
ESSAI July 2024

Dr. Timothy Wiley
School of Computing Technologies
RMIT University

Practical AI for Autonomous Robots

Day 5: Task Planning

Acknowledgement of Country
RMIT University acknowledges the people of the Woi wurrung and
Boon wurrung language groups of the eastern Kulin Nation on whose
unceded lands we conduct the business of the University.

RMIT University respectfully acknowledges their Ancestors and Elders,
past and present.

RMIT also acknowledges the Traditional Custodians and their Ancestors
of the lands and waters across Australia where we conduct our business.

ESSAI July 2024

Motivation

Find a Kitchen Item
Consider the following problem for a service robot:
§ “Human says to robot: Go a fetch a can of

<beverage> from the fridge and bring it to me
in the lounge room"

Questions:
• What type of information do we need to know for this problem?
• What type of information should be represented at the Deliberative layer?
• What type of "deliberations" need to be made for planning?

—
An Observation
The summer school have a variety of courses on:
• Knowledge Representation and Reasoning
• Symbolic Logics
• Symbolic Planning
What will be considered in this course is the practical issues of
deploying a symbolic planner onto a robotic platform

ESSAI July 2024

Recap

Software
Architectures

Software Architectures: Three-Layer

Bonasso, P. et. al. (1997). Experiences with an architecture for intelligent, reactive agents.
Journal of Experimental & Theoretical Artificial Intelligence 9(2-3):237– 256

Software Architectures: RCS

Albus, J. S. & Barbera, A. J. (2005) RCS: A cognitive architecture for intelligent multi-agent
systems. Annual Rev Control 29, 87–99.

Software Architectures: RCS

Albus, J. S. & Barbera, A. J. (2005) RCS: A cognitive architecture for intelligent multi-agent
systems. Annual Rev Control 29, 87–99.

ESSAI July 2024

For robotics

Symbolic
Task Planning

—
Task Planning formulation
We the discussions here we are going to define symbolic task
planning as a symbolic state-action plan, with:
• A State, s, that are symbolic representations of the numeric

state space of the robot, and, the environment
• An Action, 𝑎, are symbolic

representations of robot movement.
• Note that actions do not necessarily

need to directly correlate to one
actuator movement

• Actions are temporal, and may take
a variable length of time to execute

—
Task Planning formulation
Therefore a task plan is:
• A sequence of actions that, when executed, enable the robot so

change from an initial state to a goals state.
• Actions connect intermediate states

—
Executing Task Plans
A task plan is (naively) executed by:
1. Executing the first action of the task plan until the first

intermediate state is reached
2. Execution continues with subsequent actions, until the relevant

intermediate states are reached
3. Execution terminates on reaching the

goal state.

ESSAI July 2024

STRIPS

—
STRIPS Planning (as done on Shakey!)
STRIPS Planning is a very simple method for symbolic planning.
• State: Represented by logic predicates
• Actions:

• Name
• Precondition
• Postcondition
• Add list
• Delete list

A note for ESSAI’23
It’s likely many are quite familiar with STRIPS planning, and far more complex
planning languages.
We are going to start with STRIPS to investigate the issues of the practical side of
task planning on robot systems, and motivate more modern planning languages.

Blocks World
States:
• On(A,B)
• Clear(A)
• OnTable(A)
• Holding(A) ← For robot actions!

Actions:
• Pickup(X)
• Putdown(X)
• Stack (X,Y)
• Unstack (X,Y)

Blocks World
Pickup(x):
• Preconditions:

• Clear(x)
• OnTable(x)
• Holding(∅)

• Delete list:
• Clear(x)
• OnTable(x)
• Holding(∅)

• Add list:
• Holding(x)

Putdown(x)
• Precondition:

• Holding(x)
• Delete list:

• Holding(x)
• Add list:

• Clear(x)
• OnTable(x)
• Holding(∅)

Blocks World
Unstack(x,y):
• Preconditions:

• Clear(x)
• On(x,y)
• Holding(∅)

• Delete list:
• Clear(x)
• On(x,y)
• Holding(∅)

• Add list:
• Holding(x)
• Clear(y)

Stack(x,y)
• Precondition:

• Holding(x)
• Clear(y)

• Delete list:
• Holding(x)
• Clear(y)

• Add list:
• Clear(x)
• On(x,y)
• Holding(∅)

Baxter w/ Blocks World (Not quite STRIPS)

B. Hengst, et. al, A framework for integrating symbolic and sub-symbolic representations. 25th International
Joint Conference on Artificial Intelligence IJCAI-16. New York, New York, USA, 2016.

—
Issues that STRIPS highlights
STRIPS Planning is useful for highlighting challenges for symbolic
planning in real-world robotics:
• “Perfect” state assumption
• Symbolic to sub-symbolic correlation
• Observability / Occlusion
• Durative Actions
• Actions failure
• Outside Influences
• Response to real-time sensor updates
• Parallel Action

Baxter w/ Blocks World (Not quite STRIPS)

B. Hengst, et. al, A framework for integrating symbolic and sub-symbolic representations. 25th International
Joint Conference on Artificial Intelligence IJCAI-16. New York, New York, USA, 2016.

ESSAI July 2024

GOLOG

Symbolic to
Sub-Symbolic

—
State Representation at TLA layers
In a deliberative layer a symbolic representation, such as in
blocks-world, may represent the world state by:
• OnTable(A)
• On(B,A)
Below the reactive layer is sub-symbolic representations, that
"does not have symbolic entities or discrete elements" but,
typically, involves some form of numeric information.
In the reactive layer, this sub-symbolic information are sensor
information, including the camera. For the block's world this would
be a camera image of the layout of the world

—
State Representation at TLA layers
An current open research challenge is how to "bridge" these
representations in the sequencing layer. This is because, the
symbolic world is "idealistic", but the "real-world" has:
• Noise
• Error
• Non-determinism
• Hidden information
• Dynamic changing information

—
Potential Solutions
There are many potential solutions:
• Improve the "richness" of symbolic representations - that is, the

simple modelling is insufficient
• Embed sub-symbolic information in symbolic representations,

such as:
• OnTable (A, x, y, z)
• On(C,A, <relative position)

Using symbolic modelling of continuous variables, rather than pure
symbolic terms

ESSAI July 2024

Behaviour Structures

Tree / Graph

—
Decision Trees
Decision tree's can be used to define a 'planning' or behaviour
generation where the plan of actions to take is determined by the
structure of nodes the decision tree.
• Must conform to a tree-structure - that is, no loops
• Operate on a 'tick' cycle, where the tree is re-evaluated entirely

from top-to-bottom every tick
• The tree is evaluated until a leaf node is reached
• Nodes may: decide which children node is called, pass data to

children nodes, or generate a behaviour to execute in
sequencing/reactive layer(s).

• Nodes may: permit parallel actions, contain sub-decision trees,
or other planning approaches.

Decision Trees

Image: Röfer, T. RoboCup 2017: Robot World
Cup XXI. Lecture Notes Computer Science 135–
142 (2018) doi:10.1007/978-3-030-00308-1_11.

Decision Trees

Image: RedbackBots internal
documentation 2023.

—
Decision Trees
Advantages of decision trees:
• Relatively simple structure to understand and implement
• In principle, should be very quick to evaluate
• Good for 'simple' rule-based or deterministic behaviours
• Can avoid being 'stuck' in local decisions, as they 'globally' re-

evaluate the decision
• Markovian decision making: can be quick to switch

context(s)/decisions with new information

—
Decision Trees
Disadvantages:
• 'Complex' behaviours can be quite challenging to design
• Grow 'exponentially' in complexity as more nodes as added, in

terms of the number of interactions of nodes, and decision
between nodes.

• Have no real concept of 'planning’. A plan is 'implicitly
represented' in the decision tree structure.
• Do not 'look ahead’ for future decisions in future ticks.
• No past introspection of previous decisions.
• No concept of "durative" actions operating over time.

—
Finite State Machines
Finite State Machines allow for a more explicit concept of a
behaviour (or action) operating over the time, until a decision is
made to change to a new behaviour (or action).
Finite State Machines also operate on a tick-basis, however
compared to decision trees, each tick:
• Determines if the current node should be run, or if there should

be a transition to another node.
• If there is no transition, the node:

• Generates a behaviour to execute in sequencing/reactive
layer(s), or

• Continues executing the previous generated behaviour.

Finite State Machines

Image: SPL Soccer Rules Document 2024

—
Finite State Machines
Advantages:
• Only the current node of the FSM is evaluated.
• Quick to evaluate and execute.
• Prefer smooth transitions between adjacent nodes, rather than

abrupt changes to completely different behaviours.
• Concept of 'durative' actions.
• Markovian Node transitions:

• Once a transition is made, there is no history at why that
node is now 'running’.

• No complex interaction between 'chains' of node transitions.
• Prefer simple structure with few transitions between nodes.

—
Finite State Machines
Disadvantages:
• Logic might need to be repeated in different nodes where there

are similarities.
• The lack of a global view can lead to becoming 'stuck' in local

regions of the state machine or be slower 'to quickly react' to
major changes in the environment.

• Also have no real concept of 'planning’.
• Difficult to define complex behaviours that require transitions

across sequences of nodes.
• The graph may devolve into a complex structure, at worse to a

complete (fully connected) graph.

—
Behaviour Tree
Behaviour trees are a mix of the tree structure of a decision tree,
and the durative operation of finite state machines.
Behaviour tree are a tree like-structure of Control Flow Nodes, and
Execution Nodes:
• Control nodes determine how execution nodes are structured.
• Execution nodes generate behaviours for the

sequential/reactive layer.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE journal on robotics and
automation, 2(1), 14-23

—
Behaviour Tree
An execution node:
• Operates durativity each tick until it either terminates in success

or failure.
• Returns each tick one of three statuses to its parent node:

• Running - the node is executing
• Success - the node has terminated in success
• Failure - the node has terminated in failure

If the root node of the behaviour tree returns failure, the whole tree
may be re-executed from the start. Additionally, the whole tree may
be intermittently re-evaluated/re-started to avoid becoming stuck in
a local execution node.

—
Behaviour Tree
Behaviour trees provide two core control nodes:
• Sequence

• A sequential order for nodes to operate.
• Presumes each node succeeds.

• Fallback
• A sequence of alternative options of nodes to execute if a

node fails

Behaviours Trees are used to implement the ROS2 Navigation
(Nav2) stack.

Behaviour Tree

Image: Behaviour Tree CPP Documentation (https://www.behaviortree.dev/docs/learn-the-basics/BT_basics)

—
Behaviour Tree
Advantages:
• Only the current node is evaluated.
• Quick to evaluate and execute.
• Concept of 'durative' action.
• Provides a more "programming" control flow structure over node

execution.
• The structure can be thought of in theory as a pre-defined plan.
• Allows for ‘planning for failure’.

—
Behaviour Tree
Disadvantages:
• Can become 'stuck' in execution nodes.
• May not react 'quickly' to major changes in the environment.
• Also have no real concept of 'planning.
• Do not handle re-planning very well, outside of what is explicitly

represented in the behaviour tree for failure handling.
• Unable to return to earlier items in the tree sequence without

the whole tree first failing. This can lead to unintended
behaviour if later execution nodes commence operation after
changes in the environment break assumptions of earlier nodes.

ESSAI July 2024

GOLOG

Agent Programming
Languages

—
GOLOG Programming Language
Golog is a logic-based agent programming language built on-top of
Prolog, that facilitates the representation and execution of actions:
1. Actions: Predicates that can be any operation that modifies the

state of the environment or the agent itself.
2. Fluents: represent state information that can change over time.

This allows reasoning about dynamic aspects of the
environment and update the state information.

3. Concurrent Actions: execution of multiple actions concurrently.
4. Non-Deterministic Choice: This allows the agent to determine

different possible actions where it is unknown the probably of
either alternative to explore different possibilities.

Goals: represent the desired state of the agent

—
Task Planning Problem
Devise a task plan to “go and get a beverage from the fridge”.
Assumes knowledge of:
• Rooms of the house
• Objects in each room
• Relationship between objects
• Tracking of “person” locations
• Tracking state of “modifiable” objects

GOLOG Program: Fluents
:- dynamic at/1, opened/1, has/1. % Declare dynamic predicates for fluents

GOLOG Program: Actions
% Move between locations
move(Location1, Location2) :-
 can_move(Location1, Location2),
 assert(at(Location2)),
 retract(at(Location1)).

% Open the fridge
open(Fridge) :-
 at(Location),
 can_open(Location, Fridge),
 assert(opened(Fridge)).

% Close the fridge
close(Fridge) :-
 at(Location),
 opened(Fridge),
 can_close(Location, Fridge),
 retract(opened(Fridge)).

% Grab an item from the fridge
grab(Item) :-
 at(Location),
 opened(Fridge),
 can_grab(Location, Item),
 assert(has(Item)).

GOLOG Program: Rules
% Define the conditions for allowed moves
can_move(Location1, Location2) :-
 connected(Location1, Location2).

% Define the conditions for opening the fridge
can_open(Location, Fridge) :-
 fridge(Location, Fridge),
 \+ opened(Fridge).

% Define the conditions for closing the fridge
can_close(Location, Fridge) :-
 fridge(Location, Fridge),
 opened(Fridge).

% Define the conditions for grabbing an item from the fridge
can_grab(Location, Item) :-
 fridge(Location, fridge),
 item_in_fridge(fridge, Item).

GOLOG Program: Goal
% The goal is to have a can of coke
goal :-
 has(coke).

GOLOG Program: Procedures
% Procedure to navigate to a specific location
goto(Location) :-
 at(CurrentLocation),
 move(CurrentLocation, Location).

% Procedure to open the fridge and grab an item
open_and_grab(Item) :-
 open(fridge),
 grab(Item),
 close(fridge).

% Procedure to choose a fridge non-deterministically
choose_fridge(Fridge) :-
 (fridge(kitchen, Fridge) ; fridge(garage, Fridge)).

GOLOG Program: Main planning program
main :-
 goal, % Define the goal
 choose_fridge(Fridge),
 fridge(Location, Fridge),
 goto(Location),
 open_and_grab(coke).

% Initial State
at(starting_location).
connected(starting_location, kitchen).
connected(kitchen, garage).
fridge(kitchen, fridge1).
fridge(garage, fridge2).
item_in_fridge(fridge1, coke).

ESSAI July 2024

The End
Dr. Timothy Wiley
School of Computing Technologies
RMIT University

—
Thank you
I would like to express my deep thanks for everyone who has attended these classes
over the week. I have very much enjoyed this week. I hope that I have provided
some insight into what robotics can offer and how to apply AI in real-world settings.
Please feel free to connect and stay in touch!
• Course Resources: https://timothy-wiley.github.io/essai.html
• LinkedIn: https://www.linkedin.com/in/timothy-wiley-948a9113/
• Email: timothy.wiley@rmit.edu.au
• Twitter: https://twitter.com/time_wiley

https://timothy-wiley.github.io/essai.html
https://www.linkedin.com/in/timothy-wiley-948a9113/
mailto:timothy.wiley@rmit.edu.au
https://twitter.com/time_wiley

ESSAI July 2024

Noon Gudgin
Thank you

