

The University of Manchester

Neural-symbolic Knowledge Representation and Reasoning

Jiaoyan Chen

Lecturer in Department of Computer Science University of Manchester

ESSAI 2024 Athens

2

This course is

- introductory
- aimed at general computer scientist
- taught by
	- Uli Sattler days 1-2
	- **Jiaoyan Chen - days 3-5**
- explores combination/integration/collaboration of
	- Symbolic &
	- **Neural**
		- approaches to knowledge representation, reasoning, ML, ...

(Hiking in Egina, Greece, 11/2023)

Overview of this course

The University of Manchester

Day 3 Knowledge Graph Embeddings Part I: Foundations

• Feed symbols such as letters, words and entities into some statistical processing (e.g.,

• Represent the symbols by vectors with their **relationships** (**semantics**)

- Motivation:
	- machine learning and data mining)
- kept in the vector space
	- E.g.,
	- V(queen) V(king) \approx V(mother) V(father)
	-
- **Sub-symbolic or neural knowledge representation**

• There is some partnership between queen and king, and between father and mother

What is semantic embedding?

One-hot Representation

"The cat sat on the mat"

co change so stre the \Rightarrow $\overline{0}$ $\bf{0}$ U $cat \implies$ $\overline{0}$ $\overline{0}$ Ω Ω sat \Rightarrow 0 O

...

...

Vocabulary: (cat, mat, on, sat, the)

 \Rightarrow

cat: [1,0,0,0,0] mat: [0,1,0,0,0] on: [0,0,1,0,0] sat: [0,0,0,1,0] the: [0,0,0,0,1]

One-hot Representation

Dimension > 10000

"The cat sat on the mat" **cat** => $\frac{1}{0} \begin{array}{|c} 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \end{array}$

Vocabulary: (cat, mat, on, sat, the, …) (>10000) => cat: [1,0,0,0,0, ………… 0]

• **Could lead to a very high dimension**

- Consider a supervised learning problem with no enough samples …
- **Cannot keep the semantics**

 $sim(start, sun) = 0$

One-hot Representation

But they can act as the initial input of machine learning models with big data for training e.g., word embedding models

```
star [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \cdots]sun [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...]
```
 \cdot

Word Embedding

- - occurrence with **other words appearing in its contexts** kept
- E.g., Word2Vec -- neural network model by Google

• Distributed representation of words via learning from a large text corpus • Represent a word by a low-dimension (e.g., 500) dense vector with its correlation and co-

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." NIPS (2013)

Word Embedding (Word2Vec)

- Model #1: Continuous Skip-gram
	- Training Insight: given a word, predict the surrounding words in a sentence
	- Minimize the loss
		- on a large text corpus (big data)

Output (one-hot representations of surrounding words)

- Model #2: Continuous Bag of Word (CBOW)
	- Training Insight: mask a word in a sentence, predict this word with its surrounding words
	- Minimize the loss on
		- a large text corpus

Word Embedding (Word2Vec)

11

Word Embedding

$$
\mathbf{m}(u, v) = \sqrt{\sum_{i=1}^{n} |u_i - v_i|^2}
$$

$$
u, v) = 1 - \frac{\sum_{i=1}^{n} u_i \times v_i}{\|u\|_2 \times \|v\|_2}
$$

Wide application and great success in NLP

- E.g., "the bank robber was seen on the river bank"
- For non-contextual word embedding e.g., Word2Vec
	- **V(bank) = V(bank)**
	- One word one vector; ignore the context of a word
- For contextual word embedding e.g., BERT
	- **V(bank)** ≠ **V(bank)**
	- A word's vector varies from context to context
	- *arXiv:1810.04805* (2018)

• Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint*

Contextual and Non-contextual Word Embeddings

• "Knowledge Graph" was proposed by Google in 2012, referring to its services to enhance its

search engine's results with knowledge gathered from a variety of sources

- \cdot Knowledge \approx Instances + Facts, represented as RDF triples e.g., <Box, hasParent, Alex>
- •Linked and graph structured data

What is knowledge graph?

In this lecture we distinguish KG (Day 3) with ontology (Day 4). KGs are in form of RDF data, RDF Data + Literals, RDF data + schema/constraints/rules

14

• For each triple <*h*, *r*, *t*>, *h* is translated to *t* by *r (denoted by vector)*

TransE: Take relation as translation

RDF triples

Bordes, A., et al. "Translating embeddings for modeling multi-relational data." *Advances in neural information processing systems* 26 (2013).

<Bob, hasParent, Alex> <Alex, marriedTo, Lisa>

…

Sampling and Learning

 L_1 (Manhattan distance):

TransE: Take relation as translation

$$
\mathbf{d}_1(a, b) = \|a - b\|_1 = \sum_{i=1}^{n} a_i
$$

• Score function for a triple $f(h, l, t) = |h + l - t|_{L_1/L_2}$

 L_2 (Euclidean distance):

$$
\mathbf{d}_2(a,b) = \|a - b\| = \|a - b\|_2
$$

- Negative Sampling
	- Corrupting the head or tail
		- E.g., <Bob, hasParent, Lisa>, <Tom, hasParent, Alex>

TransE: Take relation as translation

TransE: Take relation as translation

Algorithm 1 Learning TransE input Training set $S = \{(h, \ell, t)\}\$, entities and rel. sets E and L, margin γ , embeddings dim. k. 1: **initialize** $\ell \leftarrow$ uniform $\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right)$ for each $\ell \in L$ Entities and relations are initialized $\ell \leftarrow \ell / ||\ell||$ for each $\ell \in L$ $2:$ $\mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each entity $e \in E$ uniformly, and normalized $3:$ 4: **loop** $\mathbf{e} \leftarrow \mathbf{e}/\|\mathbf{e}\|$ for each entity $e \in E$ $5:$ $S_{batch} \leftarrow sample(S, b)$ // sample a minibatch of size b 6: Favors lower distance (or $T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets $7:$ higher score) for true 8: for $(h, \ell, t) \in S_{batch}$ do $(h', \ell, t') \leftarrow$ sample $(S'_{(h, \ell, t)})$ // sample a corrupted triplet triplets, high distance (or 9: lower score) for false ones $T_{batch} \leftarrow T_{batch} \cup \{(h, \ell, t), (h', \ell, t')\}$ $10:$ end for $11:$ Update embeddings w.r.t. $\nabla[\gamma + d(\mathbf{h} + \ell, t) - d(\mathbf{h}' + \ell, t')]_{+}$ $12:$ $((h,\ell,t),(h',\ell,t'))$ $\in T_{batch}$ $13:$ end loop

TransE: Take relation as translation

 v_{Alex} $v_{Alex} = v_{Lisa}$!!

Limitation: Cannot deal with **one-to-many, many-to-one and many-to-many relations**

- To address the limitation of failing to model one-to-many, many-to-one and many-to-many relations
- TransH: model a relation as a hyperplane together with a translation operation on it

Variants of TransE: TransH

Wang, et al. (2014). Knowledge graph embedding by translating on hyperplanes, AAAI.

In <Bob, hasParent, Lisa> and <Bob, hasParent, Alex>, Lisa and Alex can have different embeddings, even they become the same when mapped to the hyperplane of hasParent.

• Assume the head and tail could lie in different spaces; map them into the same space where the relation lies before calculating the triple score

$$
f_r(h, t) = \|\mathbf{h}_r + \mathbf{r} - \mathbf{t}_r\|_2^2.
$$

$$
\mathbf{h}_r = \mathbf{h} \mathbf{M}_r, \quad \mathbf{t}_r = \mathbf{t} \mathbf{M}_r.
$$

Variants of TransE: TransR

Lin, et al. (2015). Learning entity and relation embeddings for knowledge graph completion, AAAI.

- End-to-end geometric modelling (e.g., TransE)
	- Steps: Define score functions to model the likelihood of triples; define loss functions; learn the embeddings by minimizing the losses
	- Translation-based & decomposition-based
	- Many others: TransD, DistMult, ComplEx, HolE, etc.

Knowledge Graph Embedding Paradigms

22

(Revisit)

• Graph Neural Networks

- A function of representations of neighbors and itself from previous layers
	- **Aggregation** of neighbors
	- **Transformation** to a different space
	- **Combination** of neighbors and the node itself

Knowledge Graph Embedding Paradigms

• CNN

Image

Convolved Feature

Convolutional Neural Network (CNN) vs GNN

• CNN

Image

Convolved Feature

Convolutional Neural Network (CNN) vs GNN

• GNN: Extend to irregular graph structure

• KG embedding with GNN

- Train a GNN unit the loss converges
- Use final layer output as the embedding

Output of a node v at layer t

 $h_v^{(t)} = f\left(h_v^{(t-1)}, \left\{h_u^{(t-1)} | u \in \mathcal{N}(v)\right\}\right)$

Representation vector from previous layer for node v

Graph Neural Network

representation vectors from previous layer for node v's neighbors

• GCN

$$
\mathbf{h}_v^k = \sigma \left(\mathbf{W}_k \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_u^{k-1}}{\sqrt{|N(u)||N|}} \right)
$$

 W_k : weight matrix at Layer k, shared across different nodes

R-GCN

To deal with **a graph with different relations** Output of a node *i* at layer $l + 1$ of **R-GCN**

$$
h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_i} \right)
$$

Relation-aware normalization constant

elation-aware

formation weights $\frac{1}{\ddot{r}_{i,r}}W_{r}^{(l)}h_{j}^{(l)}+W_{0}^{(l)}h_{i}^{(l)}$

Schlichtkrull, Michael, et al. "Modeling relational data with graph convolutional networks." *The semantic web: 15th international conference, ESWC 2018*.

• Extract sentences (sequences of entities) from the KG, with the relationship between

- Pipeline (e.g., RDF2Vec)
	- entities kept in the sentences
	- Learn a word embedding model

Knowledge Graph Embedding Paradigms

- undirected graphs
- Pipeline:
	- Random walk over a KG for entity and relation sentences

• A variant of node2vec and Deep Graph Kernel which originally support

RDF2Vec

Ristoski, Petar, and Heiko Paulheim. "Rdf2vec: Rdf graph embeddings for data mining." *International semantic web conference*. Springer, Cham, 2016.

- Pipeline:
	- Random walk over a KG for entity and relation sentences
	-

• Learn a CBOW or Skip-gram model (recall Word2Vec) with the sentences

RDF2Vec

Ristoski, Petar, and Heiko Paulheim. "Rdf2vec: Rdf graph embeddings for data mining." *International semantic web conference*. Springer, Cham, 2016.

- Pipeline:
	- Random walk over a KG for entity and relation sentences
	-

• Learn a CBOW or Skip-gram model (recall Word2Vec) with the sentences

RDF2Vec

Ristoski, Petar, and Heiko Paulheim. "Rdf2vec: Rdf graph embeddings for data mining." *International semantic web conference*. Springer, Cham, 2016.

The sentences (walks) mainly keep the correlation between entities!

The University of Manchester

Embeddings Part II: Advanced Topics

Day 3 Knowledge Graph

Embedding for Inductive KG Inference

Feature #1: Learn representation of the new entities and relations, or their graph patterns, for link prediction

Feature #2: The embeddings of the original entities and relations will not

The new relation has

 \blacktriangle

- Textual description: "A of a parent. Aunts who include auntie or aunty
- Schema (a meta graph) domain and range, sup

OntoZSL: Ontology Enhanced Zero-shot Learning

• Inductive KG inference for new relations with an ontological schema

Geng, Yuxia, et al. "Ontozsl: Ontology-enhanced zero-shot learning." *Proceedings of the Web Conference 2021*.

Generative Paradigm of ZSL

Literal-aware schema graph

41

• Embedding the literal-aware schema graph

OntoZSL: Ontology Enhanced Zero-shot Learning

- RMPI: Relational message passing for fully inductive KG completion • A testing graph with both unseen entities and unseen relations (c)
	-
	- Basic idea:
		- Learn graph patterns over **local subgraphs** with Graph Neural Networks (GNNs) in an entity-independent manner, i.e., in a view of relation

Solution #2: Utilizing the graph pattern

Geng, Yuxia, et al. "Relational message passing for fully inductive knowledge graph completion." 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023.

• Subgraph extraction and transformation

RMPI

6 Meta Relations represent connection patterns of relations in the original graph

44

• Graph pruning for optimization and prediction of target relation embedding

by neighborhood aggregation (GNN)

RMPI

RMPI (overall framework)

• Relatively less attention, but there are some works

• Challenges

- Consider training efficiency (instead of re-training)
-
-

• Detect what graph patterns are changed (similar to "Concept Drift" in stream learning). • Good testing performance on not only the new added part, but on the original part

Incremental Learning of KG Embeddings

Cui, Yuanning, et al., "Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs", AAAI 2023

47

• Adversarial attack is to change the least number of facts for training that have the

- Motivation: untargeted adversarial attack towards KG embeddings
	- largest negative impact during testing
	- E.g., Horn rules learned from embeddings for getting the facts to attack

Delete a Triple:

(Zoe Saldana, bornin, USA)

Fail to Learn a Positive Rule: bornin \land locatedin \rightarrow bornin

Robustness of KG Embeddings

Zhao, Tianzhe, et al. "Untargeted Adversarial Attack on Knowledge Graph Embeddings." SIGIR 2024.

- Embedding KGs with schemas/rules/constraints
	- RMPI & OntoZSL belong to this type, but there are many more …

Other Advanced Topics

Zhang, Wen, et al. "Knowledge graph reasoning with logics and embeddings: Survey and perspective." *arXiv preprint arXiv:2202.07412* (2022).

• Ecotoxicological effect analysis

Application of KG Embedding

Myklebust, Erik B., et al. "Prediction of adverse biological effects of chemicals using knowledge graph embeddings." *Semantic Web* 13.3 (2022): 299-338.

 \leftarrow Simplified ecotoxicological effect analysis pipeline with **experiments**

• Ecotoxicological effect analysis

Application of KG Embedding

Chemical Taxonomies

> \leftarrow Simplified idea of using KG embedding for ecotoxicological effect prediction

Embeddings + NNs

51

• Ecotoxicological effect analysis

> Toxicological effect and risk assessment (TERA) KG construction \rightarrow

Application of KG Embedding

Summary

- Knowledge Graph & Semantic embedding
	- One-hot, word embedding
- Knowledge graph embedding
	- Geometric modeling: TransE, TransH, TransR
	- GNNs: GCN, R-GCN
	- Sequence learning: RDF2Vec
- Advanced topics
	- Inductive inference: OntoZSL, RMPI; Incremental learning; Robustness
- Applications
	- Ecotoxicological effect analysis

The End of Day 3