
Quantification Methods
Quantification: Predicting Class Frequencies

via Supervised Learning

Alejandro Moreo, Fabrizio Sebastiani

ISTI-CNR, Pisa, Italy
{alejandro.moreo,fabrizio.sebastiani}@isti.cnr.it

ESSAI
Athens, Greece – July 22-26, 2024

Introduction

Outline

1 Introduction
2 Methods

Aggregative Quantifiers
General-purpose learners
Specific-purpose learners

Non-aggregative Quantifiers
Meta-quantifiers

3 Model Selection
4 Conclusions

2 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier

• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier

• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier

• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier

• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier

• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier
• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier

• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier
• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier
• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap

• X = Rd input space

• Y = {y1, y2, . . . , yn} label space; n the number of classes

• x ∈ X a data instance

• L = {(x(i), y (i))}mi=1 training data, sampled IID from distribution P

• U = {x(i)}m′

i=1 test data, sampled IID from distribution Q

• pσ(y) the true prevalence of y in sample σ (the “prior”)

• p̂Mσ (y) the prevalence of y in σ as estimated by method M

• h : X → Y a hard classifier
• h(x) = ŷ a predicted label

• s : X → ∆n−1 a soft classifier
• si (x) = P(yi |x) a posterior probability

• X , Y , Ŷ random variables

3 / 70

Introduction

Notation Recap (cont’d)

• In a binary setting, we might write Y = {⊖,⊕}
• A binary classifier h is characterized by the contingency table:

pred

ŷ = ⊖ ŷ = ⊕
tr
u
e y = ⊖ TN FP

y = ⊕ FN TP

• Useful values:

true positive rate false positive rate

tprh = TP
TP+FN fprh = FP

FP+TN

4 / 70

Introduction

Classification VS Quantification

Classification

• Given a labeled training set,
learn a classifier

h : X → Y

• ŷ = h(x), where x ∈ X is a
feature vector, and
ŷ ∈ {y1, . . . yn} is a class label

• Error:
false positives, false negatives

Quantification

• Given a labelled training set,
learn a quantifier

q : NX → ∆n−1

• p = q(σ), with σ a sample of
feature vectors, and p a vector
of class prevalence values

• Error:
underestimation, overestimation

• IID assumption • Prior probability shift (PPS)

5 / 70

Introduction

Classification VS Quantification

Classification

• Given a labeled training set,
learn a classifier

h : X → Y

• ŷ = h(x), where x ∈ X is a
feature vector, and
ŷ ∈ {y1, . . . yn} is a class label

• Error:
false positives, false negatives

Quantification

• Given a labelled training set,
learn a quantifier

q : NX → ∆n−1

• p = q(σ), with σ a sample of
feature vectors, and p a vector
of class prevalence values

• Error:
underestimation, overestimation

• IID assumption • Prior probability shift (PPS)

5 / 70

Introduction

Prior probability shift (PPS)

• The need to perform quantification arises because of PPS.

• If we knew there is no shift, the problem would become trivial:
• the training prevalence would already be a good estimator!

6 / 70

Introduction

Prior probability shift (PPS)

• PPS is a special case of dataset shift in which

P(X ,Y) ̸= Q(X ,Y)

• Factorization P(X ,Y) = P(X |Y)P(Y). PPS assumptions:

P(Y) ̸= Q(Y)

P(X |Y) = Q(X |Y)

• Dataset shift may derive when
• the environment is not stationary and the operating conditions are

irreproducible at training time
• in presence of sample selection bias, when the process of labelling training

data introduces bias:
• explicitly (e.g., by oversampling the minority class)
• implicitly (e.g., if active learning is used)

7 / 70

Introduction

Prior Probability Shift (PPS)

8 / 70

Introduction

Prior Probability Shift (PPS)

8 / 70

Introduction

Prior Probability Shift (PPS)

8 / 70

Introduction

Prior Probability Shift (PPS)

8 / 70

Introduction

Prior Probability Shift (PPS)

8 / 70

Methods

Outline

1 Introduction
2 Methods

Aggregative Quantifiers
General-purpose learners
Specific-purpose learners

Non-aggregative Quantifiers
Meta-quantifiers

3 Model Selection
4 Conclusions

9 / 70

Methods

An overview of the quantification methods

Quantification Methods

Aggregative Non-aggregative Meta-quantifiers

General-purpose learners Explicit Loss Minimization

10 / 70

Methods Aggregative Quantifiers

Aggregative Quantification
General-Purpose Learners

11 / 70

Methods Aggregative Quantifiers

Classify & Count

Classify and Count (CC) consists of:

1 generating a classifier h from L

2 classifying the items in U

3 estimating pU(yi) by counting the items predicted to be in yi , i.e.,

p̂CCU (yi) =
|{x ∈ U : h(x) = yi}|

|U|

12 / 70

Methods Aggregative Quantifiers

Classify & Count

• But a good classifier is not necessarily a good quantifier:

y = ⊖ y = ⊕
ŷ = ⊖ TN FN
ŷ = ⊕ FP TP

#ActualPositives=100 (16.7%)
#ActualNegatives=500 (83.3%)
#Instances=600

h1 y = ⊖ y = ⊕
ŷ = ⊖ 480 5
ŷ = ⊕ 20 95

#Errors=25, Accuracy=96%
#PredictedPositives=115 (19.1%)
#ActualPositives=100 (16.7%)

h2 y = ⊖ y = ⊕
ŷ = ⊖ 470 30
ŷ = ⊕ 30 70

#Errors=60, Accuracy=90%
#PredictedPositives=100 (16.7%)
#ActualPositives=100 (16.7%)

• Which classifier would you prefer?

13 / 70

Methods Aggregative Quantifiers

Classify & Count

• But a good classifier is not necessarily a good quantifier:

y = ⊖ y = ⊕
ŷ = ⊖ TN FN
ŷ = ⊕ FP TP

#ActualPositives=100 (16.7%)
#ActualNegatives=500 (83.3%)
#Instances=600

h1 y = ⊖ y = ⊕
ŷ = ⊖ 480 5
ŷ = ⊕ 20 95

#Errors=25, Accuracy=96%
#PredictedPositives=115 (19.1%)
#ActualPositives=100 (16.7%)

h2 y = ⊖ y = ⊕
ŷ = ⊖ 470 30
ŷ = ⊕ 30 70

#Errors=60, Accuracy=90%
#PredictedPositives=100 (16.7%)
#ActualPositives=100 (16.7%)

• Paradoxically, for quantification purposes we should prefer h2 to h1
• Problem:

• classifiers are tuned to minimize (FP+FN) (or a proxy of it)
• quantifiers should minimize |FP−FN |

14 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

CC against PPS

15 / 70

Methods Aggregative Quantifiers

ACC

• Adjusted Classify and Count (ACC, a.k.a. the Confusion Matrix Method) is
based on the law of total probability:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

• The Q(Ŷ = yi)’s are observed; indeed, this is p̂CC(yi).

• The Q(Ŷ = yi |Y = yj)’s represent the “class-conditional bias”, that are
unknown but that can be estimated on L via k-fold cross-validation.

• The Q(Y = yj) are the true priors, that we want to estimate.

• We have a system of n linear equations (n = |Y|) with n unknowns!

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.
16 / 70

Methods Aggregative Quantifiers

ACC

• Adjusted Classify and Count (ACC, a.k.a. the Confusion Matrix Method) is
based on the law of total probability:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

• The Q(Ŷ = yi)’s are observed; indeed, this is p̂CC(yi).

• The Q(Ŷ = yi |Y = yj)’s represent the “class-conditional bias”, that are
unknown but that can be estimated on L via k-fold cross-validation.

• The Q(Y = yj) are the true priors, that we want to estimate.

• We have a system of n linear equations (n = |Y|) with n unknowns!

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.
16 / 70

Methods Aggregative Quantifiers

ACC

• Adjusted Classify and Count (ACC, a.k.a. the Confusion Matrix Method) is
based on the law of total probability:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

• The Q(Ŷ = yi)’s are observed; indeed, this is p̂CC(yi).

• The Q(Ŷ = yi |Y = yj)’s represent the “class-conditional bias”, that are
unknown but that can be estimated on L via k-fold cross-validation.

• The Q(Y = yj) are the true priors, that we want to estimate.

• We have a system of n linear equations (n = |Y|) with n unknowns!

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.
16 / 70

Methods Aggregative Quantifiers

ACC

• Adjusted Classify and Count (ACC, a.k.a. the Confusion Matrix Method) is
based on the law of total probability:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

• The Q(Ŷ = yi)’s are observed; indeed, this is p̂CC(yi).

• The Q(Ŷ = yi |Y = yj)’s represent the “class-conditional bias”, that are
unknown but that can be estimated on L via k-fold cross-validation.

• The Q(Y = yj) are the true priors, that we want to estimate.

• We have a system of n linear equations (n = |Y|) with n unknowns!

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.
16 / 70

Methods Aggregative Quantifiers

ACC

• Adjusted Classify and Count (ACC, a.k.a. the Confusion Matrix Method) is
based on the law of total probability:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

• The Q(Ŷ = yi)’s are observed; indeed, this is p̂CC(yi).

• The Q(Ŷ = yi |Y = yj)’s represent the “class-conditional bias”, that are
unknown but that can be estimated on L via k-fold cross-validation.

• The Q(Y = yj) are the true priors, that we want to estimate.

• We have a system of n linear equations (n = |Y|) with n unknowns!

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.
16 / 70

Methods Aggregative Quantifiers

ACC

• But why can we use the “class-conditional bias” of the training set as an
estimate of the one in the test set? That is:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

=
∑
yj∈Y

P(Ŷ = yi |Y = yj) · Q(Y = yj)

• This is a direct consequence of the PPS assumptions:

[P(X |Y) = Q(X |Y)] → [P(Z |Y) = Q(Z |Y)]

• ... with Z = f (X) a measurable mapping. In particular, we take f = h, our
classifier, as the mapping Ŷ = h(X), so it holds that P(Ŷ |Y) = Q(Ŷ |Y)

Lipton, Wang, Smola, Detecting and correcting for label shift with black box predictors,
ICML 2018.

17 / 70

Methods Aggregative Quantifiers

ACC

• But why can we use the “class-conditional bias” of the training set as an
estimate of the one in the test set? That is:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

=
∑
yj∈Y

P(Ŷ = yi |Y = yj) · Q(Y = yj)

• This is a direct consequence of the PPS assumptions:

[P(X |Y) = Q(X |Y)] → [P(Z |Y) = Q(Z |Y)]

• ... with Z = f (X) a measurable mapping. In particular, we take f = h, our
classifier, as the mapping Ŷ = h(X), so it holds that P(Ŷ |Y) = Q(Ŷ |Y)

Lipton, Wang, Smola, Detecting and correcting for label shift with black box predictors,
ICML 2018.

17 / 70

Methods Aggregative Quantifiers

ACC

• But why can we use the “class-conditional bias” of the training set as an
estimate of the one in the test set? That is:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

=
∑
yj∈Y

P(Ŷ = yi |Y = yj) · Q(Y = yj)

• This is a direct consequence of the PPS assumptions:

[P(X |Y) = Q(X |Y)] → [P(Z |Y) = Q(Z |Y)]

• ... with Z = f (X) a measurable mapping. In particular, we take f = h, our
classifier, as the mapping Ŷ = h(X), so it holds that P(Ŷ |Y) = Q(Ŷ |Y)

Lipton, Wang, Smola, Detecting and correcting for label shift with black box predictors,
ICML 2018.

17 / 70

Methods Aggregative Quantifiers

ACC

• But why can we use the “class-conditional bias” of the training set as an
estimate of the one in the test set? That is:

Q(Ŷ = yi) =
∑
yj∈Y

Q(Ŷ = yi |Y = yj) · Q(Y = yj)

=
∑
yj∈Y

P(Ŷ = yi |Y = yj) · Q(Y = yj)

• This is a direct consequence of the PPS assumptions:

[P(X |Y) = Q(X |Y)] → [P(Z |Y) = Q(Z |Y)]

• ... with Z = f (X) a measurable mapping. In particular, we take f = h, our
classifier, as the mapping Ŷ = h(X), so it holds that P(Ŷ |Y) = Q(Ŷ |Y)

Lipton, Wang, Smola, Detecting and correcting for label shift with black box predictors,
ICML 2018.

17 / 70

Methods Aggregative Quantifiers

ACC: binary

• In the binary case, estimating prevalence of a sample σ comes down to

Q(Ŷ = ⊕) = Q(Ŷ = ⊕|Y = ⊕) · Q(⊕) + Q(Ŷ = ⊕|Y = ⊖) · Q(⊖)

• This can be rewritten as:

p̂CCU (⊕) = tprh ·Q(⊕) + fprh ·Q(⊖)

= tprh ·Q(⊕) + fprh ·(1− Q(⊕))

• Where tprh and fprh are the true positive rate and the false positive rate:

Q(⊕) =
p̂CCU (⊕)− fprh
tprh − fprh

• The ACC is obtained by replacing the true tprh and fprh with estimates
obtained in training (PPS assumption):

p̂ACCU (⊕) =
p̂CCU (⊕)− ˆfprh

ˆtprh − ˆfprh

18 / 70

Methods Aggregative Quantifiers

ACC: binary

• In the binary case, estimating prevalence of a sample σ comes down to

Q(Ŷ = ⊕) = Q(Ŷ = ⊕|Y = ⊕) · Q(⊕) + Q(Ŷ = ⊕|Y = ⊖) · Q(⊖)

• This can be rewritten as:

p̂CCU (⊕) = tprh ·Q(⊕) + fprh ·Q(⊖)

= tprh ·Q(⊕) + fprh ·(1− Q(⊕))

• Where tprh and fprh are the true positive rate and the false positive rate:

Q(⊕) =
p̂CCU (⊕)− fprh
tprh − fprh

• The ACC is obtained by replacing the true tprh and fprh with estimates
obtained in training (PPS assumption):

p̂ACCU (⊕) =
p̂CCU (⊕)− ˆfprh

ˆtprh − ˆfprh

18 / 70

Methods Aggregative Quantifiers

ACC: binary

• In the binary case, estimating prevalence of a sample σ comes down to

Q(Ŷ = ⊕) = Q(Ŷ = ⊕|Y = ⊕) · Q(⊕) + Q(Ŷ = ⊕|Y = ⊖) · Q(⊖)

• This can be rewritten as:

p̂CCU (⊕) = tprh ·Q(⊕) + fprh ·Q(⊖)

= tprh ·Q(⊕) + fprh ·(1− Q(⊕))

• Where tprh and fprh are the true positive rate and the false positive rate:

Q(⊕) =
p̂CCU (⊕)− fprh
tprh − fprh

• The ACC is obtained by replacing the true tprh and fprh with estimates
obtained in training (PPS assumption):

p̂ACCU (⊕) =
p̂CCU (⊕)− ˆfprh

ˆtprh − ˆfprh

18 / 70

Methods Aggregative Quantifiers

ACC: binary

• In the binary case, estimating prevalence of a sample σ comes down to

Q(Ŷ = ⊕) = Q(Ŷ = ⊕|Y = ⊕) · Q(⊕) + Q(Ŷ = ⊕|Y = ⊖) · Q(⊖)

• This can be rewritten as:

p̂CCU (⊕) = tprh ·Q(⊕) + fprh ·Q(⊖)

= tprh ·Q(⊕) + fprh ·(1− Q(⊕))

• Where tprh and fprh are the true positive rate and the false positive rate:

Q(⊕) =
p̂CCU (⊕)− fprh
tprh − fprh

• The ACC is obtained by replacing the true tprh and fprh with estimates
obtained in training (PPS assumption):

p̂ACCU (⊕) =
p̂CCU (⊕)− ˆfprh

ˆtprh − ˆfprh

18 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

• In binary cases, the denominator of ACC...

p̂ACCσ (⊕) =
p̂CCσ (⊕)− ˆfprh

ˆtprh − ˆfprh

• ... can become unstable when ˆtprh ≈ ˆfprh.

• Forman proposes different heuristics for deciding the classification threshold,
trying to fulfill the following conditions:
• T50: ˆtprh ≈ 0.5
• X: ˆtprh ≈ (1− ˆfprh)
• MAX: maximize (ˆtprh− ˆfprh)
• Median Sweep: compute ACC for all thresholds, then report the median
• Median Sweep 2: compute ACC for all thresholds for which

(ˆtprh− ˆfprh) >
1
4
, then report the median

Forman, G., Quantifying trends accurately despite classifier error and class imbalance. KDD 2006.

Forman, G., Quantifying counts and costs via classification. Data Mining and Knowledge Discovery, 2008.

19 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

tpr

20 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

tpr
fpr

20 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

tpr
fpr

20 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

tpr
fpr

20 / 70

Methods Aggregative Quantifiers

Forman’s variants of ACC

tpr
fpr

20 / 70

Methods Aggregative Quantifiers

ACC: Multiclass

• The system of linear equations can be written in matrix form:

p̂CCU = Mh · ptrueU

• Where
• p̂CC

U = (p̂CC
U (y1), . . . , p̂

CC
U (yn))

⊤

• Mh ∈ Rn×n where Mh[i , j] = Q(Ŷ = yi |Y = yj)

• Mh is unknown, but we can get an estimate M̂h via k-fold cross-validation
using L, so that:

M̂h[i , j] =
|{(x, y) ∈ L : h(x) = yi , y = yj}|

|{(x, y) ∈ L : y = yj}|
(1)

• ACC consists of solving this system, i.e., of correcting the class prevalence
estimates p̂CCU (yi) obtained by CC according to the estimated system’s bias:

p̂ACCU = M̂−1
h · p̂CCU

21 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse

• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize

• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax

• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

Further variants of ACC

• The system of linear equations (pCCU = M̂h · ptrueU) is sometimes unsolvable.

• Possible reasons:
• The inverse M̂−1

h does not exist; this can happen when the classifier struggles
to distinguish among 2 or more classes. Possible solutions:

• Use the Penrose pseudo-inverse
• Solve a constrained least squares problem

p̂ACCU = argmin
p∈∆n−1

|| pCCU − M̂h · p ||2

• A solution exist, but is not feasible. For example, when some values fall
outside the interval [0, 1]. Possible solutions:

• Clipping and L1-normalize
• Softmax
• Projecting p̂ACCU the point to the simplex ∆n−1 (different methods)

Bunse, M., On multi-class extensions of adjusted classify and count. LQ 2022.
Fernandes Vaz, Izbicki & Bassi Stern. Prior shift using the ratio estimator. JMLR 2019.

22 / 70

Methods Aggregative Quantifiers

PCC

• Probabilistic Classify and Count (PCC) consists of:

1 generating a soft classifier s from L
2 generating posterior probabilities for the items in U
3 estimating pU(yi) by counting the expected fraction of items predicted to be in

yi by s, i.e.:

p̂PCCU (yi) = EU [Ŷ = yi]

≈ 1

|U|
∑
x∈U

P(yi |x)

=
1

|U|
∑
x∈U

si (x)

• Rationale: posteriors contain richer information than binary decisions.

Bella, Ferri, Hernańdez-Orallo, Raḿırez-Quintana. Quantification via probability estimators.
ICDM 2010.

Lewis. Evaluating and optimizing autonomous text classification systems. SIGIR 1995.
23 / 70

Methods Aggregative Quantifiers

CC vs PCC

CC

+1

+0

24 / 70

Methods Aggregative Quantifiers

CC vs PCC

PCC

+1.0

+0.0

+0.5

24 / 70

Methods Aggregative Quantifiers

PCC and Calibration

• PCC requires the classifier to return calibrated posterior probabilities
si (x) = P(yi |x) such that

lim
|σ|→∞

|{(x, y) ∈ σ | si (x) = α, y = yi}|
|{(x, y) ∈ σ | si (x) = α}|

= α (2)

• E.g., 82% of the instances x for which si (x) = 0.82, belong to yi
• Confidence scores si (x) that are not probabilities (e.g., SVMs) or are
non-calibrated probabilities (e.g., NB) must be converted into calibrated
posterior probabilities, e.g., by applying a sigmoidal (e.g., logistic) function

P(yi |x) =
1

1 + eγsi (x)+β

• Calibration consists in tuning γ and β so that the above holds

25 / 70

Methods Aggregative Quantifiers

PCC and Calibration (cont’d)

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-0.2

0.2

0.4

0.6

0.8

1.0
γ =0.20
=0.42
=1.00
=2.00
=3.00

γ

γ

γ

γ

26 / 70

Methods Aggregative Quantifiers

PCC and Calibration (cont’d)

+1.0

+0.0

+0.5

+1.0

+0.0

+0.5

+1.0

+0.0

+0.5

27 / 70

Methods Aggregative Quantifiers

Calibration: Take-away Message

• It is not important you remember the technical details of the calibration
function (there are many variants, actually).

• The important thing to remember is:
• Calibration is a property defined with respect to a sample (let’s call it σ)
• σ is drawn IID from one distribution P
• Assume we have a classifier s which is well-calibrated for σ
• Assume σ′ drawn IID from distribution Q
• If P and Q are related through PPS then:

s cannot be well-calibrated for σ′

28 / 70

Methods Aggregative Quantifiers

PACC: binary

• Probabilistic Adjusted Classify and Count (PACC) stands to ACC like PCC
stands to CC.

• In the binary case (pos = {(x,⊕) ∈ U} and neg = {(x,⊖) ∈ U}):
• It uses p̂PCC

U instead of p̂CC
U

• It uses tprs =
1

| pos |
∑

pos s⊕(x) instead of tprh
• It uses fprs =

1
| neg |

∑
neg s⊕(x) instead of fprh

• PACC then solves:

p̂PACCσ (⊕) =
p̂PCCσ (⊕)− fprs

tprs − fprs

Bella, Ferri, Hernańdez-Orallo, Raḿırez-Quintana. Quantification via probability estimators.
ICDM 2010.

29 / 70

Methods Aggregative Quantifiers

PACC: Multiclass

• Probabilistic Adjusted Classify and Count (PACC) stands to ACC like PCC
stands to CC.

• In the multiclass case:
• estimate Ms of a soft classifier s on L via k-fold cross-validation with:

M̂s [i , j] =

∑
{(x,y)∈L : y=yj}

si (x)

|{(x, y) ∈ L : y = yj}|
(3)

• PACC then solves a system of n equations with n unknowns:

pPACCU = M̂−1
s · pPCCU

Bella, Ferri, Hernańdez-Orallo, Raḿırez-Quintana. Quantification via probability estimators.
ICDM 2010.

30 / 70

Methods Aggregative Quantifiers

EMQ

• An EM-based class prevalence estimation method for improving classification
accuracy

• EMQ consists of an iterative, mutually recursive re-computation of the
posteriors p(y |x) and of the priors pU(y), until convergence

• Method originally devised for improving the posteriors p(y |x). But if
quantification is our goal we can use its “byproducts”, i.e., the improved
estimates of the priors pU(y).

• Note that EMQ observes U (and not only L) at training time. EMQ might
thus be better described as a transductive algorithm.

Saerens, Latinne, & Decaestecker. Adjusting the outputs of a classifier to new a priori
probabilities: A simple procedure. Neural Computation 2002.

31 / 70

Methods Aggregative Quantifiers

EMQ rationale

• A classifier calibrated on P is not calibrated for Q if PPS is at play.
• Bayes rule:

P(x |yi) =
P(yi |x)P(x)

P(yi)
Q(x |yi) =

Q(yi |x)Q(x)

Q(yi)

• Since P(x |yi) = Q(x |yi) (PPS assumption):

Q(yi |x) =
P(x)

Q(x)

Q(yi)

P(yi)
P(yi |x)

• Since
∑n

j=1 Q(yi |x) = 1 :

P(x)

Q(x)
=

[
n∑

j=1

Q(yi)

P(yi)
P(yi |x)

]−1

• The calibrated posterior for the test distribution is:

Q(yi |x) =
Q(yi)
P(yi)

P(yi |x)∑n
j=1

Q(yi)
P(yi)

P(yi |x)

32 / 70

Methods Aggregative Quantifiers

EMQ rationale

• A classifier calibrated on P is not calibrated for Q if PPS is at play.
• Bayes rule:

P(x |yi) =
P(yi |x)P(x)

P(yi)
Q(x |yi) =

Q(yi |x)Q(x)

Q(yi)

• Since P(x |yi) = Q(x |yi) (PPS assumption):

Q(yi |x) =
P(x)

Q(x)

Q(yi)

P(yi)
P(yi |x)

• Since
∑n

j=1 Q(yi |x) = 1 :

P(x)

Q(x)
=

[
n∑

j=1

Q(yi)

P(yi)
P(yi |x)

]−1

• The calibrated posterior for the test distribution is:

Q(yi |x) =
Q(yi)
P(yi)

P(yi |x)∑n
j=1

Q(yi)
P(yi)

P(yi |x)

32 / 70

Methods Aggregative Quantifiers

EMQ rationale

• A classifier calibrated on P is not calibrated for Q if PPS is at play.
• Bayes rule:

P(x |yi) =
P(yi |x)P(x)

P(yi)
Q(x |yi) =

Q(yi |x)Q(x)

Q(yi)

• Since P(x |yi) = Q(x |yi) (PPS assumption):

Q(yi |x) =
P(x)

Q(x)

Q(yi)

P(yi)
P(yi |x)

• Since
∑n

j=1 Q(yi |x) = 1 :

P(x)

Q(x)
=

[
n∑

j=1

Q(yi)

P(yi)
P(yi |x)

]−1

• The calibrated posterior for the test distribution is:

Q(yi |x) =
Q(yi)
P(yi)

P(yi |x)∑n
j=1

Q(yi)
P(yi)

P(yi |x)

32 / 70

Methods Aggregative Quantifiers

EMQ rationale

• A classifier calibrated on P is not calibrated for Q if PPS is at play.
• Bayes rule:

P(x |yi) =
P(yi |x)P(x)

P(yi)
Q(x |yi) =

Q(yi |x)Q(x)

Q(yi)

• Since P(x |yi) = Q(x |yi) (PPS assumption):

Q(yi |x) =
P(x)

Q(x)

Q(yi)

P(yi)
P(yi |x)

• Since
∑n

j=1 Q(yi |x) = 1 :

P(x)

Q(x)
=

[
n∑

j=1

Q(yi)

P(yi)
P(yi |x)

]−1

• The calibrated posterior for the test distribution is:

Q(yi |x) =
Q(yi)
P(yi)

P(yi |x)∑n
j=1

Q(yi)
P(yi)

P(yi |x)

32 / 70

Methods Aggregative Quantifiers

EMQ (cont’d)

• We apply EM in the following way until convergence of the p̂(s)(y):

• Step 0: For each y ∈ Y initialize p̂
(0)
U (y)← pL(y)

For each x ∈ U initialize p(0)(y |x)← p(y |x)
• Step s: Iterate s = 1, 2, . . . until convergence:

• Step s(E): For each y compute:

p̂
(s)
U (y) =

1

|U|
∑
x∈U

p(s−1)(y |x) (4)

• Step s(M): For each unlabelled item x and each y compute:

p(s)(y |x) =

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

∑
y∈Y

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

(5)

• Step s(E) re-estimates the priors in terms of the new posterior probabilities

• Step s(M) re-calibrates the posterior probabilities by using the new priors

33 / 70

Methods Aggregative Quantifiers

EMQ (cont’d)

• We apply EM in the following way until convergence of the p̂(s)(y):

• Step 0: For each y ∈ Y initialize p̂
(0)
U (y)← pL(y)

For each x ∈ U initialize p(0)(y |x)← p(y |x)
• Step s: Iterate s = 1, 2, . . . until convergence:

• Step s(E): For each y compute:

p̂
(s)
U (y) =

1

|U|
∑
x∈U

p(s−1)(y |x) (4)

• Step s(M): For each unlabelled item x and each y compute:

p(s)(y |x) =

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

∑
y∈Y

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

(5)

• Step s(E) re-estimates the priors in terms of the new posterior probabilities

• Step s(M) re-calibrates the posterior probabilities by using the new priors

33 / 70

Methods Aggregative Quantifiers

EMQ (cont’d)

• We apply EM in the following way until convergence of the p̂(s)(y):

• Step 0: For each y ∈ Y initialize p̂
(0)
U (y)← pL(y)

For each x ∈ U initialize p(0)(y |x)← p(y |x)
• Step s: Iterate s = 1, 2, . . . until convergence:

• Step s(E): For each y compute:

p̂
(s)
U (y) =

1

|U|
∑
x∈U

p(s−1)(y |x) (4)

• Step s(M): For each unlabelled item x and each y compute:

p(s)(y |x) =

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

∑
y∈Y

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

(5)

• Step s(E) re-estimates the priors in terms of the new posterior probabilities

• Step s(M) re-calibrates the posterior probabilities by using the new priors

33 / 70

Methods Aggregative Quantifiers

EMQ (cont’d)

• We apply EM in the following way until convergence of the p̂(s)(y):

• Step 0: For each y ∈ Y initialize p̂
(0)
U (y)← pL(y)

For each x ∈ U initialize p(0)(y |x)← p(y |x)
• Step s: Iterate s = 1, 2, . . . until convergence:

• Step s(E): For each y compute:

p̂
(s)
U (y) =

1

|U|
∑
x∈U

p(s−1)(y |x) (4)

• Step s(M): For each unlabelled item x and each y compute:

p(s)(y |x) =

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

∑
y∈Y

p̂
(s)
U (y)

p̂
(0)
U (y)

· p(0)(y |x)

(5)

• Step s(E) re-estimates the priors in terms of the new posterior probabilities

• Step s(M) re-calibrates the posterior probabilities by using the new priors

33 / 70

Methods Aggregative Quantifiers

Distribution Matching

• Training:

• Test:

Images from: Hassan, Waqar, André Gustavo Maletzke, and Gustavo Batista. Pitfalls in
Quantification Assessment. CIKM Workshops. 2021.

34 / 70

Methods Aggregative Quantifiers

Distribution Matching: Hellinger Distance

• Density estimation of X is extremely difficult.

• Thanks to the PPS assumptions, we know P(s(X)|Y) = Q(s(X)|Y), with s
a soft classifier.

• In binary, we can consider only s⊕(x) ≈ P(Y = ⊕|X = x), since the negative
one is s⊖(x) = 1− s⊕(x).

• We can model the density of s⊕(X) using histograms.

0.0 0.2 0.4 0.6 0.8 1.0
P(Y = 1|X = x)

neg
pos

0.0 0.2 0.4 0.6 0.8 1.0
P(Y = 1|X = x)

mix
test

González-Castro, V., Alaiz-Rodŕıguez, R., and Alegre, E. (2013). Class distribution
estimation based on the Hellinger distance. Information Sciences, 218:146–164.

35 / 70

Methods Aggregative Quantifiers

Distribution Matching: Hellinger Distance (cont’d)

• A histogram with b bins is represented by a list of values:
• positives: p⊕ = (p⊕

1 , . . . , p⊕
b) from the positives of L

• negatives: p⊖ = (p⊖
1 , . . . , p⊖

b) from the negatives of L
• unlabelled: q = (q1, . . . , qb) from U

• Use the Hellinger Distance between two discrete distributions p and q

HD(p||q) =

√√√√1−
b∑

i=1

√
piqi

• HDy solves the following minimization problem:

pHDy
U (⊕) = argmin

0≤α≤1
HD((1− α)p⊖ + αp⊕||q)

36 / 70

Methods Aggregative Quantifiers

Distribution Matching: DyS

• In HDy the number of bins was explored in the range (10, 20, . . . , 110). All
prevalence values are computed and the median is returned.

• It was later observed that the best number of bins typically is below 20; the
number of bins should be an hyperparameter

• In the same paper, the authors considered the divergence function as another
parameter (of which HD is one example).

• The DyS framework allowed to explore different divergence functions, and the
Topsøe divergence was found to work better.

• Also, the search algorithm for α was improved: from brute force to ternary
search.

• The framework was devised for binary-only quantification.

Maletzke, Moreira dos Reis, and Cherman, and Batista. DyS: A framework for mixture
models in quantification. AAAI 2019.

37 / 70

Methods Aggregative Quantifiers

A Framework for Multiclass Distribution Matching

• A generalized framework for multiclass quantification was proposed that takes
the form:

q = Mp

• Where:
• q is representation of the test data Φ(U)
• M is a matrix containing class-specific representations of the training data

M = [Φ(L1), . . . ,Φ(Ln)]

• p is the sought prevalence vector

• Most distribution matching approaches (but not only) can be instantiated as
a solution for

p∗ = argmin
p∈∆n−1

L(q,Mp)

... by properly choosing the loss function and the representation function

Firat. Unified framework for quantification. arXiv 2016.
Bunse. Unification of Algorithms for Quantification and Unfolding. INFORMATIK 2022.

38 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass

• Framework: q = Mp
• Example: HDy takes

• L = HD
• Φ = histograms

• However, histograms are ill-defined in more than two classes.

• The trick for binary quantification is that a single histogram represents well
the entire information, because P(Y = ⊖|X) = P(Y = ⊕|X)− 1.

• Assume we have n = 2 and s(x) = (P(Y = ⊖|X = x),P(Y = ⊕|X = x)).

39 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass (cont’d)

• In the multiclass case Y = {1, . . . , n} we would need our Φ function to be
(n − 1) histograms... right?

• No! Assume we have n = 3 and
s(x) = (P(Y = 1|X = x),P(Y = 2|X = x),P(Y = 3|X = x)).

A =

a1 = (0.1, 0.2, 0.7)
a2 = (0.1, 0.1, 0.8)
a3 = (0.2, 0.3, 0.5)

 B =

b1 = (0.1, 0.3, 0.6)
b2 = (0.1, 0.2, 0.7)
b3 = (0.2, 0.1, 0.7)

• We generate 3 class-wise histograms:

A′ :=

H1 = hist({0.1, 0.1, 0.2})
H2 = hist({0.2, 0.1, 0.3})
H3 = hist({0.7, 0.8, 0.5})

 B′ :=

H′
1 = hist({0.1, 0.1, 0.2})

H′
2 = hist({0.3, 0.2, 0.1})

H′
3 = hist({0.6, 0.7, 0.7})

• Note the following facts:

1 H1 = H ′
1,

2 H2 = H ′
2 since histograms are permutation-invariant functions,

3 H3 ̸= H ′
3: we need 3 histograms to distinguish between A and B!

40 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass (cont’d)

• We know the posterior probabilities lie in ∆n−1 so we should at most use
(n − 1) degrees of freedom... What is happening?

p1

p2

0 1

1
p1= 0, p2=1

p1= p2=0.5 p1= p2=p3=0.33

p1

p2

0

p3

41 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass (cont’d)

• Let’s take a closer look, this time with n = 4. Consider A and B.

A =

a1 = (0.1, 0.2, 0.3, 0.4)
a2 = (0.2, 0.3, 0.4, 0.1)
a3 = (0.3, 0.4, 0.1, 0.2)

 B =

b1 = (0.1, 0.3, 0.4, 0.2)
b2 = (0.3, 0.2, 0.1, 0.4)
b3 = (0.2, 0.4, 0.3, 0.1)

• The histograms we would obtain:

A′ :=

H1 = hist({0.1, 0.2, 0.3})
H2 = hist({0.2, 0.3, 0.4})
H3 = hist({0.3, 0.4, 0.1})
H4 = hist({0.4, 0.1, 0.2})

 B′ :=

H′

1 = hist({0.1, 0.3, 0.2})
H′

2 = hist({0.3, 0.2, 0.4})
H′

3 = hist({0.4, 0.1, 0.3})
H′

4 = hist({0.2, 0.4, 0.1})

• Note that A′ ≡ B ′! The inter-class correlations are lost.

42 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass via Density Estimation

• Switch from histograms to Kernel Density Estimation.

(A) Representation
for class 1

(B) Representation
for class 2

(C) Representation
for class 3

(D) Representation
for test data

y=1

y=2

y=3

y=1

y=2

y=3

y=1

y=2

y=3

y=1

y=2

y=3

43 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass via KDE

• A kernel density estimator (KDE) is given by

p(x) =
1

|X |
∑
xi∈X

K

(
x − xi
h

)
• The density model for the posteriors x̃ = s(x) of training data is a mixture of

class-specific KDEs

pα(x̃) =
n∑

i=1

αipi (x̃)

• The density KDE of the (posteriors of the) test data is qU(x̃).

• The kernel is typically chosen to be the Gaussian kernel.

44 / 70

Methods Aggregative Quantifiers

Distribution Matching: Multiclass via KDE

• The distribution matching problem of KDEy seeks to solve...

α̂ = argmin
α∈∆n−1

D(pα||qU),

• ... but most divergences D involve dealing with an integral. This is
computational costly.

• Proposed solutions for different divergences:
• D = HD: Monte Carlo approximation
• D = CS: close-form solution
• D = KLD: a maximum likelihood solution

• The last one has been found to work better.

Moreo, González, del Coz. Kernel Density Estimation for Multiclass Quantification, arXiv
2024.

45 / 70

Methods Aggregative Quantifiers

QuaNet

• QuaNet is a deep learning -based method for quantification

• The idea is to learn to produce higher-order quantification embeddings, i.e.,
an embedded representation of U from the:
• observed posterior probabilites generated by a classifier
• document embeddings
• quantification predictions of simple aggregative methods

• QuaNet is trained across the full prevalence spectrum in order to learn how to
adjust the counts it receives

Esuli, Moreo, & Sebastiani. A recurrent neural network for sentiment quantification. CIKM
2018.

46 / 70

Methods Aggregative Quantifiers

Aggregative Quantification
Special-Purpose Learners

47 / 70

Methods Aggregative Quantifiers

Explicit loss minimization

• Most methods use general-purpose classification algorithms

• Alternative: use special-purpose learning algorithms explicitly devised for
quantification

• Idea: explicit loss minimization, directly optimize a quantification loss

• The loss functions most learners (e.g., AdaBoost, SVMs) can optimize must
be linear, i.e., the error on the unlabelled set is a linear combination of the
error generated by each unlabelled example

• Loss functions for quantification are instead nonlinear, i.e., the impact of the
error on an unlabelled item depends on how the other unlabelled items have
been classified

Esuli and Sebastiani. Sentiment quantification. IEEE Intelligent Systems2010.
48 / 70

Methods Aggregative Quantifiers

Explicit loss minimization

• SVMperf is a structured output learning algorithm that can be optimized for
arbitrary nonlinear / multivariate measures.
• SVM(KLD) tailors SVMperf to use the Kullback-Leibler Divergence as a loss
• SVM(Q) tailors SVMperf to use the Q-measure, a multi-objective measure

(inspired by the Rijsbergen’s Fβ) defined as:

Qβ =
(1 + β2)(MC ·MQ)

β2MC +MQ
(6)

where MC is any evaluation measure for classification (here: recall) and
MQ is any evaluation measure for quantification (here: |FP − FN|)

Esuli, Sebastiani. Optimizing text quantifiers for multivariate loss functions. TKDD 2015.
Barranquero, D́ıez, del Coz. Quantification-oriented learning based on reliable classifiers.

Pattern Recognition 2015.
49 / 70

Methods Aggregative Quantifiers

Quantification trees

• Quantification trees are special-purpose decisions trees optimized for
quantification; the basic idea is to use, in the learning phase, a measure of
quantification as the splitting criterion at each node.

• Three different such measures were tested
• (a proxy of) absolute error, i.e.,

D(p, p̂) =
∑
yi∈C

|FP−FN |

• KLD
• a “multiobjective” loss function, i.e.,

MOLF(p, p̂) =
∑
yi∈Y

|FP2
i −FN2

i |

=
∑
yi∈Y

(FNi +FPi) · |FNi −FPi |

Milli, Monreale, Rossetti, Giannotti, Pedreschi, Sebastiani. Quantification Trees. ICDM
2013.

50 / 70

Methods Non-aggregative Quantifiers

Non-aggregative Quantifiers
Methods that do not rely on classification

51 / 70

Methods Non-aggregative Quantifiers

Vapnik’s Principle and non-aggregative quantification

• Key observation: classification is a more general problem than quantification

• Vapnik’s principle:
“If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available informa-
tion is sufficient for a direct solution but is insufficient for solving a more
general intermediate problem.”

• This suggests solving quantification directly (without solving classification as
an intermediate step, i.e., in a non-aggregative way) with the goal of
achieving higher quantification accuracy than if we opted for the indirect
solution

52 / 70

Methods Non-aggregative Quantifiers

Dropping the assumptions of aggregative quantification

• Anti-causal learning: learning from causes to symptoms.

• Generation process of the type Y → X

• In tasks of type Y → X , one could try to directly model

P(x) = P(x |y)P(y) (7)

• That is, one should avoid inferring P(y |x) (akin to probabilistic classification)
as an intermediate step.

• Example: Verbal autopsies (questionnaires about the symptoms of deceased
people used by epidemiologists in countries with poor registration systems).
Causes of death probabilistically determine symptoms

King and Lu. Verbal autopsy methods with multiple causes of death. Statistical Science
2008.

53 / 70

Methods Non-aggregative Quantifiers

The ReadMe system

• ReadMe consists of estimating the class prevalence array p in the
unlabeled set U, as defined (in matrix form) by:

X = Cp (8)

where
• X is a 2K × 1 vector whose elements are the probability of each possible

variate (binary vector) of K features
• C is a 2K × |Y| matrix where the j-th column has the class-conditional

probabilities of all possible variates

• This poses a linear regression problem that could be resolved as:

p̂ = (C⊤C)−1C⊤X (9)

• ReadMe estimates p using Ĉ, modelled in L :

p̂ = (Ĉ⊤Ĉ)−1Ĉ⊤X (10)

Hopkins and King. A method of automated nonparametric content analysis for social
science. American Journal of Political Science 2010.

54 / 70

Methods Non-aggregative Quantifiers

The ReadMe system (Cont’d)

• ReadMe thus has to deal with matrices with dimensions of the order of 2K ,
which rapidly becomes intractable as K grows.

• To reduce the dimensionality of the matrix and to reduce variance, ReadMe
applies bagging (i.e., takes random samples of k = 5 features) and averages
the estimations. It relies on Bootstrapping to re-sample matrix rows and
estimate the method variance.

• Later improvements:
• iSA (Ceron et al. 2016) applies different heuristics to speed-up the method
• ReadMe2 (Jerzak et al. 2019) uses dense representations

Ceron, Curini, & Iacus. iSA: A fast, scalable and accurate algorithm for sentiment analysis
of social media content. Information Sciences 2016.

Jerzak, King, & Strezhnev. An improved method for automated nonparametric content
analysis for social science. 2019.

55 / 70

Methods Non-aggregative Quantifiers

The HDx system

• There are distribution matching variants that do not rely on a classifier.
• One example is HDx for binary quantification problems.
• Given a matrix X ∈ Rm×f of m instances with f features, HDx generates a

matrix H ∈ Rb×f of histograms with b bins per feature (columns).
• HDx generates one such matrix for:

• H⊕ for the positive items
• H⊖ for the negative items
• Q for the test items

• For a given prevalence value α, the mixture Vα is defined as

Vα = (1− α)H⊖ + αH⊕

• The HD is computed column-wise and the average is reported. The
optimization problem comes down to

α∗ = argmin
0≤α≤1

1

f

f∑
i=1

HD
(
V(i)

α ||Q(i)
)

González-Castro, Alaiz-Rodŕıguez, & Alegre. Class distribution estimation based on the
Hellinger distance. Information Sciences 2013.

56 / 70

Methods Non-aggregative Quantifiers

Quantification as a Symmetric task

• Quantification has been regarded as an asymmetric task:
• the training set L = {(x(i), y (i))}mi=1, instances labelled at the individual level
• a test instance is a sample of individuals
• a quantifier has to issue predictions at the aggregate level

• We can reframe the problem as a symmetric task by considering the training
set be D = {(σ(i),p(i))}m′

i=1 in which:
• instance: σ(i) ∈ NX is a bag (or multiset)
• label: p(i) ∈ ∆n−1 is a vector of prevalence values

• In this way, the labels in the training set and the labels we need to predict,
are both at the aggregate level.

• This is not restrictive, since from a dataset of “type L” we can create, via
sampling, a dataset of “type D” (the opposite is not easy).

• Data for some problems (e.g., post-electoral results, demographic analysis,
diagnosed diseases of regions) are indeed provided in this form.

57 / 70

Methods Non-aggregative Quantifiers

Symmetric Methods for Quantification

• Methods implementing the symmetric approach need to define a
variable-size, permutation-invariant representation of the sample.

• A representation function Φ is said to be permutation invariant if
Φ(σ) = Φ(π(σ)) for any permutation π.

• Examples: max, mean, median

• A possible general architecture:

Input Sample S

16

28

conv1

32

14

conv2

25
6

denseFE

Permutation
invariant
layer

10
24

denseQ

10

softmax

+

Sigmoid Loss (AE, RAE)

Feature extraction module Quantification module

58 / 70

Methods Non-aggregative Quantifiers

HistNetQ

• HistNetQ implements this idea by means of histograms (one per dimension)

• Histograms are:
• permutation-invariant
• variable-size (if computed as “densities”)
• naturally geared towards counting

• However, histograms are not differentiable operators (required for training
deep learning models)

• Differentiable approximations can be attained with pairs of sigmoids:

59 / 70

Methods Meta-quantifiers

Meta Quantifiers
Quantifiers constructed on top of other base quantifiers

60 / 70

Methods Meta-quantifiers

Meta-quantifiers

• Quantification methods that, in order to predict the class prevalence values,
rely on the output of other quantifiers

• Pérez-Gállego et al. (2019) consider different base quantifiers, each trained in
a bag of the training set characterized by a different prevalence value.

• At test time, all quantifiers issue a prevalence prediction, and the final output
is derived via an aggregation of these:
• Mean: simply average all predictions
• Accuracy-based (static): at training time, estimate the accuracy of all base

members and discard the least accurate ones
• Training prevalence (dynamic): retains only members trained on samples that

have a prevalence close to a preliminary estimate
• Distribution similarity (dynamic): retains members trained on samples whose

distribution of posteriors is closest, in terms of the HD, to the distribution of
posteriors in the test sample

Pérez-Gállego, Castaño, Quevedo, and del Coz. Dynamic ensemble selection for
quantification tasks. Information Fusion 2019.

61 / 70

Methods Meta-quantifiers

MC-SQ

Donyavi, Serapiao, & Batista. MC-SQ and MC-MQ: Ensembles for Multi-class
Quantification. TKDD 2024.

62 / 70

Methods Meta-quantifiers

MC-MQ

Donyavi, Serapiao, & Batista. MC-SQ and MC-MQ: Ensembles for Multi-class
Quantification. TKDD 2024.

63 / 70

Model Selection

Outline

1 Introduction
2 Methods

Aggregative Quantifiers
General-purpose learners
Specific-purpose learners

Non-aggregative Quantifiers
Meta-quantifiers

3 Model Selection
4 Conclusions

64 / 70

Model Selection

Model Selection in Quantification

• The performance of machine learning algorithms typically depends on how
their hyperparameters are set.

• The process of hyperparameter optimisation is known as model selection, and
consists of testing how well the model fares with different combinations of
hyperparameters on held-out validation data.

• Model selection is inherently related to evaluation.

• Since quantification has specific evaluation measures and specific evaluation
protocols, model selection should be in agreement with these.

Moreo & Sebastiani. Re-assessing the “classify and count” quantification method. ECIR
2021.

65 / 70

Model Selection

Model Selection in Quantification

• Many papers have instead carried out model selection mimicking the
classification approach, i.e.:

LTr
LVa

θ1

θ2

θ3

θ4

fit(M; θ1)

fit(M; θ2)

fit(M; θ3)

fit(M; θ4)

0.55

0.43

0.60

0.61

U

L

0.44

66 / 70

Model Selection

Model Selection in Quantification

• This is theoretically flawed: model selection has to be carried out following a
quantification-oriented evaluation protocol:

...π 1 π 2 π 3 π 4 π n-1 π n

q

s1
1 s1

2 s1
3 s1

... s1
m sn

1 sn
2 sn

3 sn
.. sn

m

...

0.10

U

...π 1 π 2 π 3 π 4 π n-1 π n

q

s1
1 s1

2 s1
3 s1

... s1
m sn

1 sn
2 sn

3 sn
.. sn

m

...

0.11

LTr
LVa

L

θ1

θ2

θ3

θ4

fit(M; θ1)

fit(M; θ2)

fit(M; θ3)

fit(M; θ4)

0.21

0.18

0.32

Model Selection Evaluation

APP

67 / 70

Conclusions

Outline

1 Introduction
2 Methods

Aggregative Quantifiers
General-purpose learners
Specific-purpose learners

Non-aggregative Quantifiers
Meta-quantifiers

3 Model Selection
4 Conclusions

68 / 70

Conclusions

Conclusion

• Most methods in the literature are of type aggregative. Most of these try to
mitigate the bias of the underlying classifier.
• Are there better representation mechanisms that are not tailored to

classification?

• Non-aggregative methods seem a more direct approach, and better
principled, but are less studied.
• Non-aggregative solutions are interesting in fields like fairness, since a classifier

is an “user profiler”.

• Quantification is a task in its own right.
• Model selection has to target a quantification-oriented loss.

69 / 70

Conclusions

Thank you!

Questions?

For any question, contact us at
alejandro.moreo@isti.cnr.it

and
fabrizio.sebastiani@isti.cnr.it

70 / 70

	Introduction
	Methods
	Aggregative Quantifiers
	Non-aggregative Quantifiers
	Meta-quantifiers

	Model Selection
	Conclusions

