Unlocking Data Insights -Introduction to Data-Centric Al Data-centric Explainable AI (DCXAI)

the European Union

Artificial Intelligence Research

Italiadomani

Reference: Applied Machine Learning Explainability Techniques - Aditya Bhattacharya

Data-centric Explainable AI (DCXAI) Executive summary

- Introduction to DCXAI
- Thorough data analysis and profiling process
- Monitoring and anticipating drifts
- Checking adversarial robustness

ML production model

DCA are not aligned

Principles

ML production Models

Data Centric eXplainable Al

What's problem

DCA are not aligned

Principles

Data Centric eXplainable Al

Volume

Data properties

The classical problem of ML Algorithms **OVERFITTING**

Analyzing data volume

Is the model trained on sufficient data?

How do we find out if the model was trained on sufficient data?

Don't forget to understand the

Data Distribution

Analyzing data consistency

For production system
Data observed in
inference time have
some variance with
training data

Change in data structure

Change in statistical data properties

Analyzing data consistency

Data consistency is an important parameter for **root cause analysis** inspection when interpreting black box models

Population Stability Index (PSI)

Kullback-Leibler Divergence (KL Divergence)

Statistical methods

Measure the distance between two data distribution

[h...t...]...t...[...t...]...t...]

Wasserstein metric (Earth Movers **Distance**)

Analyzing data purity

Real data are very often noisy, but ... What if a black-box ML model is trained on a dataset with less purity and, hence, perform poorly?

Most common integrity issues

Label ambiguity

New label, new feature category or out of bound values (anomalies) for particular feature in inference set

Analyzing data purity

Dominant Features Frequency Change (DFCC)

Other data purity issues:

Errors, errors everywhere

Guess: JIGSAW PUZZLE n03249569 20304.JPEG

Given: SKI MASK Guess: HARP n04229816 2795.JPEG

Guess: CONTAINER SHIP 328 29894.JPEG

Given: CRT SCREEN Guess: OSCILLOSCOPE n04152593 3203.JPEG

Given: SAXOPHONOE

Guess: ACCORDIAN

Given: POLE Guess: MAYPOLE n03976657 22445.JPEG

Given: MORTAR Guess: GUACAMOLE n03786901 10564.JPEG

Given: FIRE SCREEN SHEET Given: BANJO

Guess: WINDOW SCREEN Guess: ACCORDIAN

Given: FLUTE Guess: PAN FLUTE

Guess: BUTCHER SHOP

Top 32 label issues in the 2012 ILSVRC ImageNet train set. Label Errors are boxed in red.

Clicked the wrong button

hutududududud

Mismeasurement

Mistakes

Another ML model's bad predictions

Nice tool for your data Odeepchecks.

Status	Check	Condition			
×	<u>Single</u> <u>Value in</u> <u>Column</u>	Does not contain only a single value	F		
*	<u>Feature-</u> <u>Feature</u> <u>Correlation</u>	Not more than 0 pairs are correlated above 0.9	C V V וי		
×	<u>Identifier</u> Label Correlation	Identifier columns PPS is less or equal to 0	F {'		
1	<u>String</u> <u>Mismatch</u>	No string variants	F tł		
I	<u>Data</u> Duplicates	Duplicate data ratio is less or equal to 5%	F		

Example of Data integrity checks using the Deepchecks framework

Source: https://docs.deepchecks.com/stable/tabular/auto_tutorials/quickstarts/plot_quick_data_integrity.html#sphx-glr-tabular-auto-tutorials-quickstarts-plot-quick-data-integrity-py

More Info

Found 1 out of 14 columns with a single value: ['Is Ripe']

Correlation is greater than 0.9 for pairs [('4046', 'Total Volume'), ('4225', 'Total Volume'), ('Total Bags', 'Total /olume'), ('Small Bags', 'Total Volume'), ('Small Bags', Total Bags')]

ound 1 out of 1 columns with PPS above threshold: 'Date': '0.03'}

Found 1 out of 2 columns with amount of variants above threshold: {'type': ['organic']}

Found 13.5% duplicate data

Thorough data analysis and profiling process

Let's assume we have a baseline trained ML model But it is not meeting the benchmark accuracy

Model-Centric Al

Hyperparameter tuning, complex model, etc.

Data augmentation, Data profiles, Adversarial robustness

Thorough data analysis and profiling process Building robust data profiles

A Statistical Data Profile of dataset is a collection of certain statistical measure of its feature values segmented by the target variable class

Thorough data analysis and profiling process Building robust data profiles

Class	Mean_feat1	Median_feat1	AvgVar_feat1	Mean_feat2	Median_feat2	AvgVar_feat2
0	34.5	37.0	-3.5	128.0	103.5	4.0
1	23.8	23.8	7.8	73.9	102.8	2.2
2	49.0	40	-2.3	101.5	101.5	-1.8

We can create the statistical profiles for validation and test set

If the absolute percentage change between the value significantly higher (say, >20%), then this indicates the presence of data drift

Monitoring and anticipating drifts

Data consistency for real-time systems is a challenging problem

-**//**///

Change in external environmental conditions The natural wear and tear of sensors

Bug in the software program that process data

Thorough data analysis and profiling process Detecting drifts

- What is the best way to identify the presence of a drift?
- What happens when we detect the presence of a drift?

Solution **Comparing correlations of the** feature with the target outcome

Thorough data analysis and profiling process Selection of statistical measures

- How to quantify the drift?
- Popular distribution metrics to detect presence of data drift using a quantitative approach **Trust Score Distribution (TSD) Population Stability Index (PSI) Predictive Power Score (PPS)**

•••

Thorough data analysis and profiling process Trust Score Distribution

Trust Score Distribution

An Example of the Trust Score Distribution between the training dataset and the inference dataset

The Trust Score is a distribution metric used to measure the agreement between the ML classifier on the training set and an updated k-Nearest Neighbor (kNN) classifier on the inference data

Thorough data analysis and profiling process Trust Score Distribution

Thorough data analysis and profiling process Trust Score Distribution

Ideally

Same distribution for both train and test set The trained model has less confidence in the inference data (drift?)

High probability of the data leakage

Thorough data analysis and profiling process Data leakage

Incorrect Preprocessing: Data preprocessing must be done separately for training and test sets. For example, calculating the mean or variance on the entire dataset (training + test) and then using these values to normalize the data can introduce leakage.

Target Leakage: This happens when the variables to be predicted are present, in some form, in the input variables. For instance, if predicting the risk of a customer defaulting on a loan includes information on missed payments recorded afterwards, it can lead to leakage.

Thorough data analysis and profiling process Data leakage

Future Information: If data that will only be available in the future (e.g., future outcomes) is used during model training, the model can learn from information it wouldn't have access to when making predictions.

Shared Data Between Training and Test Sets: If the training and test sets are not properly separated, some information from the test set might influence the model during training.

Thorough data analysis and profiling process Population Stability Index

To detect feature drifts on categorical features, the popular choice is the **Population Stability Index** (PSI) This statistical method used to measure the shift in a variable over a period of the time. If the over a period of time. If the overall drift score is more than 0.2 or 20%, then the drift is considered significant **(feature drift)**

Thorough data analysis and profiling process Wasserstein metric

To detect feature drifts on numerical features, the popular choice is the **Wasserstein metric** This is a distance function for measuring the distance between two probability distribution. Similar to PSI, if the drift score using Wasserstein metric is higher than 20%, then the drift is considered significant **(feature drift)**

What do we do when we have identified the presence of drifts?

Temporary drift

Recurrent/Seasonal drift

Permanent drift

Before the model is deployed in production, it is extremely critical to check for the **adversarial robustness**

The degree of adversarial attacks increases with the model's complexity, as complex models are very sensitive to noisy data samples.

We are interested on the impact of adversarial effects on trained ML models

Fast Gradient Sign Method

The Carlini & Wagner (C&W) attack

There are different types of adversarial attacks that can impact trained ML models:

Targeted adversarial patch attacks

- Method that uses gradients of deep learning models to learn adversarial sample
- For image classifiers, this can be a common problem, as FGSM creates perturbations on the pixel values of an image by adding o subtracting pixel intensity values depending on the direction of the gradient descent of the model

The Fast Gradient Sign Method (FGSM) is an adversarial attack technique used in the context of machine learning, particularly in the realm of neural networks. It was introduced to demonstrate the vulnerability of neural networks to adversarial attacks. The basic idea behind FGSM is quite straightforward:

Gradient Calculation: Start with a legitimate input for which you want to generate an adversarial example. Calculate the gradients with respect to the input of the loss function using the model you are attacking

Adversarial Input Generation: Modify the legitimate input by adding a small perturbation in the direction of the gradient. This perturbation is determined by the sign of the gradient multiplied by a small value called epsilon (ϵ). The goal is to perturb the input in a way that maximizes the loss function

- The mathematical formula for FGSM can be expressed as follows, assuming • x is the original input,
- J is the loss function, and
- ε is the small perturbation:

- Xadversarial is the perturbed input that is hoped to deceive the model
- $\nabla_x J(x, y_{true})$ represents the gradient of the loss function with respect to the input
- $sign(\cdot)$ returns the sign of the argument, retaining only the information about the direction

 $X_{adversarial} = X + \varepsilon \cdot sign(\nabla_{x}J(x,y_{true}))$

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

_

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Checking adversarial robustness The Carlini & Wagner (C&W) attack

This method uses the three norm-based distance metrics (L₀, L₂ and L_{inf}) to find adversarial examples, such that the distance between the adversarial example and the original sample is minimal

C&W > FGSM

Detecting C&W attacks is more difficult than FGSM attacks

Checking adversarial robustness Targeted adversarial patch attacks

Sometimes, injecting noise into entire image is not necessary. The addition of a noisy image segment to only a small portion of the image can be equally harmful to the model. Targeted adversarial patch attacks can generate a small adversarial patch that is the superimposed with the original sample, thus occluding the key features of the data and making the model classify incorrectly

Checking adversarial robustness Example of adversarial perturbation with FGSM

Input Labrador_retriever : 41.82% Acc.

Epsilon = 0.010Saluki : 13.08% Acc.

Source: https://www.tensorflow.org/tutorials/generative/adversarial_fgsm?hl=it

Problem for model

No problem for human

Checking adversarial robustness Methods to increase adversarial robustness

In production system, adversarial attacks can mostly inject noise into inference data. So, to reduce the impact of adversarial attacks, we can adopt different strategies

Checking adversarial robustness Methods to increase adversarial robustness

Defense mechanism

In order to filter out any abrupt change from any signal, we usually try to apply a smoothing filter such as **Spatial smoothing**.

Adversarial training

By using the technique of **data augmentation,** we can generate adversarial samples from the original data and include the augmented data during the training process (tips: Fine Tuning the original model with adversarial samples)

Checking adversarial robustness Evaluating adversarial robustness

How can we measure the adversarial robustness of the models?

Segmented stress testing

Checking adversarial robustness Stress testing

In Stress testing, adversarial examples are generated by FGSM or C&W methods

Following this, the model's accuracy is measured on the adversarial examples and compared the model accuracy obtained with the original data.

Checking adversarial robustness Segmented stress testing

In Segmented stress testing, instead of measuring the adversarial robustness of the entire model on the entire dataset, segments of the dataset (either for specific classes or for specific features) are considered to compare the model robustness with the adversarial attack strengths.

Summary

- Data-centric XAI can provide explainability to the black-box model in terms of the data volume, consistency and purity
- Monitoring data drifts for production ML systems is also an essential part of the datacentric XAI process
- Estimating the adversarial robustness of ML models and the detection of adversarial attacks form an important part of the process

