ESSAI-2024 Self-Governing Multi-Agent Systems L3/10: Distributive Justice

Jeremy Pitt and Asimina Mertzani

Department of Electrical and Electronic Engineering Imperial College London

Aims and Objectives

- Aims
 - To understand and analyse *n*-agent social interaction through the lens of computational justice
- Objectives
 - Design and implement algorithms for determining some aspect of 'correctness' in the outcomes of deliberation and decision-making SGMAS

ATHENS-GREECE

Example

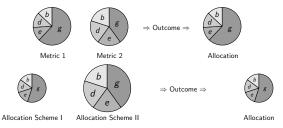
- The *n*-person flat-share biscuit-distribution stand-off
 - You and your flatmates have successfully overcome the kitchen-cleaing stand-off and everyone helped to clean the kitchen
 - One person cleaned the cooker, one person cleaned the fridge, one person did the washing up, one person mopped the floor,
 - You all got your utility for for time-loss, convenience and disease-avoidance
 - You decide to celebrate with a biscuit
 - But you find there is only one chocolate Hob-Nob left
- So: who gets the biscuit?

. . .

- Use some mutually agreed, conventional **rules/procedures** to ensure that
 - Collective goals are achieved (sustainability)
 - Individual goals are considered as well (satisficing)
 - Balance between all these goals is mutually agreeable
- Is it fair?
- Address fairness question through Distributive Justice

Distributive Justice: what is it?

- It is concerned with **fairly** allocating goods (also benefits, duties, burdens) to a set of actors in the society
- Aristotle's principle: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities and differences"
- Three main families of distributive justice theories:
 - Equality and need
 - Utilitarianism and welfare economics
 - Equity and desert


Distributive Justice: what is it?

- Equality and need
 - Concern for the welfare of those least advantaged in the society
 - Need principle: equal satisfaction of basic needs
 - Some theories: Egalitarianism, Rawl's theory, Marxism
- Utilitarianism and welfare economics
 - Maximising the *global surplus* (outcome, utility, satisfaction)
 - Does not deal with individual outcomes, but in the *aggregation* of these
 - Theories: utilitarianism, Pareto principles, envy-freeness
- Equity and desert
 - Dependence of allocations on the actions of each individual
 - *Equity principle*: an individual should receive an allocation that is proportional to her contributions (either positive or negative) to the society
 - Theories: equity, desert and Nozick's theory

Fairness Criteria

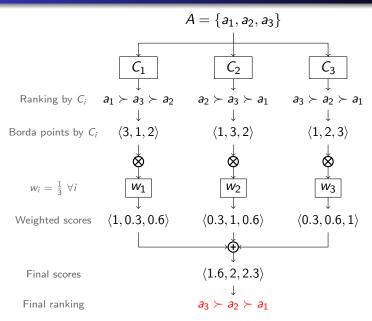
• What fairness criteria to use to distribute the resources?

- Egalitarian: maximise satisfaction of most disadvantaged agent
- Envy-free: no agent prefers the allocation of any other agent
- Proportional: all agents receive the same share
- Equitable: each agent derives the same utility
- What about 'Ostrom' principles?
 - Congruence with 'the environment'
 - Those affected by the policy should participate in the selection
 - Especially when g puts others "quite into the shade in point of nastiness"

- Limitations of existing fairness criteria:
 - Many not appropriate under an economy of scarcity
 - Focus on a single aspect (monistic)
 - Often disregard temporal aspects (e.g. repeated allocations)
- Alternative:
 - Use multiple criteria simultaneously (pluralistic)
 - Rescher's theory of Distributive Justice

Rescher's Theory of Distributive Justice

- Rescher proposes: throughout history, seven general principles of distributive justice to treat people according to...
 - ... as equals
 - ... needs
 - ... actual productive contribution
 - ... efforts and sacrifices
 - ... a valuation of their socially-useful services
 - ... supply and demand
 - ... ability, merit or achievements
- These Rescher called canons of distributive justice
- Each canon, in isolation, is inadequate to achieve fairness
- Instead, in context
 - Identify which canons are relevant these Rescher called **legitimate claims**
 - In case of plurality, decide how to combine them
 - In case of conflict, decide how to reconcile them


Legitimate Claims as Voting Functions

- Each canon C_i treated as a Borda voter on agents
 - It ranks agents according to some features (e.g. needs, contribution...)
 - It assigns a score to each agent, $B_i(a)$
- To combine claims, a weight w_i is attached to each canon
- Final Borda score of agent a is:

$$B(a) = \sum_{i=1}^{n} w_i \cdot B_i(a)$$

- Use final Borda ranking as a queue to allocate resources
- Allocate agents' full requests until no more resources available

Legitimate Claims in action

Recall: LPG'

- Agents join a community C to share access to a CPR
 - Defined an institution (set of conventional rules) to regulate how to make provision to/appropriation from the resource
 - Now define operational choice rules to determine 'priority' order for access to resource
- Focus on observable actions

$d_i(t)$	Demand of	
$p_i(t)$	Provision of	arout i at time t
$r_i(t)$	Allocation to	agent <i>i</i> at time <i>t</i>
$r_i'(t)$	Appropriation of	
$role_of(i, t)$	Role of	

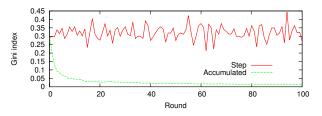
 $\mathbf{T}_{\{i \in C\}}$ Rounds agent *i* present in community *C*

Equals	Average allocation \uparrow	$\frac{\sum_{t=0}^{T} r_i(t)}{T}$	
Equals	Allocation frequency \uparrow	$rac{\sum_{t=0}^{T}(r_i(t)>0)}{T}$	
	'Satisfaction' \uparrow	$\sigma_{i,C}(t+1) = \ldots$	
Needs	Average demands \uparrow	$rac{\sum_{t=0}^{T} d_i(t)}{T}$	
Contribution	Average provision \downarrow	$rac{\sum_{t=0}^{T} p_i(t)}{T}$	
Effort	Number of rounds present \downarrow	$ T_{\{i\in C\}} $	
Social utility	Time as <i>head</i> \downarrow	$ \{t role_of(i, t) = head\} $	
Supply & demand	$Compliance \downarrow$	$ \{t r_i'(t)=r_i(t)\} $	
Ability, merits	n/a	a	

Self-Determining the Weights (1)

- Instead of fixing the weights of each canon, allow the agents to modify them
- At the end of each round
 - Agents vote for the canons in order of preference (according to rank given by each canon) using a modified Borda count
 - Allows for some candidates to have the same number of points (equal preference)
 - Borda score computed for each canon
 - Canons with better than average Borda score have weight increased, otherwise decreased
- This reflects Ostrom's Principle 3: "those affected by the operational-choice rules participate in the selection and modification of those rules"

Determining the canons' weights


	Poir	nts giv	given by Depking		Points given to		
	C_1	C_2	C ₃	Ranking	C_1	C_2	C ₃
a_1	3	1	1	$\langle C_1, C_2 \sim C_3 \rangle$	3	1.5	1.5
a 2	1	3	2	$ \begin{array}{c} \langle \mathcal{C}_1, \mathcal{C}_2 \sim \mathcal{C}_3 \rangle \\ \langle \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_1 \rangle \end{array} $	1	3	2
a ₃	2	2	3	$\langle C_3, C_1 \sim C_2 \rangle$	1.5	1.5	3
					5.5	6	6.5
$\left(\begin{array}{c} w_1 \end{array}\right)$							
Average Borda score = $6 \implies \begin{cases} w_2 = \end{cases}$							
(<i>w</i> ₃ ↑							

Some Experiments

- Experimental platform using PreSage-2 [Macbeth et al, 2012]
- Independent Variables: agent population
 - Number of agents, % of non-compliant agents
 - Propensity to cheat on provision and/or appropriation
 - Initial satisfaction, dissatisfaction threshold
 - Coefficients a, b, c (utility), α, β (satisfaction), γ (autonomic mechanism)
- Dependent variables
 - Utility of the compliant/non-compliant agents
 - Endurance of compliant/non-compliant agents
 - Fairness measure: Gini inequality index
- Questions
 - Single cluster: effect of plurality, and self-organisation
 - Single cluster: Comparison with alternative allocation policy
 - Multiple cluster: effect of allocation method on cluster preference

Some Results

- Compare self-organising legitimate claims, fixed weights, random and ration allocation methods
- Self-organising legitimate claims...
 - ...was the only method producing endurance of the system and benefiting compliant agents
 - ... was the fairest* method (wrt to ration and fixed LC)
 - ...was preferred by the compliant agents
 -leads to a very fair overall allocation by doing a series of rather unfair allocations

*Using Gini inequality index over accumulated allocations to measure fairness

Key Features of Open Systems

Self-determination

 Rules for resource allocation and how to choose them determined by the entities themselves

Expectation of error

- Rehaviour contrary to specification should be expected (be it by accident, necessity or malice)
- Enforcement
 - ▶ Sanctions for non-compliance should be implemented

Economy of scarcity

 Eufficent resources to keep appropriators satisfied at the long-term, but insufficient to meet all demands at a particular time-point

Endogeneous resources

 Computing the allocation must be 'paid for' from the same resources being allocated

No full disclosure

 Appropriators are autonomous and their internal states cannot be checked

- It is sustainable. It is fair.
- But what about
 - Is the allocation method effective? Is it efficient? Is it fit-for-purpose?
 - ► Are decision makers accountable?
 - ▶ Do those affected by the rules **participate** in their selection?
 - Are **punishments** for non-compliance proportional to the severity of the offence?
- Answering all these questions requires a framework for computational justice

Reminder: Key Features of SGMAS

Self-determination

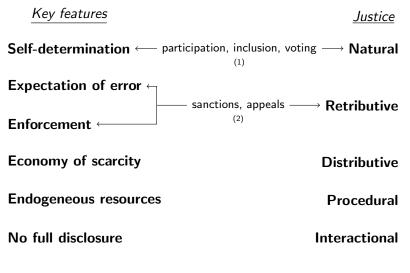
 Rules for resource allocation and how to choose them determined by the entities themselves

• Expectation of error

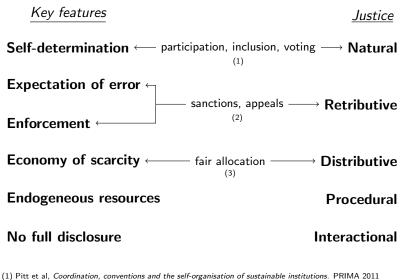
- Rehaviour contrary to specification should be expected (be it by accident, necessity or malice)
- Enforcement
 - ▶ Sanctions for non-compliance should be implemented

• Economy of scarcity

- Satisfaction vs. Satisficing
- Endogeneous resources
 - Computing the allocation must be 'paid for' from the same resources being allocated

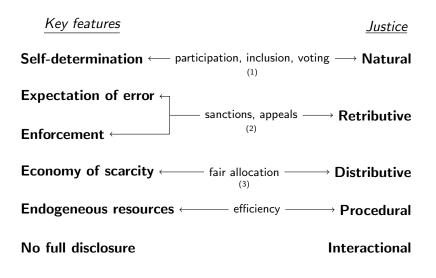

No full disclosure

 Appropriators are autonomous and their internal states cannot be checked

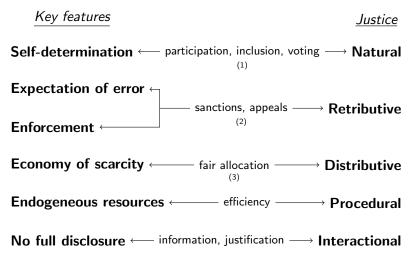

Key features	Justice
Self-determination	Natural
Expectation of error	
Enforcement	Retributive
Economy of scarcity	Distributive
Endogeneous resources	Procedural
No full disclosure	Interactional

Key features	Justice		
$\begin{array}{c} \textbf{Self-determination} \longleftarrow \text{participation, inclusion, voting} \longrightarrow \textbf{Natural} \\ (1) \end{array}$			
Expectation of error	Retributive		
Enforcement	Retributive		
Economy of scarcity	Distributive		
Endogeneous resources	Procedural		
No full disclosure	Interactional		

(1) Pitt et al, Coordination, conventions and the self-organisation of sustainable institutions. PRIMA 2011



Pitt et al, Coordination, conventions and the self-organisation of sustainable institutions. PRIMA 2011
_____, Provision and appropriation of common-pool resources without full disclosure, PRIMA 2012


(2) _____, Provision and appropriation of common-pool resources without full disclosure, PRIMA 2012

(3) _____, Self-organising common-pool resource allocation and canons of distributive justice, SASO 2012

(1) Pitt et al, Coordination, conventions and the self-organisation of sustainable institutions. PRIMA 2011 (2) , Provision and appropriation of common-pool resources without full disclosure, PRIMA 2012

(3) Self-organising common-pool resource allocation and canons of distributive justice, SASO 2012

(1) Pitt et al, Coordination, conventions and the self-organisation of sustainable institutions. PRIMA 2011

(2) _____, Provision and appropriation of common-pool resources without full disclosure, PRIMA 2012

(3) _____, Self-organising common-pool resource allocation and canons of distributive justice, SASO 2012

- Should you ever hear: "there is no fair way to do it"
- You can say: "yes there is"
- Presented an algorithm for distributive justice
 - Objectively, if everyone agrees on the legitimate claims and their adaptation
- But there is still more to do
- Fairness is also a subjective experience...