

The University of Manchester

Neural-symbolic Knowledge Representation and Reasoning

Jiaoyan Chen

Lecturer in Department of Computer Science University of Manchester ESSAI 2024 Athens

This course is

- introductory
- aimed at general computer scientist
- taught by
 - Uli Sattler days 1-2
 - Jiaoyan Chen days 3-5
- explores combination/integration/collaboration of
 - Symbolic &
 - Neural
 - approaches to knowledge representation, reasoning, ML, …

(Hiking in Egina, Greece, 11/2023)

Overview of this course

Day	Topic	Concepts	Technologies
1	Knowledge Graphs	parsing/serialisation, queries, schemas, validation & reasoning	RDF(S), SPARQL, SHACL,
2	Ontologies	Facts & background knowledge, entailments, reasoning & materialisation	OWL, OWL API, Owlready, Proté
3	Knowledge Graph Embeddings	Classis Es, variants, inductive inference, literal-aware Es, incremental Es, application	TransE, TransH, TransR, GCN, GCN, OntoZSL, RMPI
4	Ontology Embeddings	Geometric embeddings, literal-aware OEs, faithfulness, evaluation & applications	ELEm, Box ² EL, OWL2Vec*, LogMap-ML, ZSL, m0
5	Language Models & KR, Discussion & Outlook	LM for KR, ontology & KG for LLM	BERTMap, BERTSubs, DeepOn ICON, BLINKOut, GraphRAG

The University of Manchester

Day 4 Ontology Embeddings

What is ontology?

Knowledge representation of a domain (e.g., concepts/classes, instances/entities, properties, and logical relationships)

- $\mathcal{T} = \{ \text{Father} \sqsubseteq \text{Parent} \sqcap \text{Male, Mother} \sqsubseteq \text{Parent} \sqcap \text{Female,} \}$ Child $\sqsubseteq \exists hasParent.Father, Child \sqsubseteq \exists hasParent.Mother,$ hasParent \sqsubseteq relatedTo}
- $\mathcal{A} = \{Father(Alex), Child(Bob), hasParent(Bob, Alex)\}$

A toy ontology on a family

- Formal
- Explicit
- Shared

Ontology Languages

- RDF, RDFS
- Web Ontology Language (OWL)
 - Schema and logical relationships (domain knowledge)
 - Taxonomies and vocabularies
 - $\mathcal{T} = \{ \text{Father} \sqsubseteq \text{Parent} \sqcap \text{Male, Mother} \sqsubseteq \text{Parent} \sqcap \text{Female,} \\ \text{Child} \sqsubseteq \exists \text{hasParent.Father, Child} \sqsubseteq \exists \text{hasParent.Mother,} \\ \text{hasParent} \sqsubseteq \text{relatedTo} \}$

 $\mathcal{A} = \{Father(Alex), Child(Bob), hasParent(Bob, Alex)\}$

An example from the food ontology FoodOn

Target Ontologies to Embed

- Simple ontologies with e.g., taxonomies
- Ontologies in RDFS or OWL (with Description Logic)
- Ontologies with literals
- Ontologies with large-scale KGs

Are KG embeddings applicable?

- Yes, because ontologies can be transformed into an RDF graph • E.g., W3C OWL to RDF Graph mapping

 - E.g., projection rules
- However, they are NOT for ontology embeddings as the semantics of (OWL) ontologies is much more complex
 - They introduce intermediate blank nodes or lose much semantics
 - How to distinguish the semantics of concepts and instances? How to separate the TAox and ABox?
 - How to model the logical relationships between concepts?

Description Logic \mathcal{EL}^{++}

Complex concepts are recursively defined as: $T \mid \perp \mid A \mid C \sqcap D \mid \exists r.C \mid \{a\}$

With role composition and inclusion: $r_1 \circ \cdots \circ r_k \sqsubseteq r$

A widely used segment of Description Logic due to its good balance between expressivity and reasoning complexity (polynomial) Corresponding to **OWL 2 EL** profile

Description Logic \mathcal{EL}^{++}

- - hasParent \sqsubseteq relatedTo}

Revisit the toy family ontology which is of \mathcal{EL}^{++}

 $\mathcal{T} = \{ \text{Father} \sqsubseteq \text{Parent} \sqcap \text{Male}, \text{Mother} \sqsubseteq \text{Parent} \sqcap \text{Female}, \}$ Child $\sqsubseteq \exists hasParent.Father, Child \sqsubseteq \exists hasParent.Mother,$ $\mathcal{A} = \{Father(Alex), Child(Bob), hasParent(Bob, Alex)\}$

• Geometric modeling:

- Each concept by a high dimension ball (a center and a radius)
- Each instance by a point
- Each binary relation (role) by a translation vector
- An embedding η is composed of two mapping functions (f_{η}, r_{η})

• f_{η} : $C \cup R \to \mathbb{R}^n$, $r_{\eta} : C \to \mathbb{R}$ (C denotes the concept set, R denotes the relation set)

Kulmanov, Maxat, et al. "El embeddings: Geometric construction of models for the description logic el++." IJCAI 2019.

11

• Training

- EL ontology is normalized into axioms of basic forms
- $C \sqsubseteq D, C \sqcap D \sqsubseteq E, C \sqsubseteq \exists R.D, \exists R.C \sqsubseteq D, C \sqsubseteq \bot, C \sqcap D \sqsubseteq \bot, \exists R.C \sqsubseteq \bot$
- Define score function for each form
- Define loss with positive and negative axioms
- Learning by stochastic gradient descent.

 $loss_{C \sqsubseteq D}(c, d) = \max(0, \|f_{\eta}(c) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) + \|\|f_{\eta}(c)\| - 1\| + \|\|f_{\eta}(d)\| - 1\|$

 $loss_{C \sqcap D \sqsubseteq E}(c, d, e) = \max(0, \|f_{\eta}(c) - f_{\eta}(d)\| - r_{\eta}(c) - r_{\eta}(d) - \gamma)$ $+ \max(0, \|f_{\eta}(c) - f_{\eta}(e)\| - r_{\eta}(e) - \gamma)$ $+ \max(0, \|f_{\eta}(d) - f_{\eta}(e)\| - r_{\eta}(e) - \gamma)$ $+ \max(0, \min(r_{\eta}(c), r_{\eta}(d)) - r_{\eta}(e) - \gamma)$ $+ |\|f_{\eta}(c)\| - 1| + |\|f_{\eta}(d)\| - 1| + |\|f_{\eta}(e)\| - 1|$

> (2) is an over approximation. The conjunction of two balls is no longer a ball

 $loss_{C \sqsubseteq \exists R.D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + \|f_{\eta}(c)\| - 1\| + \|f_{\eta}(d)\| - 1\|$

 $loss_{\exists R.C \sqsubseteq D}(c, d, r) = \\ \max(0, \|f_{\eta}(c) - f_{\eta}(r) - f_{\eta}(d)\| + r_{\eta}(c) - r_{\eta}(d) - \gamma) \\ + \|f_{\eta}(c)\| - 1\| + \|f_{\eta}(d)\| - 1\|$

 $loss_{C \sqcap D \sqsubseteq \bot}(c, d, e) = \\ \max(0, r_{\eta}(c) + r_{\eta}(d) - ||f_{\eta}(c) - f_{\eta}(d)|| + \\ + ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$

(4)

$$\gamma) \quad (5) \qquad (6)$$

$$loss_{\exists R.C \sqsubseteq \bot}(c, r) = r_{\eta}(c) \quad (7)$$

Negative samples

 $loss_{C \not \sqsubset \exists R.D}(c, d, r) =$ $\max(0, r_{\eta}(c) + r_{\eta}(d) - \|f_{\eta}(c) + f_{\eta}(r) - f_{\eta}(d)\| + \gamma)$ $+ ||f_{\eta}(c)|| - 1| + ||f_{\eta}(d)|| - 1|$

• Corrupt axioms of $C \subseteq \exists R.D$ for negative axioms in form of $C' \not\subseteq \exists R.D$ or $C \not\subseteq \exists R.D'$

15

- to-one and many-to-many relations
- Concept as ball: the intersection of two balls is no longer a ball Simple vector based translation cannot model one-to-many, many-
- Box²EL aims to address the two limitations
 - Concept as box
 - Bump vector for modeling concept relationship

Mathias, J., et al. "Dual box embeddings for the description logic EL++." Proceedings of the ACM on Web Conference 2024. 2024.

Concept: Box Instance: Point

How about $C \sqsubseteq \exists r. D$?

Concept: Box **Instance:** Point

Relation: Head Box & Tail Box $C \sqsubseteq \exists r. D: Box(C) + Bump(D) \subseteq Head(r)$ $Box(D) + Bump(C) \subseteq Tail(r)$

 $\mathcal{T} = \{ \text{Father} \sqsubseteq \text{Parent} \sqcap \text{Male, Mother} \sqsubseteq \text{Parent} \sqcap \text{Female,} \\ \text{Child} \sqsubseteq \exists \text{hasParent.Father, Child} \sqsubseteq \exists \text{hasParent.Mother,} \\ \text{hasParent} \sqsubseteq \text{relatedTo} \} \\ \mathcal{R} = \{ \text{Father}(\text{Alex}), \text{Child}(\text{Bob}), \text{hasParent}(\text{Bob}, \text{Alex}) \} \end{cases}$

Concept: Box Instance: Point

Relation: Head Box & Tail Box $C \sqsubseteq \exists r. D: Box(C) + Bump(D) \subseteq Head(r)$ $Box(D) + Bump(C) \subseteq Tail(r)$ A toy family ontology

19

ABox axioms are transformed to equivalent TBox axioms by nominals

 $C(a) \sim r(a,b) \sim c$

- $C(a) \rightsquigarrow \{a\} \sqsubseteq C$
- $r(a,b) \rightsquigarrow \{a\} \sqsubseteq \exists r.\{b\}$

- The following normalized axioms are considered as positive:
 - NF1: $C \sqsubseteq D$ NF5: $C \sqcap D \sqsubseteq \bot$ NF2: $C \sqcap D \sqsubseteq E$ NF6: $r \sqsubseteq s$ NF3: $C \sqsubseteq \exists r. D$ NF7: $r_1 \circ r_2 \sqsubseteq s$ NF4: $\exists r. C \sqsubseteq D$
- The axioms of NF3 are corrupted for negative axioms: $C' \not\subseteq \exists R. D$ or $C \not\subseteq \exists R. D'$

Element-wise distance of two boxes:

d(A, B) = |c(A) - c(B)| - o(A) - o(B)

- $c(\cdot)$: center vector $o(\cdot)$: offset vector
- $(d(A, B) \ge 0$: disjointed; otherwise, overlapped)

Demonstration on one dimension (horizontal)

• Box containment:

|*c*(*A*

 $\mathcal{L}_{\subseteq}(A,B) = \begin{cases} \|\max\{\mathbf{0}, \mathbf{d}(A)\| \\ \max\{\mathbf{0}, \mathbf{o}(A)\} \\ (\mathcal{L}_{\subseteq}(A,B) < = \mathbf{0}: \text{ contains} \end{cases}$

	В	

Demonstration on one dimension (horizontal)

$$A) - c(B)| - (o(B) - o(A)) - \gamma$$

$$A, B) + 2o(A) - \gamma \} \| \text{ if } B \neq \emptyset$$

$$b_1 + 1 \} \text{ otherwise}$$

 $(\mathcal{L}_{\subseteq}(A, B) \leq 0$: contain; otherwise, not contain)

Losses

$$\mathcal{L}_{1}(C,D) = \mathcal{L}_{\subseteq}(\operatorname{Box}(C),\operatorname{Box}(D))$$

$$\mathcal{L}_{2}(C,D,E) = \mathcal{L}_{\subseteq}\left(\operatorname{Box}(C) \cap \operatorname{Box}(D),\operatorname{Box}(E)\right)$$

$$\mathcal{L}_{3}(C,r,D) = \frac{1}{2}\left(\mathcal{L}_{\subseteq}(\operatorname{Box}(C) + \operatorname{Bump}(D),\operatorname{Head}(r)) + \mathcal{L}_{\subseteq}(\operatorname{Box}(D) + \operatorname{Bump}(C),\operatorname{Tail}(r))\right).$$

$$\mathcal{L}_{4}(r,C,D) = \mathcal{L}_{\subseteq}(\operatorname{Head}(r) - \operatorname{Bump}(C),\operatorname{Box}(D))$$

$$\mathcal{L}_{5}(C,D) = \|\max\{\mathbf{0}, -(d(\operatorname{Box}(C),\operatorname{Box}(D)) + \gamma)\}\|$$

$$\mathcal{L}_{6}(r,s) = \frac{1}{2}\left(\mathcal{L}_{\subseteq}(\operatorname{Head}(r),\operatorname{Head}(s)) + \mathcal{L}_{\subseteq}(\operatorname{Tail}(r),\operatorname{Tail}(s))\right)$$

$$\mathcal{L}_{7}(r_{1},r_{2},s) = \frac{1}{2}\left(\mathcal{L}_{\subseteq}(\operatorname{Head}(r_{1}),\operatorname{Head}(s)) + \mathcal{L}_{\subseteq}(\operatorname{Tail}(r_{2}),\operatorname{Tail}(s))\right)$$

Faithfulness

- target axioms are satisfied).
 - Resources", 2024.

THEOREM 1 (SOUNDNESS). Let $O = (\mathcal{T}, \mathcal{A})$ be an \mathcal{EL}^{++} ontology. If $\gamma \leq 0$ and there exist Box²EL embeddings in \mathbb{R}^n such that $\mathcal{L}(O) = 0$, then these embeddings are a model of O.

Briefly, an ontology embedding is faithful (also known as sound) if it preserves the structure (semantics) that it aims to preserve (i.e., all the

• See the formal definition in Chen, J., et al. "Ontology Embedding: A Survey of Methods, Applications and

Inductive Reasoning

- $\sqsubseteq E, C \sqsubseteq \exists r. D, \exists r. C \sqsubseteq D$
 - 20% masked (10% for test, 10% for validation), 80% kept (for training)

• General subsumption prediction for axioms of NF1 – NF4 ($C \sqsubseteq D, C \sqcap D$)

Inductive Reasoning

- $E, C \sqsubseteq \exists r. D, \exists r. C \sqsubseteq D$
 - 20% masked (10% for test, 10% for validation), 80% kept (for training)
- **Ranking-based evaluation**
 - For each test axiom, generate a set of candidate predictions by replacing the atomic side of the subsumption
 - Rank all the candidate predictions by a score based on the distances of the embeddings of the concepts (and the relation)
 - Metrics: the median rank (Med), the mean reciprocal rank (MRR), the mean rank (MR), the area under the ROC curve (AUC), Hits@K

 $s(C \sqsubseteq D) = -\|\boldsymbol{c}(\operatorname{Box}(C)) - \boldsymbol{c}(\operatorname{Box}(D))\|.$

• General subsumption prediction for axioms of NF1 – NF4 ($C \sqsubseteq D, C \sqcap D \sqsubseteq$

 $s(C \sqsubseteq \exists r.D) = - \|c(Box(C)) + Bump(D) - c(Head(r))\|$ $- \|\boldsymbol{c}(\operatorname{Box}(D)) + \operatorname{Bump}(C) - \boldsymbol{c}(\operatorname{Tail}(r))\|.$

Inductive Reasoning

	Model	H@1	H@10	H@100	Med	MRR	MR	AUC
	ELEm	0.01	0.12	0.29	1662	0.05	5153	0.78
Z	EmEL ⁺⁺	0.01	0.11	0.24	2295	0.05	5486	0.76
VLF	BoxEL	0.00	0.03	0.16	4785	0.01	7163	0.69
GA	ELBE	0.02	0.14	0.27	1865	0.06	5303	0.77
	Box ² EL	0.05	0.20	0.35	669	0.10	4375	0.81
	ELEm	0.03	0.24	0.43	272	0.09	6204	0.86
	EmEL ⁺⁺	0.03	0.23	0.38	597	0.09	6710	0.85
g	BoxEL	0.01	0.06	0.08	8443	0.03	14905	0.68
0	ELBE	0.01	0.10	0.22	1838	0.04	6986	0.85
	Box ² EL	0.04	0.23	0.59	48	0.10	3248	0.93
	ELEm	0.10	0.40	0.64	22	0.19	6464	0.94
utomy	EmEL ⁺⁺	0.11	0.36	0.57	36	0.19	8472	0.92
	BoxEL	0.03	0.12	0.28	1151	0.06	10916	0.90
Υnέ	ELBE	0.04	0.36	0.63	29	0.15	5400	0.95
Y	Box ² EL	0.16	0.47	0.70	13	0.26	2675	0.97

← Overall results on all normal forms of testing subsumptions on three ontologies

Result of axioms of each form can be found in the paper \downarrow

Mathias, J., et al. "Dual box embeddings for the description logic EL++." Proceedings of the ACM on Web Conference 2024. 2024.

(Approximate) Deductive Reasoning

- Assess faithfulness/soundness
- Experiment setting
 - Train with all the asserted axioms of an ontology
 - symbolic reasoner
 - Ranking-based evaluation

• Valid and test (10% & 90%) with the NF1 axioms ($C \sqsubseteq D$) that can be logically inferred by a

(Approximate) Deductive Reasoning

	Model	H@1	H@10	H@100	Med	MRR	MR	AUC	
EN	ELEm	0.00	0.04	0.20	1807	0.01	4405	0.81	Discussion.
	EmEL ⁺⁺	0.00	0.04	0.18	2049	0.01	4634	0.81	
AI	FIRE	0.00	0.00	0.01	0900 1785	0.00	7925	0.07	
0	Box ² EL	0.00	0.00	0.10	1003	0.02	2833	0.84	1. Not always 100%. Why? Faithfuln
6	ELEm	0.00	0.04	0.22	1629	0.02	7377	0.84	
	EmEL ⁺⁺	0.00	0.04	0.19	1346	0.01	6557	0.86	2. Deductive reasoning vs inductive
	BoxEL	0.00	0.00	0.13	1085	0.00	5359	0.88	razenina
Ŭ	ELBE	0.00	0.06	0.21	935	0.02	3846	0.92	reasuring
	Box ² EL	0.00	0.08	0.49	107	0.04	1689	0.96	
~	ELEm	0.00	0.07	0.28	901	0.02	7958	0.93	
E I	EmEL ⁺⁺	0.00	0.07	0.26	1576	0.02	10976	0.90	
ato	BoxEL	0.01	0.10	0.24	838	0.04	9156	0.92	
Ani	ELBE	0.00	0.08	0.32	336	0.03	2312	0.98	
7	Box ² EL	0.01	0.09	0.44	152	0.04	1599	0.99	

Visualization (Proof of Concept on the Family Ontology)

- Dimension n = 2
- Margin $\gamma = 0$, no negative samples, regularization length $\lambda = 1$
- An additional visualization loss to ensure the concept box volume is large enough for plotting

31

Link (Protein-Protein Interaction) Prediction

- OWL Ontology

 - TBox: The Gene Ontology (GO)
- Task
 - Predict missing subsumptions in form of $\{P_1\} \subseteq \exists r. \{P_2\}$
- Evaluation
 - Ranking-based metrics
 - 80%/10%/10% for train, validation and test sets

• ABox: protein-protein interactions (PPIs) from the STRING database, e.g., $(P_1, \text{ interacts}, P_2)$

Link (Protein-Protein Interaction) Prediction

	Model	H@10	H@10 (F)	H@100	H@100 (F)	MR	MR (F)	AUC	AUC (F)
	ELEm	0.10	0.23	0.50	0.75	247	187	0.96	0.97
st	EmEL ⁺⁺	0.08	0.17	0.48	0.65	336	291	0.94	0.95
ea	BoxEL	0.09	0.20	0.52	0.73	423	379	0.93	0.94
X	ELBE	0.11	0.26	0.57	0.77	201	154	0.96	0.97
	Box ² EL	0.11	0.33	0.64	0.87	168	118	0.97	0.98
	ELEm	0.09	0.22	0.43	0.70	658	572	0.96	0.96
an	EmEL ⁺⁺	0.04	0.13	0.38	0.56	772	700	0.95	0.95
Hum	BoxEL	0.07	0.10	0.42	0.63	1574	1530	0.93	0.93
	ELBE	0.09	0.22	0.49	0.72	434	362	0.97	0.98
	Box ² EL	0.09	0.28	0.55	0.83	343	269	0.98	0.98

Paradigms for Ontology Embedding

- Geometric modeling (like Box²EL)
 - Pros: interpretable; sound representation of formal semantics
 - features of OWL
- Sequence modeling •
 - Transform axioms and literals into sentences;
 - Train word embedding (sequence learning) models
- Graph propagation
 - Transform axioms into a graph

Cons: hard to incorporate informal semantics like textual literals; hard to deal with all the

Chen, J., et al.,"Ontology Embedding: A Survey of Methods, Applications and Resources." https://arxiv.org/abs/2406.10964.

Paradigms of Sequence Learning & Graph Propagation

- Belongs to the paradigm of sequence learning
 - Extract sequences from the ontology
 - Learn a word embedding model from the sequences
- Consider the semantics of
 - Axioms
 - Literals (text)
- Output embeddings of
 - Entities (concepts, relations and instances)
 - Tokens (words) of the text

Chen, J., et al., "Owl2vec*: Embedding of owl ontologies." Machine Learning 110.7 (2021): 1813-1845...

Embedding

Training

Combined Document: Sentences of Entity URIs and Words Lexical Document: Sentences of Words Lexical Information (e.g., by rdfs:label and rdfs:comment) OWL Ontology & Reasoning

← Pipeline

1. From OWL Ontology to RDF Graph

• Reasoning by E.g. HermiT can be enabled

Solution #1: W3C OWL to RDF Graph Mapping

e.g.,

<obo:FOODON_00002809, rdfs:subClassOf, _:x>

- <_:x, rdf:type, owl:Restriction>
- <_:x, owl:OnProperty, obo:RO_0001000>
- <_:x, owl:SomeValueFrom, obo:FOODON_03411347>

1. From OWL Ontology to RDF Graph

• Reasoning by E.g. HermiT can be enabled

Solution #2: Projection rules

Axiom of Condition 1	Axiom or Triple(s) of Condition 2	
$A \sqsubseteq \Box r.D$		
or	$D \equiv B \mid B_1 \sqcup \ldots \sqcup B_n \mid B_1 \sqcap \ldots \sqcap B_n$	
$\Box r.D \sqsubseteq A$		
$\exists r. \top \sqsubseteq A \text{ (domain)}$	$\top \sqsubseteq \forall r.B \text{ (range)}$	<4
$A \sqsubseteq \exists r.\{b\}$	B(b)	
$r \sqsubseteq r'$	$\langle A, r', B \rangle$ has been projected	
$r'\equiv r^-$	$\langle B, r', A angle$ has been projected	
$s_1 \circ \circ s_n \sqsubseteq r$	$\langle A, s_1, C_1 \rangle$ $\langle C_n, s_n, B \rangle$ have been projected	
$D \subseteq A$	_	$\langle A,$
4(a)		
A(a)		
r(a, b)	_	

 $\langle A,r,B
angle$ or $A,r,B_i
angle$ for $i\in 1,...,n$

e.g., <obo:FOODON_00002809, rdfs:subClassOf, obo:FOODON_03411347>

```
B, rdfs:subClassOf, A 
angle \ rdfs:subClassOf^-, B 
angle \ \langle a, rdf:type, A 
angle \ \langle A, rdf:type^-, a 
angle \ \langle a, r, b 
angle
```


2. Structure document – sentences of IRIs

Solution #1: Random walk + Weisfeiler-Lehman subtree kernel

E.g.,

- (vc:FOOD-4001, vc:hasNutrient, vc:VitaminC_100, vc:amountNutrient)
- (vc:FOOD-4001, rdf:type, kernel_id1_md5, rdfs:subClassOf, kernel_id2_md5)

2. Structure document – sentences of IRIs

Solution #1: Axiom serisation

E.g., OWL Manchester Syntax

(obo:FOODON_00002809, subClassOf, obo:RO_0001000, some, *obo:FOODON_03411347*)

41

3. Lexical document – sentences of tokens (words)

Solution #1: Transform from structure document

e.g., (vc:FOOD-4001, vc:hasNutrient, vc:VitaminC_100, vc:amountNutrient) \rightarrow ("blonde", "beer", "has", "nutrient", "vitamin", "c", "amount", "nutrient")

3. Lexical document – sentences of tokens (words)

Solution #2: Extraction from text of annotation properties

e.g., ("edamame", "edamame", "is", "a", "preparation", "of", "immature", "soybean", "in", "their", "pods" ...)

4. Combined document – sentences of tokens and IRIs

Solution: Replace one entity in every entity sequence by its words by random selection or traversal

e.g., (*vc:FOOD-4001*, *vc:hasNutrient*, *vc:VitaminC_100*, *vc:amountNutrient*) → (*vc:FOOD-4001*, "has", "nutrient", "vitamin", "c", "amount", "nutrient")

5. Word embedding model (CBOW)

- Optionally, pre-train by text corpus (e.g., from Wikipedia dump)
- Train by the structure, lexical and combined documents
- Entity vector: IRI vector and/or average word vector

Ontology Completion with OWL2Vec*

- Class membership ($a \in C$) and subsumption ($C \subseteq D$) prediction Similar setting as in Box²EL (rank candidate super classes, MRR, Hits@K)
- The candidates
 - Exclude ancestors except for the ground truth by reasoning Consider neighbors or/and similar classes of the ground truth
 - •
- Train a classifier (e.g., Random Forest) from declared subsumptions or memberships for prediction (a score s in [0,1])
 - $f: V_C, V_D \to s$, or $f: V_C, V_a \to s$
 - The embedding of an entity V: IRI vector, label's token vector, or their concatenation

Ontology Completion with OWL2Vec*

		HeLis				
	Method	MRR	Hits@1	Hits@5	Hits@10	
ſ	Transformer (label)	0.657	0.515	0.824	0.897	
	Transformer (all text)	0.599	0.390	0.870	0.912	 Membership prediction results on the Healthy Lifestyle Ontology (HeLis)
\square	RDF2Vec	0.345	0.219	0.460	0.655	
	TransE	0.181	0.09	0.232	0.355	
	TransR	0.298	0.184	0.391	0.559	
	DistMult	0.253	0.166	0.304	0.437	
	Quantum Embeding	0.159	0.132	0.163	0.190	
\square	Onto2Vec	0.211	0.108	0.268	0.397	
	OPA2Vec	0.237	0.146	0.286	0.408	
$\left\{ \right.$	OWL2Vec	0.335	0.215	0.397	0.601	
	Pre-trained Word2Vec	0.899	0.877	0.923	0.933	
	OWL2Vec*	0.953	0.932	0.978	0.987	
	(a) Membership P	rediction				

Ontology Completion with OWL2Vec*

		FoodOn						
	Method	MRR	Hits@1	Hits@5	Hits@10			
Γ	Transformer (label)	0.016	0.005	0.027	0.046			
	Transformer (all text)	0.022	0.011	0.032	0.050			
Γ	RDF2Vec	0.078	0.053	0.097	0.119			
	TransE	0.029	0.011	0.044	0.065			
l	TransR	0.072	0.044	0.093	0.130			
	DistMult	0.076	0.045	0.099	0.134			
	EL Embeding	0.040	0.014	0.067	0.099			
Γ	Onto2Vec	0.034	0.014	0.047	0.064			
	OPA2Vec	0.093	0.058	0.117	0.156			
	OWL2Vec ³	0.091	0.052	0.121	0.152			
	Pre-trained Word- 2Vec	0.136	0.089	0.175	0.227			
	OWL2Vec*	0.213	0.143	0.287	0.357			
	(b) Subsumption Pred	iction						

← Subsumption prediction results on the Food Ontology (FoodOn)

OWL2Vec* for Ontology Alignment

• Find concepts from two ontologies with a specific relationships such as equivalence

OWL2Vec* for Ontology Alignment

- Traditional system LogMap
 - Based on lexical matching and reasoning
 - Over-estimation \mathcal{M}_o : high recall, low precision
 - Anchor Mappings \mathcal{M}_a : high precision, low recall

ing recisior

Ernesto, J., et al. "Logmap: Logic-based and scalable ontology matching." ISWC 2011

LogMap-ML

- Calculate seed mappings
- Construct samples and train model
- Predict mapping scores

Chen, J., et al. "Augmenting ontology alignment by semantic embedding and distant supervision." ESWC 2021.

Other Applications of Ontology Embeddings

- Augmenting Machine Learning
 - E.g., injecting external knowledge of classes for zero-shot learning

Chen, J, et al. "Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey." Proceedings of the IEEE (2023).

Other Applications of Ontology Embeddings

- What is Zero-shot Learning
 - Predict samples with new classes that have never appeared in training
 - Seen classes vs unseen classes

Zero-shot Image Classification

Other Applications of Ontology Embeddings

External knowledge (a.k.a. side information) model the relationship between classes, thus enabling the transfer of the model from seen classes to unseen classes.

• Textual description: "Zebras are white animals with black stripes, they have larger, rounder ears than horses ..."

• Attribute descriptions, e.g., visual properties of animals

54

mOWL: A Library for Ontology Embeddings

Python interfaces for

- Ontology manipulation and transformation
- Ontology embedding algorithms and evaluation resources
 - e.g., ELEm, ELBE, BoxEL, Box²EL, OPA2Vec, OWL2Vec*, PPI datasets

https://github.com/bio-ontology-research-group/mowl

tion valuation resources PA2Vec, OWL2Vec*, PPI datasets

Zhapa-Camacho, F., et al. "mOWL: Python library for machine learning with biomedical ontologies." *Bioinformatics* 39.1 (2023): btac811.

mOWL: A Library for Ontology Embeddings

mOWL's workflows for ontology embedding implementation

Summary

- Ontology vs Knowledge Graph
- Geometric modeling ٠
 - Concept as ball: ELEm
 - Concept as box: Box²EL
 - Evaluation & application (ontology completion)
- Literal-aware ontology embedding
 - OWL2Vec*
 - Evaluation & application (ontology completion & alignment) •
- Ontology embedding for zero-shot learning
- mOWL: a library for ontology embedding

The End of Day 4

