

rdf:type

foaf:Agent

foaf:tit
le

“Dr.” foaf:title

{"@context": {
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "title": "http://xmlns.com/foaf/0.1/title",
 "lastName": "http://xmlns.com/foaf/0.1/lastName",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 }, "@graph": [{
 "@id": "http://www.cs.man.ac.uk/sattler",
 "@type": "Person" ,
 "title": "Dr." ,
 "lastName": "Sattler",
 "knows": "http://www.cs.man.ac.uk/npaton"
 }, {
 "@id": "http://www.cs.man.ac.uk/jchen",
 "@type": "Person" ,
 "title": "Dr." ,
 "lastName": "Chen",
 "knows": ["http://www.cs.man.ac.uk/npaton",
 "http://www.cs.man.ac.uk/sattler"]}
]}

Triples in JSON-LD:

{(ex:jchen, foaf:knows, ex:sattler),
 (ex:jchen, rdf:type, foaf:Person),
 (ex:jchen, rdf:type, foaf:Agent),
 (ex:sattler, foaf:title, “Dr.”),
 (ex:jchen, foaf:title, “Dr.”),
 (ex:sattler, foaf:knows, ex:npaton),
 (ex:jchen, foaf:knows, ex:npaton) }

35

Parsing/serialising RDF graphs

your application

JSON-LD parser
RDF document,

in JSON-LD
JSON-LD Serializer

Graph-shaped
Internal

Representation

• See eg https://json-ld.org/
• See eg https://github.com/RDFLib/rdflib

• for Python parsers/serialisers/libraries
• for RDF/XML, N3, NTriples, N-Quads, Turtle, …
• with support for SPARQL for querying

https://json-ld.org/
https://github.com/RDFLib/rdflib

Day 1: SPARQL
a query language for RDF

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

37

SPARQL

• We have
– a data structure/internal representation: graphs!
– schema languages (later: RDF, SHACL)

• plus various external representions (Turtle, N3, N-triples, JSON-LD,..)
•For manipulating RDF graphs: you can use

• libraries for your favourite
 programming language:
• rdflib in Python
• Jena, RDF4J, CommonsRDF, … in Java
•…

• a query language
• SPARQL, a W3C standardised QL
• Cypher, supported by Neo4j

– http://neo4j.com/developer/cypher/
– has “graph structural” features
 like “shortest path”

– lacks “regular path” queries

http://neo4j.com/developer/cypher/

38

• are at the core of SPARQL queries:
• a BGP is a list/set of triple patterns

– e.g.,

– with abbreviations for shared subjects or predicates

– separated by .

• a triple pattern is a triple where variables
can be used as subject, predicate, or object
– e.g., {?x rdf:type foaf:Person}

SPARQL: Basic Graph Patterns
Bob

Wendy

F Pickles
Bill

ex:bobthebuilder
 foaf:firstName "Bob";
 foaf:lastName "Builder";
 foaf:knows ex:Wendy .

39

• We combine a BGP with a query type
– ASK

• e.g., ASK WHERE {ex:sattler rdf:type foaf:Person}
• returns true or false (only)

– SELECT
• e.g., SELECT ?p WHERE {?p rdf:type foaf:Person}
• very much like SQL SELECT

– Careful:
• ASK returns a Boolean (not an RDF graph!)
• SELECT returns a table (not an RDF graph!)
• SPARQL is not closed over graphs!

– unusual: compare to SQL or XQuery!

SPARQL: Clauses (1)
Bob

Wendy

F Pickles
Bill

40

• There are two query types that return graphs:
– CONSTRUCT

• e.g., CONSTRUCT {?p rdf:type :Befriended}
 WHERE {?p foaf:knows ?q}

• like XQuery element and attribute constructors
– DESCRIBE

• e.g., DESCRIBE ?p WHERE {?p rdf:type foaf:Person}
• implementation dependent!
• returns a“description”

– as a graph
– whatever the service deems helpful!
– similar to querying system tables in SQL

SPARQL Clauses (2)

41

Examples: Data
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://www.cs.man.ac.uk/> .

ex:bobthebuilder
 foaf:firstName "Bob";
 foaf:lastName "Builder";
 foaf:knows ex:wendy ;
 foaf:knows ex:farmerpickles;
 foaf:knows ex:billbibs.
ex:wendy
 foaf:firstName "wendy";
 foaf:knows ex:farmerpickles.

ex:farmerpickles
 foaf:firstName "Farmer";
 foaf:lastName "Pickles";
 foaf:knows ex:bobthebuilder.

ex:billbibs
 foaf:firstName "Bill";
 foaf:lastName "Bibby".

Bob
Wendy

F Pickles
Bill

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/
http://www.cs.man.ac.uk/

42

Example: Count Friends!
How many friends does Bob Builder have?

SELECT DISTINCT COUNT(?friend)
WHERE {ex:bobthebuilder
 foaf:firstName "Bob";
 foaf:lastName "Builder";
 foaf:knows ?friend };

SELECT COUNT(DISTINCT k.Whom)
FROM Persons P, knows k
WHERE (P.PersonID = k.Who AND
 P.FirstName = “Bob” AND
 P.LastName = “Builder”);Quite similar to a SQL query:

Bob
Wendy

F Pickles
Bill

43

Example: Find Friends’ Friends?

SELECT P3.FirstName , P3.LastName
FROM knows k1, knows k2, Persons P1, Persons P3
WHERE (k1.whom = k2.who AND
 P1.PersonID = k1.Who AND
 P3.PersonID = k2.Whom AND
 P1.FirstName = “Bob” AND
 P1.LastName = “Builder”);

Give me Bob Builder’s friends’ friends’ names?
SELECT ?first, ?last
WHERE {ex:bobthebuilder

 foaf:firstName "Bob";
 foaf:lastName "Builder";

 foaf:knows ?x.
 ?x foaf:knows ?y.
 ?y foaf:firstName ?first;
 foaf:lastName ?last}

As a SQL query:

Bob
Wendy

F Pickles
Bill

44

Friends network?
Give me everybody in Bob Builder’s friends’ friends…?

SELECT ?first, ?last
WHERE {ex:bobthebuilder

 foaf:firstName "Bob";
 foaf:lastName "Builder";

 foaf:knows+ ?friend.
 ?friend foaf:firstName ?first;
 foaf:lastName ?last}

a path
query

!!!!
works

without
cycle

detection
works

regardless
of path
length

Bob
Wendy

F Pickles
Bill

SPARQL supports
full regular expressions
in path queries!

45

• by hand
• eg Wikidata

• programmatically
• eg through REST APIs

Working with RDF graphs through SPARQL endpoints

Day 1: RDFS
a schema language for RDF

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

47

• in RDF, we can state factual knowledge:
• how 2 nodes relate

• e.g. (ex:sattler, foaf:knows, foaf:npaton)
• how a node relates to a literal

• e.g. (ex:jchen, foaf:title, “Dr.”)
• what type a node has via rdf:type

• e.g. (ex:sattler, rdf:type, foaf:Person)
• but we can’t say anything about

• classes
• e.g., foaf:Person implies foaf:Agent

• properties
• e.g., worksWith implies knows

RDF

ex:jchen

ex:sattler

rdf:type

foaf:Person

foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

rdf:type

foaf:Agent

foaf:tit
le

“Dr.” foaf:title

48

• in RDFS, we can state conceptual knowledge:
– rdfs:subClassOf

• e.g. (foaf:Person, rdfs:subClassOf, foaf:Agent)
• (ex:Woman, rdfs:subClassOf, foaf:Person)

– rdfs:subPropertyOf
• e.g. (ex:worksWith, rdfs:subPropertyOf, foaf:knows)

– rdfs:domain
• e.g. (ex:hasChild, rdfs:domain, foaf:Person)

 (foaf:currentProject, rdfs:domain, foaf:Person)
– rdfs:range

• e.g. (ex:hasChild, rdfs:range, foaf:Person)
 (foaf:currentProject, rdfs:range, foaf:Project)

RDFS: a schema language for RDF

p

Domain of p Range of p

• RDFS does not describe/constrain structure

– that is, unlike in other schema languages,

– in RDFS, we don’t describe what has to be the case
 we don’t write integrity constraints

– RDFS can’t be used to “validate” documents/graphs

• RDFS allows us to provide extra information

•…a bit like default values!

•…rather than requesting information, we infer it!

49

Reasoning: Default Values++

• RDFS does not describe/constrain structure

• RDFS allows us to provide extra information

50

Reasoning: Default Values++

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://www.cs.man.ac.uk/> .

ex:sattler
 foaf:title "Dr." ;
 foaf:knows ex:jiaoyanchen ;
 foaf:knows
 [
 foaf:title "Count";
 foaf:lastName "Dracula"
] .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:person rdfs:subClassOf foaf:Agent.

+

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://www.cs.man.ac.uk/> .

ex:sattler rdf:type foaf:Person.
ex:sattler rdf:type foaf:Agent.
ex:jiaoyanchen rdf:type foaf:Person.
ex:jiaoyanchen rdf:type foaf:Agent.=>

Facts

extra
information

inferences

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.cs.man.ac.uk/

• RDFS does not describe/constrain structure

• RDFS allows us to provide extra information

51

Reasoning: Default Values++

@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:Person rdfs:subClassOf foaf:Agent

ex:jchen

ex:sattler
foaf:knows

ex:npaton

foaf:knows
foa

f:k
no

ws

foaf:tit
le

“Dr.” foaf:title

rdf:type

rdf:type

rd
f:t

yp
e

foaf:Person

foaf:Agent

rdf
:S

ub
Clas

sO
f

dom
ain

range

knows

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

52

• In other schema languages, we usually describe ExtReps:
• what’s allowed
• what’s required
• what’s assumed

• default values
• what’s expected
• what’s forbidden (e.g., in Schematron)

• In RDFS, we can only state
• what’s assumed/known, and thus
• what can be inferred

• here: ex:jchen rdf:type foaf:Person.
 ex:sattler rdf:type foaf:Person.

What do schemas usually do again?

foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person

ex:jchen

ex:sattler
foaf:knows

53

• Inferences can be materialised
– add reasoning results to your KG

– make background knowledge explicit in KG
– harmonise your KG

SPARQL, RDFS, and Reasoning

RDFS
Reasoner

KG
Harmoniser

RDFS schema

KG

54

• SPARQL queries are sensitive to RDF(S) inference
– the way XPath is sensitive to default values!
– also sensitive to more expressive language inferences

• like OWL - tomorrow!

• Inference has a cost
– results may be surprising
– query answering may be (!) computationally expensive!

SPARQL, RDFS, and Reasoning

55

• No!
– RDFS can’t express complex conceptual knowledge

– see OWL tomorrow
– we need to decide which additional information to make explicit in KG

– too much: KG size may increase dramatically
– too little: missing knowledge

• No validation!
– this is a formalism specific quirk
– there is SHACL

Solves all problems?

Day 1: SHACL
another schema language for RDF

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

57

• in SHACL, we have shapes
• to describe constraints on nodes and edges:
• eg in our KG, each Person has to

 have a first name or a last name

SHACL: another schema language for RDF

 ex:PersonInstanceShape
 a sh:NodeShape ;
 sh:targetNode ex:Person ;
 sh:property [
 sh:path [sh:inversePath  
 rdf:type] ;
 sh:minCount 1 ;
] .

 ex:PersonInstanceShape
 a sh:NodeShape ;
 sh:targetNode ex:Person ;
 sh:property [
 sh:path [sh:alternativePath
 (foaf:firstName
 foaf:lastName)] ;
 sh:minCount 1 ;
] .

• eg our KG must have at least
 1 instance of Person

58

• given a KG and shapes, we can ask a validator to test
whether KG satisfies constraints in shapes:

SHACL: validation

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report
• different levels of severity

(from shapes)
• locations in KG
• error messages

(from shapes)

Day 1: RDFS & SHACL
an interesting relation

Uli Sattler
Professor in Computer Science
University of Manchester

ESSAI 2024 Athens

60

• can affect each other:

Validation and Reasoning…

RDFS
Reasoner

KG
Harmoniser

RDFS schema

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report

61

• can affect each other: it may be that

Validation and Reasoning…

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report

62

• can affect each other: it may be that but

Validation and Reasoning…

RDFS
Reasoner

KG
Harmoniser

RDFS schema

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report

“each Person must have
 a name”

63

• can affect each other: it may also be that

Validation and Reasoning…

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report

64

• can affect each other: it may be that but

Validation and Reasoning…

RDFS
Reasoner

KG
Harmoniser

RDFS schema

SHACL
Validator

KG

SHACL shape

“success”

“failure” + report

“our KG must have at least
 1 instance of Person”

65

• KGs can contain factual and conceptual knowledge
• eg in RDF and RDFS

• Reasoning makes implicit knowledge explicit
• Materialisation of reasoning results can

• harmonise a factual knowledge graph
• prevent us from validating invalid documents
• ensure that implicitly valid documents are validated

Summary of today

66

Any questions?

67

The End of Today’s session

Tomorrow: more on reasoning & OWL

68

• How can we vary?
– Same core data model, same implementation

– but different domain models
– Same core data model, same domain model

• different implementations, e.g., SQLite vs. MySQL
– Same shape of core data model, same conceptual model

• different formalisms!
– Usually, but not always, implies different implementations
– e.g. JSON and XML

• We can be explicitly or implicitly poly-
– If we encode another data model into our home model

• We are still poly-
• But only implicitly so
• Key Cost: Ad hoc implementation

– If we split our domain model across multiple formalisms/implementations

Polyglott persistence

69

• Understand your domain
– What are you trying to represent and

manipulate
• Understand your use case
 including (frequent, relevant) queries, error sources,…

• Understand the fit between domain and data
model(s)

– To see where there are sufficiently good
fits

• Understand your infrastructure

Key point

70

Consider again the Conceptual Model you started
to work on last week: can you

• finish/improve/extend it?
• add adjectives?
• add examples?

Question 1

– domain model
– schema
– schema language
– application
– system
– internal repr.
– …

– format
– formalism
– core data model
– data model
– database
– external repr.
– …

– robust
– extensible
– scalable
– self-describing
– valid
– expressive
– verbose
– …

71

Consider a format for a reporting system for
health & safety incidents, as exemplified by the

printed example document:
• sketch a system for

• gathering this data
• reporting it monthly

• which kind of schema(s) would you use to
describe it?

• why?
• does this format make good use of XML’s

Question 2

72

Good Bye!
• We hope you have learned a lot!
• It was a pleasure to work with you!
• Speak to us about projects

• taster/MRes
• MSc

• Enjoy the rest of your programme
• COMP62421 query processing
• COMP62342 rich modelling, inference

 semantic web, symbolic AI

Title Text

