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Gartner* summarizes this in his definition of big data in 
2012 as “high volume, velocity and variety information 
assets that demand cost-effective, innovative forms of 

information processing for enhanced insight and decision 
making.” 

*Daryl C. Plummer, Kurt Potter, Richard T. Matlus, Jacqueline Heng, Rolf Jester, Ed Thompson, 
Adam Sarner, Esteban Kolsky, French Caldwell, John Bace, Neil MacDonald, Brian Gammage, 

Michael A. Silver, Leslie Fiering, Monica Basso, Ken Dulaney, David Mitchell Smith, Bob Hafner, 
Mark Fabbi, and Michael A. Bell. Gartner’s top predictions for it orga- nizations and users, 

2007 and beyond.  

Big Data



Big Data

Business
Customer personalization and 

churn detection (customers 
moving from one company to a 

rival one)

Technology
Reducing processing time 

from hours to seconds 

Health
people’s medical records and 

genomics data, to monitor and  
improve their health  

Smart Cities
Cities focused on sustainable 
economic development and 
high quality of life, with wise 

management of natural 
resources. 

Applications of big 
data should allow 

people to have better 
services and better 

customer experiences, 
and also be healthier 



Big Data: real example

Global Pulse* uses big 
data to improve life in 
developing countries 

1. Researching innovative methods 
and techniques for analyzing real-
time digital data to detect early 
emerging vulnerabilities 

2. Assembling a free and open-
source technology toolkit for 
analyzing real-time data and 
sharing hypotheses 

3. Establishing an integrated, global 
network of Pulse Labs, to pilot the 
approach at the country level

*United Nations Global Pulse. Harnessing big data for development and humanitarian 
action. http://www.unglobalpulse.org, accessed May 21st, 2017.  



Big Data: real examples

Shell
Real-time machine 
learning pipeline 

able to detect 
whether people are 

smoking

Health
Real-time machine 
learning pipeline 

able to detect heart 
rate changes

Real-time machine 
learning pipeline 

able to detect fake 
news or bad content

Social network



Big Data: Open source tools revolution



Big Data: Challenges in Big Data  

There are many challenges for the future in 
big data management and analytics, arising 
from the very nature of data: large, diverse, 

and evolving*  

*Vivekanand Gopalkrishnan, David Steier,Harvey Lewis,and James Guszcza. Big data, big business: Bridging the gap. In Proceedings of the 1st International Workshop 
on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (BigMine 2012). Beijing, China, August 12–12, 

2012, pages 7–11. ACM, 2012.  



Some of the 
challenges that 
researchers and 
practitioners will 

have to deal with in 
the years to come 

are:

Credits: dalle2.gallery



Big Data: Challenges in Big Data  

Analytics architecture 

It is not clear yet how an optimal architecture of an 
analytics system should be built to deal with historical 

data and with real-time data at the same time



Challenges in Big Data  

Analytics architecture 
A first proposal was the Lambda 

architecture of Nathan Marz*. The Lambda 
architecture solves the problem of 

computing arbitrary functions on arbitrary 
data in real time by decomposing the 

problem into three layers: the batch layer, 
the serving layer, and the speed layer.

*Nathan Marz and James Warren. BigData: Principles and best practices of scalable real-time data systems. Manning Publications, 2013. 



Challenges in Big Data  

Analytics architecture 
1. The Batch Layer  
This layer receives data through the master dataset in an append-
only format from different sources. The batch layer processes big 
data sets in intervals to create batch views that will be stored by the 
serving layer. The data in this layer is immutable. Immutability and 
receiving data in append-only format is what makes the Lambda 
architecture fault tolerant and prevents data loss.  
The batch layer does not use incremental algorithms rather it uses 
re-computation algorithms. This layer produces complete data 
because the machine learning algorithms are able to train models 
since the batch layer takes more time to process large datasets



Challenges in Big Data  

Analytics architecture 
2. The Speed or Streaming Layer  

The speed layer processes data using 
data streaming processes and tools such 

as Apache Kafka; its goal is to deliver 
data in real-time. It favors low-latency 

over throughput. The speed layer focuses 
on filling the gaps left by the batch layer. 

This layer uses complex incremental 
algorithms and computation.



Challenges in Big Data  

Analytics architecture 

3. The Serving Layer 
This layer queues batch views that have been 
prepared by the batch layer and then indexes them. 
The serving layer’s goal is to make the data queryable 
in a very short period of time. The server layer stores 
the output and merges the batch layer output with 
the speed layer output. 



Challenges in Big Data  

Evaluation

It is important to achieve significant statistical results, 
and not be fooled by randomness. If the “multiple 

hypothesis problem” is not properly cared for, it is easy 
to go wrong with huge datasets and thousands of 

questions to answer at once*

*B. Efron. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. 
Institute of Mathematical Statistics Monographs. Cambridge University Press, 2010 



Challenges in Big Data  

Evaluation

Is important to avoid the trap of 
focusing only on technical measures 
such as error or speed instead of on 

eventual real-world impact*

*Kiri Wagstaff. Machine learning that matters. In Proceedings of the 29th International Conference on Machine Learning, 
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.  



Challenges in Big Data  

Distributed mining

Many data mining techniques are not trivial to 
parallelize. To have distributed versions of some 
methods, substantial research is needed with both 
practical experiments and theoretical analysis



Challenges in Big Data  

Time evolving data

Data may be evolving overtime, so it is 
important that the big data mining 
techniques are able to adapt to, and in 
some cases explicitly detect, change* 

Joa ̃o Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC Data Mining and Knowledge Discovery Series. CRC Press, 2010.  



Big Data: Challenges in Big Data  

Compression

When dealing with big data, the quantity of space 
needed to store it is very relevant. There are two main 
approaches:  
• compression, where we lose no information 
• sampling, where we choose data that we deem 

representative



Big Data: Challenges in Big Data  

Compression
Using compression, we will use more time and less space, so 
we can consider it as a transformation from time to space 

Using sampling, we are losing information, but the gains in 
space may be in orders of magnitude 

For example Feldman et al* use coresets to reduce the 
complexity of big data problems; a coreset is a small subset of 
the data that provably approximates the original data for a 
given problem

*Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. 
In Proceedings of the  Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 

2013, pages 1434–1453, 2013



Big Data: Challenges in Big Data  

Visualization

A main issue in big data analysis is how to visualize the 
results. Presenting information from large amounts of 
data in a way that is understandable to humans is 
quite a challenge. It requires new techniques and 
frameworks to tell stories, such as those covered in 
the book The Human Face of Big Data*  

*R.Smolanand J.Erwitt. The Human Face of BigData. Sterling Publishing Company Incorporated, 2012  



Big Data: Challenges in Big Data  

Hidden big data

Large quantities of useful data are in fact 
useless because they are untagged, file-based, 
and unstructured. The 2012 IDC study on big 
data* explained that, in 2012, 23% (643 
exabytes) of the digital universe would be 
useful for big data if tagged and analyzed. 

*John Gantz and David Reinsel. The digital universe in  2020: Big data, bigger digital shadows, and biggest growth in the far east, December 2012  



Big Data: Challenges in Big Data  

Hidden big data
However, at that time only 3% of the 
potentially useful data was tagged, 
and even less was analyzed. The 
figures have probably gotten worse in 
recent years. The Open Data and 
Semantic Web movements have 
emerged, in part, to make us aware 
and improve on this situation. 



Real-Time Analytics 

One particular case of the big data 
scenario is real-time analytics.  
It is important for organizations not 
only to obtain answers to queries 
immediately, but to do so 
according to the data that has just 
arrived 



Real-Time Analytics 

Data streams are an algorithmic abstraction to support 
real-time analytics. They are sequences of items, possibly 
infinite, each item having a timestamp, and so a temporal 
order. Data items arrive one by one, and we would like to 

build and maintain models, such as patterns or predictors, 
of these items in real time.

Data streams: Definition



Real-Time Analytics 

There are two main algorithmic challenges 
when dealing with streaming data:  

• The stream is large and fast, and we need to 
extract information in real time from it. That 
means that usually we need to accept 
approximate solutions in order to use less 
time and memory 

• The data may be evolving, so our models 
have to adapt when there are changes in the 
data.  

Data streams



Real-Time Analytics 

Accuracy, time, and memory are 
the three main resource 
dimensions of the stream mining 
process: we are interested in 
methods that obtain the maximum 
accuracy with minimum time and 
low total memory

Data streams: the dimensions



Real-Time Analytics 

Sensor data and the Internet of Things: Every day, more sensors are 
used in industry to monitor processes, and to improve their quality. 
Cities are starting to implement huge networks of sensors to monitor the 
mobility of people and to check the health of bridges and roads, traffic in 
cities, people’s vital constants, and so on  

Telecommunication data: Telecommunication companies have large 
quantities of phone call data. Nowadays, mobile calls and mobile phone 
locations are huge sources of data to be processed, often in real-time 

Applications



Real-Time Analytics 

Social media: The users of social websites such as Facebook, Twitter, 
LinkedIn, and Instagram continuously produce data about their 
interactions and contributions. Topic and community discovery and 
sentiment analysis are but two of the real-time analysis problems that 
arise 

Marketing and e-commerce: Sales businesses are collecting in real time 
large quantities of transactions that can be analyzed for value. Detecting 
fraud in electronic transactions is essential

Applications



Real-Time Analytics 

Health care: Hospitals collect large amounts of time-sensitive data when 
caring for patients, for example, monitoring patient vital signs such as 
blood pressure, heart rate, and temperature. Telemedicine will also 
monitor patients when they are home, perhaps including data about 
their daily activity with separate sensors. Also, the system could have 
results of lab tests, pathology reports, X-rays, and digital imaging. Some 
of this data could be used in real time to provide warnings of changes in 
patient conditions 

Epidemics and disasters: Data from streams originating in the Internet 
can be used to detect epidemics and natural disasters, and can be 
combined with official statistics from official centers for disease and 
disaster control and prevention

Applications



Real-Time Analytics 

Computer security: Computer systems have to be protected from theft 
and damage to their hardware, software and information, as well as from 
disruption or misdirection of the services they provide, in particular, 
insider threat detection and intrusion detection 

Electricity demand prediction: Providers need to know sometime in 
advance how much power their customers will be requesting. The 
figures change with time of day, time of year, geography, weather, state 
of the economy, customer habits, and many other factors, making it a 
complex prediction problem on massive, distributed data

Applications



Big Data Stream Mining 

Machine Learning for Data Streams: with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, The MIT Press
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Big Data Stream Mining 

• Algorithms

Executive Summary

Credits: dalle2.gallery



Algorithms

The main algorithms in data stream mining 
are classification, regression, clustering, 

and frequent pattern mining



Algorithms

• We are in a classification setting when we need to assign a label from a set of nominal labels to each 
item, as a function of the other features of the item. A classifier can be trained as long as the correct 
label for (many of) the examples is available at a later time 

• Regression is a prediction task similar to classification, with the difference that the label to predict is a 
numeric value instead of a nominal one. An example of regression is predicting the value of a stock in the 
stock market tomorrow 

• When examples are not labeled, one interesting task is to group them in homogeneous clusters. 
Clustering can be used, for example, to obtain user profiles in a website. It is an example of an 
unsupervised learning task.  

• Frequent pattern mining looks for the most relevant patterns within the examples. For instance, in a 
sales supermarket dataset, it is possible to know what items are bought together and obtain association 
rules, as for example: Most times customers buy cheese, they also buy wine. 

Offline setting



Algorithms

The most significant requirements for a stream mining 
algorithm are the same for predictors, clusterers, and 
frequent pattern miners:  
• Process an instance at a time, and inspect it (at most) 

once 

• Use a limited amount of time to process each instance 

• Use a limited amount of memory 

• Be ready to give an answer (prediction, clustering, 
patterns) at any time  

• Adapt to temporal changes

But … in the online setting



Classification

Offline  
setting

Data generating process

Collecting multiple 
records as a batch 

Programmed treatment Consumption by user



Classification
Online setting

In the online setting, and in 
particular in streaming, this 
separation between training, 
evaluating, and testing is far 
less clear-cut, and is 
interleaved

!



Classification

Generally speaking, a stream mining 
classifier is ready to do either one of the 
following at any moment: 

1. Receive an unlabeled example and make a 
prediction for it on the basis of its current 
model 

2. Receive the label for an example seen in 
the past, and use it for adjusting the model, 
that is, for training

Online setting

Data 
generating 

Sending 
individual 
records 

Real-time 
treatment

Real-time 
consumption 

The data 
streaming 

process



Classification

For example, an online shop may want to predict, 
for each arriving customer, whether the customer 
will or will not buy a particular product 
(prediction).  

When the customer session ends, say, minutes 
later, the system gets the “label” indicating 
whether indeed the customer bought the product 
or not, and this feedback can be used to tune the 
predictor

Online setting: Customer purchase



Classification

In other cases, the label may never be known 
If trying to detect fraudulent transactions in order 
to block them, transactions predicted to be 
fraudulent are not executed, so their true labels are 
never known 

Online setting: Fraud detection

?



Classification
Accuracy: How many of the unlabeled instances eventually receive their correct 
label? Clearly, the fewer labels received, the harder the prediction task.  

Memory: How long should we wait for an instance label to arrive, before we drop 
the instance? Efficiently managing the buffer of instances waiting for their labels 
is a very delicate implementation problem when dealing with massive, high-
speed streams.  

Training strategies: Should we use all labeled instances for training? If in fact 
many labels are available, perhaps there is a diminishing return in accuracy for 
the increased computational cost of training on all instances. 



Classification

A large part of the research in stream 
classification deals with a simplified 
cycle of training/prediction: we 
assume that we get the true label of 
every unlabeled instance, and that 
furthermore we get it immediately 
after making the prediction and 
before the next instance arrives. 



Classification

Get an unlabeled instance

Make a prediction                    for      ’s label,  

where      is the current model

Get the true label     for    

Use the pair           to update the model     , 
and the pair          to update the metrics

Proceed to the next instance  



Classification

This model is rightly criticized by practitioners as too simple, because it ignores 
the very real problem of delayed and missing label feedback. It is however quite 

useful for comparing learning algorithms in a clean way, provided we have 
access to, or can simulate, a stream for which we have all labels.



Classification

Given this cycle, it is reasonable to ask: How 
do we evaluate the performance of a 

classification algorithm?

Classifier Evaluation in Data Streams  



Classification

In traditional batch learning, evaluation is 
typically performed by randomly splitting the 
data into training and testing sets (holdout); if 
data is limited, cross-validation (creating several 
models and averaging results across several 
random partitions in training and test data) is 
preferred. 

Classifier Evaluation in Data Streams  



Classification

• In the stream setting, (effectively) unlimited data tends to make cross-
validation too expensive computationally, and less necessary anyway. But it 
poses new challenges 

• The main one is to build an accurate picture of accuracy over time. One 
solution involves taking snapshots at different times during the induction of a 
model to see how the model accuracy varies

Classifier Evaluation in Data Streams  



Classification

Interleaved test-then-train or prequential: Each individual example is used to 
test the model before it is used for training, and from this the accuracy can be 
incrementally updated.  

When the evaluation is intentionally performed in this order, the model is always 
being tested on instances it has not seen. This scheme has the advantage that 
no holdout set is needed for testing, making maximum use of the available data

Classifier Evaluation in Data Streams  



Classification

• It also ensures a smooth plot of accuracy over time, as each individual 
example will become less and less significant to the overall average.  

• In test-then-train evaluation, all examples seen so far are taken into account to 
compute accuracy, while in prequential, only those in a sliding window of the 
most recent ones are. 

• As data stream classification is a relatively new field, such evaluation practices 
are not nearly as well researched and established as they are in the traditional 
batch setting. 

Classifier Evaluation in Data Streams  



Classification
Decision Tree 

• Traditional decision trees scan the entire dataset 
to discover the best attribute to form the initial 
split of the data.  

• Once this is found, the data is split by the value of 
the chosen attribute, and the algorithm is applied 
recursively to the resulting datasets, to build 
subtrees.  

• Recursion is applied until some stopping criterion 
is met.  

This approach cannot be adopted directly in the 
stream setting, as we cannot afford the resource 
cost (time and memory) of storing instances and 
repeatedly scanning them. 

Credits: dalle2.gallery



Classification
Decision Tree 

Decision tree learners build a tree structure from 
training examples to predict class labels of unseen 
examples 

In stream mining, the state-of-the art decision tree 
classifier is the Hoeffding tree, due to Domingos and 
Hulten*, and its variations

*Pedro M.Domingos and Geoff Hulten. A general method for scaling up 
machine learning algorithms and its application to clustering. In 

Proceedings of the Eighteenth International Conference on Machine 
Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 – 

July 1, 2001, pages 106–113, 2001.  

Credits: dalle2.gallery



Classification
Decision Tree 

• The Hoeffding tree is based on the idea that, instead of 
looking at previous (stored) instances to decide what 
splits to do in the trees, we can wait to receive enough 
instances and make split decisions when they can be 
made confidently.  

• The main advantage of this approach is that it is not 
necessary to store instances. Instead, sufficient statistics 
are kept in order to make splitting decisions.  

• The sufficient statistics make it easy to incorporate Naive 
Bayes models into the leaves of the tree.  

The Hoeffding adaptive tree* is an extension of the Hoeffding 
tree that is able to create and replace new branches when 
the data stream is evolving and the class label distribution or 
instance distribution is changing.  

*Albert Bifet and Ricard Gavalda`. Adaptive learning from evolving data 
streams. In Advances in Intelligent Data Analysis VIII, 8th International 

Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 
– September 2, 2009. Proceedings, pages 249–260, 2009Credits: dalle2.gallery



Classification
Ensambles 

Ensembles are sets of classifiers that, 
when combined, can predict better 
than any of them individually 

Bagging is an ensemble method that  
(1) uses as input for each run of the 

classifier builder a subset obtained 
by sampling with repetition of the 
original input data stream 

(2) uses majority voting of the 
classifiers as a prediction strategy

Credits: dalle2.galleryCredits: dalle2.gallery



Classification
Ensambles 

The ADWIN bagging method [38], 
implemented as OzaBagAdwin  in 
MOA, is an extension of bagging 
that it is able to create and replace 
new classifiers when the data 
stream is evolving and the class 
label distribution is changing

Credits: dalle2.gallery



Regression

As in classification, the goal in a regression task is to learn 
a model that predicts the value of a label attribute for 

instances where the label is not (yet) known. 
Several classification algorithms have natural 

counterparts for regression, including lazy learning and 
decision trees.  



Dealing with Change 

Machine Learning for Data Streams: with Practical Examples in MOA, Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, The MIT Press
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Dealing with Change 

• Notion of Change in Streams  

• Estimators 

• Change Detection

Executive Summary

Credits: Jonny Gios - Unsplash



Notion of Change in Stream 

Let us first discuss the notion of change in 
streams with respect to notions in other 

paradigms, as well as some nuances that 
appear when carefully defining change over 

time 



Notion of Change in Stream 

First, nonstationary distributions of data may also appear in batch data analysis. 
Data in batch datasets may also be timestamped and vary statistically over time. 
Algorithms may take this possibility into account when drawing conclusions from 
the data, but otherwise can perform several passes and examine data from 
before and after any given recorded time



Notion of Change in Stream 

In streaming, we cannot explicitly store all 
past data to detect or quantify change, and 

certainly we cannot use data from the future 
to make decisions in the present



Notion of Change in Stream 

There is some similarity to the vast field of time 
series analysis, where data also consists of a 
sequence of timestamped items. In time series 
analysis, however, the analysis process is often 
assumed to be offline, with batch data, and 
without the requirements for low memory and 
low processing time per item inherent to streams.  

In contrast, most of the work in streaming does 
not necessarily assume that change occurs in 
predictable ways, or has trends. Change may be 
arbitrary. The task is to build models describing 
how the world behaves right now, given what we 
are observing right now.  



Notion of Change in Stream 

What do we mean exactly when we say that 
a data stream changes or evolves?

It cannot mean that the items we observe today are not exactly the same as 
those that we observed yesterday. A more reasonable notion is that 

statistical properties of the data change more than what can be attributed 
to chance fluctuations



Notion of Change in Stream 

To make this idea precise, it helps to assume that the data is in fact the result of a 
random process that at each time generates an item according to a probability 
distribution that is used at that exact time, and that may or may not be the same 
that is used at any other given time 

• There is no change when this underlying generating distribution remains 
stationary 

• Change occurs whenever it varies from one time step to the next  



Notion of Change in Stream 

Although changes in the item distribution 
may be arbitrary, it helps to name a few 
generic types, which are not exclusive 

within a stream. The naming is 
unfortunately not consistent throughout 
the literature. In fact, change in general is 
often called concept drift in the literature



Notion of Change in Stream 

Krawczyk, Bartosz & Cano, Alberto. (2018). Online Ensemble Learning with Abstaining Classifiers for Drifting and Noisy Data Streams. 
Applied Soft Computing. 68. 677-692. 10.1016/j.asoc.2017.12.008. 



Notion of Change in Stream 

We should also distinguish the notions of outliers and 
noise from that of distribution change. Distinguishing 
true change from transient outliers and from persistent 
noise is one of the challenges in data stream mining and 
learning. 

Requirements: 
• Detect change in the stream (and adapt the models, if 

needed) as soon as possible 
• At the same time, be robust to noise and outliers 
• Operate in less than instance arrival time



Notion of Change in Stream 

Ensemble  
methods

Change management strategies can be roughly grouped into three families,  

or a combination thereof 

Adaptive  
estimators

Create models that are 
adapted or rebuilt



Notion of Change in Stream 

The first strategy relies on the fact that many model builders work by monitoring 
a set of statistics from the stream and then combining them into a model. These 
statistics may be counts, absolute or conditional probabilities, correlations 
between attributes, or frequencies of certain patterns, among others.  

Examples of such algorithms are Naive Bayes, which keeps counts of co-
occurrences of attribute values and class values, and the perceptron algorithm, 
which updates weights taking into account agreement between attributes and 
the outcome to be predicted.  

This strategy works by having a dynamic estimator for each relevant statistic in a 
way that reflects its current value, and letting the model builder feed on those 
estimators. 



Notion of Change in Stream 

Estimator1

Estimator2

Estimator3

Estimator4

Estimator5

Model Builderinput  output  

Managing 
change with 

adaptive 
estimators  



Notion of Change in Stream 

In the second strategy, one or more change 
detection algorithms run in parallel with the 

main model-building algorithm. When 
significant change in the stream is detected, 

they activate a revision algorithm 



Notion of Change in Stream 

Model builder

Current model

input  output  

Change detector

Managing change with explicit 
change detectors for model revision  



Notion of Change in Stream 

The third strategy is based on the idea of an ensemble, used to build 
complex classifiers out of simpler ones. A single or several model- 
building algorithms are called at different times, perhaps on different 
subsets of the data stream. An ensemble manager algorithm contains 
rules for creating, erasing, and revising the models in its ensemble, as 
well as for combining the predictions of the models into a single 
prediction. 



Notion of Change in Stream 

Ensamble manager

Model 1

input  output  

Model 2 Model n-1 Model n…

Managing change with model ensembles  



Nice Tools

https://colab.research.google.com/drive/1tcFIuYKfnI1pHlkbp0-dgCmymBVrKCNE?
usp=sharing


