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First Half 

❑Part 1: Introduction (30 mins)
❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning

Tutorial Schedule
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Second Half

❑ Q&A

❑Medical Imaging Applications (30 mins)
❖ Synthesis

❖ Segmentation

❖ Anomaly Detection

❖ Reconstruction

❖ Registration



This tutorial is an abridged 
version of the successful 
diffusion tutorials in MICCAI 
2023 in Vancouver, and ISBI 
2024 in Athens
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We will use wooclap:
o Are you familiar with diffusion models

o Are you familiar with generative model theory?

o What are your primary objectives for today?

More will come...

We went to learn a few things about you
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Diffusion Models

What? Why? How?
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What? Generative Models

𝑝𝜃  ∈  ℳ

Model family

𝒅( 𝑝𝑑𝑎𝑡𝑎, 𝑝𝜃)

Brain MRI

𝑖 ∈ {1,2, … , |𝐷|}

𝑥𝑖  ~ 𝑝𝑑𝑎𝑡𝑎

ℳ = {VAE, GAN, NF, Diffusion Models}
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What? Generative Models

𝑝𝜃  ∈  ℳ

Model family

Density Estimation

𝑝𝜃 𝑥

Sampling

𝑥𝑛𝑒𝑤  ∼ 𝑝𝜃

Unsupervised Representation Learning

𝑧 ←  𝑝𝜃(𝑥)

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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What? Generative models

10
Figure by Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

likelihood-based models 

implicit generative models

Require 

• inductive bias to ensure a tractable 

normalizing constant for likelihood 

computation; or 

• surrogate objectives to approximate 

ML training. 

Require adversarial training:

• notoriously unstable; leading to 

• mode collapse

diffusion models bypass both with neat tricks
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Sampling Trilemma

11
Xiao, Z., Kreis, K., & Vahdat, A. (2021). Tackling the generative learning trilemma with denoising diffusion gans. ICLR
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Why? Unprecedented Quality

12
Images generated by these engines or taken from 

respective blogs. Copyright, unclear.

“A dystopian male face made 

of volcanic lava, mysterious, 

image containing secret 

codes”

“…

Tribe taking a 

selfie …”

“realistic photo of a 

cybernetic Eagle”

Images from ideogram.ai                 and Midjourney 

1.Realism

2.Control

3.Prior
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Why? Community Push

13

Companies
Big models and data

Open-Source
Ease of Use
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Why? Research Community Push

14

ISBI MICCAI ICLR CVPR ICML NeurIPS

2024 - - 7% 12% - -

2023 7% 7% 3% 4% 4% 6%

2022 4% 2% 1% >1% 1% 1%

2021 1% >1% >1% ≈0% >1% >1%

Percentage of accepted papers in great conferences that include diffusion in their title is growing
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Why? Medical Imaging Popularity

15Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.
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Why? Medical Imaging Applications

16Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.

Realism PriorControl
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Training by Denoising

Diffusion Models 
How?

17
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• Add gradually noise

• Training by denoising

How? Training by Denoising

18
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How? Training by Denoising

NN𝜶𝒕

𝒕
𝑇0

MSE

𝑥0

𝜖

𝜖 ~ 𝒩 0, 𝕀
 𝑡 ~ 𝒰(0, 𝑇)

Convex 

Combination

19
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How? Inference

NN

𝒕
𝑇0

𝑥0
𝑥𝑇

Trained Model

How the input can be a 

step closer to an image?

20

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemosIntroduction Advanced Topic Applications



First Half 

❑Part 1: Introduction (30 mins)
❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning

Tutorial Schedule

21

Second Half

❑ Q&A

❑Medical Imaging Applications (30 mins)
❖ Synthesis

❖ Segmentation

❖ Anomaly Detection

❖ Reconstruction

❖ Registration

We are here!



Denoising

Diffusion

Model

22
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Denoising diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by denoising

Denoising Diffusion Models

23
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Forward diffusion process

24

We use normal distribution to generate a noisy image conditioned on previous image

𝑞 |𝑥𝑡 𝑥𝑡−1 = 𝑁 𝑥𝑡; 𝛽𝑡𝑥𝑡−1, (1 − 𝛽𝑡)𝐼
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Forward diffusion process

25

joint distribution →  𝑞 |𝑥1:𝑇 𝑥0 = ς𝑡=1
𝑇 𝑞 |𝑥𝑡 𝑥𝑡−1

Given the step 𝛽𝑠, we can generate a particular step t

𝑞 |𝑥𝑡 𝑥0 = 𝑁 𝑥𝑡; ത𝑎𝑡𝑥0, (1 − ത𝑎𝑡)𝐼      where ത𝑎𝑡 = ς𝑠=1
𝑡 (1 − 𝛽𝑠)

diffusion kernel

For sampling at timestep t :       𝑥𝑡 = ത𝑎𝑡𝑥0 + 1 − ത𝑎𝑡 𝜀 where 𝜖~𝑁 0, 𝐼

𝛽𝑡 is the noise schedule such that ത𝑎𝑡 → 0 ֜  𝑞 |𝑥𝑇 𝑥0 ≈ 𝑁 𝑥𝑇; 0, 𝐼

The diffusion kernel at timestep T can be approximated using standard normal distribution
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𝑞 𝑥𝑡 = න𝑞 𝑥0, 𝑥𝑡 ⅆ𝑥0 = න𝑞 𝑥0 𝑞 |𝑥𝑡 𝑥0 ⅆ𝑥0

Forward diffusion process

26

diffusion

kernel

We can sample  𝑥𝑡~𝑞 𝑥𝑡   

by first sampling 𝑥0~𝑞 𝑥0  and then sampling 𝑥𝑡~𝑞 𝑥𝑡|𝑥0   

The diffusion kernel 𝑞 |𝑥𝑡 𝑥0  is Gaussian convolution
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Recall 𝑞 𝑥𝑇  ~ 𝑁 𝑥𝑇; 0, 𝐼

Start from 𝑥𝑇  ~ 𝑁 𝑥𝑇; 0, 𝐼

Iteratively 𝑥𝑡−1~ 𝑞 𝑥𝑡−1|𝑥𝑡

But 𝑞 𝑥𝑡−1|𝑥𝑡  is intractable!

We can approximate it with a normal distribution.

if 𝛽𝑡 is small in forward process

We need a parametric model to mimic 𝑞 𝑥𝑡−1|𝑥𝑡

Generation by Denoising

27
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Reverse diffusion process

28

We define a denoising distribution  𝑝𝜃 |𝑥𝑡−1 𝑥𝑡
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𝑝 𝑥𝑇 =  𝑁 𝑥𝑇; 0, 𝐼

𝑝𝜃 |𝑥𝑡−1 𝑥𝑡  = 𝑁 𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , 𝜎𝑡
2𝐼

Reverse diffusion process

29

𝜇𝜃 is a trainable network (like U-net) joint distr. of full reverse trajectory

For training, we form variational upper bound (ELBO) that is commonly used for training variational autoencoders:

𝐸𝑞 𝑥0
[− log 𝑝𝜃 𝑥0 ] ≤ 𝐸𝑞 𝑥0 𝑞 𝑥1:T|𝑥0

[− log
𝑝𝜃(𝑥0:𝑇)

𝑞 𝑥1:T|𝑥0
] =: 𝐸𝐿𝐵𝑂

→        𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇  ς𝑡=1
𝑇 𝑝𝜃 |𝑥𝑡−1 𝑥𝑡
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recall 𝑥𝑡 = ത𝑎𝑡𝑥0 + 1 − ത𝑎𝑡 𝜖

After some simple arithmetic operations, the variational objective is:

𝐸𝐿𝐵𝑂 = 𝐸𝑥𝑜~𝑞 𝑥0 ,𝑡~∪ 1,Τ ,𝜖~𝑁 0,𝐼 [𝜆t||𝜖 −  𝜖𝜃( ത𝑎𝑡𝑥0 + 1 − ത𝑎𝑡 𝜖, t)||2]  

         𝜆t is a function of 𝛽𝑡

Reverse diffusion process

31

𝐸𝑞 𝑥0
[− log 𝑝𝜃 𝑥0 ] ≤ 𝐸𝑞 𝑥0 𝑞 𝑥1:T|𝑥0

[− log
𝑝𝜃(𝑥0:𝑇)

𝑞 𝑥1:T|𝑥0
] =: 𝐸𝐿𝐵𝑂
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What does the diffusion model optimise?



First Half 

❑Part 1: Introduction (30 mins)
❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning

Tutorial Schedule
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Second Half

❑ Q&A

❑Medical Imaging Applications (30 mins)
❖ Synthesis

❖ Segmentation

❖ Anomaly Detection

❖ Reconstruction

❖ Registration

We are here!



Understanding and Intuition

34



Likelihood models want to learn 𝑝𝜃 x  directly

Diffusion models want to learn the score 𝛻x log 𝑝𝜃 x  

(i.e. the gradient with respect to the input of the loglikelihood)

a distribution can be written as:

𝑝𝜃 x = 𝑒−𝑓𝜃(𝑥)

𝑍𝜃

 

Score Function

35
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Score Function

36

log 𝑝𝜃 x = log 𝑒−𝑓𝜃(𝑥) − log 𝑍𝜃

𝛻x log 𝑝𝜃 x = −𝛻x𝑓𝜃(𝑥) − 𝛻x log 𝑍𝜃

0

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Mixture of two Gaussians 
Score function (the vector field)

Density function (contours)

𝝐𝜽

a distribution can be written as:

𝑝𝜃 x = 𝑒−𝑓𝜃(𝑥)

𝑍𝜃

The score is pointing to the areas of biggest mass

How to learn it?
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Denoising Score Matching

38

𝔼𝑞 x 𝝐𝜽(x)  − 𝛻x log 𝑝θ x
𝟐

𝟐

Diffusion Model Score

𝔼𝑞 x 𝝐𝜽(x) − 𝛻x log 𝑞 x𝑡 | x 𝟐
𝟐

Vincent, Pascal. "A connection between score matching and denoising autoencoders." Neural computation 23.7 (2011): 1661-1674.

How to learn the score?
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Perturbation at many scales

40Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Learning in low density regions
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Diffusion Models Learn the Gradient

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning 

using nonequilibrium thermodynamics. In International Conference on Machine Learning.

𝛻𝑥𝑙𝑜𝑔 p(x)

41
Figure by the author of the papers. 

Copyright rests with the authors.
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Diffusion and Differential Equations

42Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

❑ Perturbation process is a Stochastic Differential Equation (SDE)

❑ From complex to simple

❑ Allow different values for SDE modelling
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Reversing the Process is Generation

43Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

❑ Samplers are discrete solutions of the reverse-time SDE
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Fourier Transform

44

x𝑡 = α𝑡 x + 1 − α𝑡 𝜖 , 𝜖 ~ 𝒩(0, 𝚰)

ℱ x𝑡 = α𝑡ℱ(x) + 1 − α𝑡ℱ(𝜖)

Slide inspired in CVPRs 2022 tutorial on diffusion models

Fourier Transform Small 𝑡
ത𝑎𝑡 ~ 1

Big 𝑡
ത𝑎𝑡 ~ 0
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•

Content – Detail Tradeoff

45

Small t

The model generates high 

frequency content

(low-level details)

Big t

The model generates low 

frequency content

(coarse details)
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Gaussian Perturbation?

46

[1] Daras, Giannis, et al. "Soft diffusion: Score matching for general corruptions." arXiv preprint arXiv:2209.05442 (2022).

[2] Bansal, Arpit, et al. "Cold diffusion: Inverting arbitrary image transforms without noise." arXiv preprint arXiv:2208.09392 (2022).

[3] Kascenas, Antanas, et al. "The role of noise in denoising models for anomaly detection in medical images." Medical Image Analysis (2023): 102963.
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Architecture – Reusing the classics,
and the SoTA

Jonathan Ho, Ajay Jain, Pieter Abbeel (2020) Denoising Diffusion Probabilistic Models. NeuriPS

Unet!

Or transformers

Or VQ-VAEs

Or…

48
Figure by the author of the papers. 

Copyright rests with the authors.Introduction Advanced Topic Applications
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How do you think a diffusion model 

might compare to GANs in terms 

of output quality and stability?



First Half 

❑Part 1: Introduction (30 mins)
❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning

Tutorial Schedule
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Second Half

❑ Q&A

❑Medical Imaging Applications (30 mins)
❖ Synthesis

❖ Segmentation

❖ Anomaly Detection

❖ Reconstruction

❖ RegistrationWe are here!



Part 2 – Advanced Topics

• Sampling Strategies

• Conditioning Mechanisms

"mouse"
Diffusion 

Model

51



• Facts about DMs
• Training

• 150-1000 V100 GPU 
days

• Sampling
• 50k samples, 5 A100 

GPU days 

An inherent drawback: slowness

Xiao, Z., Kreis, K., & Vahdat, A. (2021). Tackling the generative learning trilemma with denoising diffusion gans. ICLR

Introduction Advanced Topic ApplicationsDemos
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How to accelerate diffusion models?

Slowly add noise

Map noise back to data

Naïve acceleration methods

• such as reducing diffusion time steps in training or sampling

• Leading to immediate worse performance.

We need something clever!
Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Acceleration: Forward Process

• Does it have to be a Markovian process?

• Is there any faster diffusion process?

𝐱0 → ⋯ 𝐱𝑡 → 𝐱𝑡+1 → ⋯ → 𝐱𝑇

𝑞 𝐱𝑡 𝐱𝑡−1 ≔ 𝒩(𝐱𝑡: 1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈)

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Denoising Diffusion Implicit Models 
(DDIM)

• Diffusion Model does not need to be Markovian!
• DDPM forward process: 𝑞𝜎(𝐱𝑡|𝐱𝑡−1)

• The loss function for DDPM: 𝐿 𝜃 = 𝜖 − 𝜖𝜃 𝐱𝑡 , 𝑡 2

• Define a new forward process: 𝑞𝜎(𝐱𝑡|𝐱𝑡−1, 𝐱0)

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Acceleration: Skip steps

• By skipping 𝑘 steps, we have a step size of 𝑘Δ𝑡.

• Sampling is 𝑘 times faster.

• We trade image quality for speed.
Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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DDIM Result

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

• DDIM: Non-Markovian process but 10-50x faster!!
• We can directly use a pretrained DDPM to do sampling acceleration

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Denoising Diffusion Implicit Models 
(DDIM)

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Image Interpolation

59

DDIM noise encoding

Linear Combination

(1-α)A+αB

DDIM noise decoding

0 1α

A B

Output

0.1 0.2 0.6 0.80.4 0.5
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Progressive Distillation for Fast Sampling

𝑧0 𝑧1𝑧3/8 𝑧4/8 𝑧5/8 𝑧6/8 𝑧7/8𝑧2/8

Teacher

Student

𝑧0 𝑧1𝑧3/4𝑧2/4𝑧1/4

Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Progressive Distillation for Fast Sampling

Student =

New Teacher
𝑧0 𝑧1𝑧3/4𝑧2/4𝑧1/4

𝑧0 𝑧1𝑧1/2

New Student

Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Latent-space Diffusion Models

Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-

10695.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Taxonomy of Sampling Acceleration

63Cao, Hanqun, et al. "A survey on generative diffusion models." IEEE Transactions on Knowledge and Data Engineering (2024).
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❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning
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Second Half
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❖ Reconstruction
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Part 2 – Advanced Topics

• Sampling Strategies

• Conditioning Mechanisms

"mouse"
Diffusion 

Model
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Conditioning example: Image-to-image 
generation

Introduction Advanced Topic ApplicationsDemos

Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in neural information processing systems 35 (2022): 36479-36494. 66
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Trends in Conditioning

The number of papers on controllable generation based on T2I diffusion models.
Cao P, Zhou F, Song Q, et al. Controllable Generation with Text-to-Image Diffusion Models: A Survey[J]. arXiv preprint arXiv:2403.04279, 2024.
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How to evaluate generated samples?

• Low FID
▪ Not real enough

• High diversity
▪ Means hard to control

• We want to introduce condition so that the generation can be controllable

• How to evaluate a generative model?

• Quality

• Diversity

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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Generation Direction

• ∇𝑥𝑡
log 𝑝(𝐱𝑡) : the direction of generation

▪ SDE, generate with randomness

• What about a condition 𝑦?
▪ ∇𝑥𝑡

log 𝑝(𝐱𝑡|𝑦) : the direction of generation, conditioned on 𝑦

• We have 𝑝 𝑥𝑡 𝑦 =
𝑝 𝑦 𝑥𝑡  𝑝 𝑥𝑡

𝑝 𝑦
, then we have 

▪ ∇𝑥𝑡
log 𝑝(𝐱𝑡|𝑦) = ∇𝑥𝑡

log 𝑝 𝑦 𝐱𝑡  + ∇𝑥𝑡
log 𝑝(𝐱𝑡)

Direction of the condition

Direction of 

unconditional generation

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.
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Classifier Guidance  - Post Editing

• Let’s create a classifier 𝑝𝜙(𝑦|𝑥𝑡)

classifier

𝜙

𝑥𝑡 

𝑡 

𝑦 

𝑜𝑢𝑡 Take derivate to 𝑥𝑡 and get

∇𝑥𝑡
log 𝑝 ො𝑦 𝐱𝑡  

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.
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Classifier Guidance

71Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Diffusion 

Model
update

∗ 𝑠

We use the gradient to guide the generation process towards a desired class.

desired class 𝑖

Gradient guidance is not restricted to classification models. Other models 

(e.g., regression, segmentation, …) work just in the same way.
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Classifier Free Conditioning – Pre-training

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.

• For image generation of a fake 

image 𝑥, we can use a 

conditioning image 𝑦.

• This requires paired training.

• During training and sampling, 

we add information of the 

conditioning image 𝑥 through 

channel-wise concatenation.

𝑥𝑦

Colorization

Decompression

Uncropping

Inpainting
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Comparison

• Conditioning
▪Pre-training: classifier free

▪Post-editing: classifier guidance

• Pros and Cons
▪Classifier guidance

- Low training costs

- Less detailed generation

▪Classifier free
- Great details; Training with 𝑦, the more input samples the easier to train

- Every time you want to add another signal/condition, needs to retrain the 
model

Introduction Advanced Topic Applications DemosIntroduction Advanced Topic ApplicationsDemos
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• Pixel Space Diffusion Models
▪ GLIDE (ICML 2022)

- Transforms the input text 𝑐 into a token sequence via a transformer

- Replace the class-embedding with the pooled text feature and concatenate to the attention 
layers

▪ Imagen (NeurIPS 2022)
- Use a pre-trained LLM as its text encoder

- “Cross-attention is the most effective technique”

▪ DALL.E 2, 3(arXiv 2022)
- Bridges the gap between CLIP text and the image latent space 𝑝(𝑧𝑖|𝑧𝑡)

• Latent Space Diffusion Models
▪ LDM (CVPR 2022)

- Enhance the underlying Unet with cross-attention

▪ Stable Diffusion (SD) v1, v2(CVPR 2022)

▪ SD XL (ICLR 2024)

Evolutions of Text-to-Image Diffusions

74
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Glide: Text Conditioning

75Nichol, Alex, et al. "Glide: Towards photorealistic image generation and editing with text-guided diffusion models." arXiv preprint arXiv:2112.10741 (2021).
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Imagen: Text Conditioning

76Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in neural information processing systems 35 (2022): 36479-36494.
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• We pretrain a diffusion model with 

text prompts.

• We freeze this model.

• We fine-tune a copy conditioned on 

𝒄. 

• We pass information through skip 

connections.

ControlNet

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
77
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ControlNet

78

conditioning image

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
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Taxonomy of Controllable Generations

80Cao P, Zhou F, Song Q, et al. Controllable Generation with Text-to-Image Diffusion Models: A Survey[J]. arXiv preprint arXiv:2403.04279, 2024.
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81

Why do you think diffusion models 

exhibit such performance?



100

What types of applications in Medical Imaging are you 

most interested in applying generative models to?



Q&A

Generated by DALL.E 3



First Half 

❑Part 1: Introduction (30 mins)
❖What? Why? How?

❖ Denoising Diffusion Models

❖ Understanding and Intuition

❑Part 2: Advanced Topics (30 mins)
❖ Sampling Strategies

❖ Conditioning

Tutorial Schedule

102

Second Half

❑ Q&A

❑Medical Imaging Applications (30 mins)
❖ Synthesis

❖ Segmentation

❖ Anomaly Detection

❖ Reconstruction

❖ Registration

We are here!



Part 2 – Medical Image Applications

Image Reconstruction
Image Registration

Anomaly Detection

Image Synthesis

Image Segmentation

103
Introduction Advanced Topic Applications



Image synthesis
Examples from the community

105
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The simple setup of the problem

106

PAPERS

Pinaya et al (2022) Brain Imaging Generation with Latent Diffusion Models. MICCAI 2022 workshop

Khader et al. (2022) Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. Scientific Reports, 2023

Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation.

Ye, Jiarong, et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. MICCAI 2023

Fernandez, V.et al. (2022). Can segmentation models be trained with fully synthetically generated data? MICCAI 2022 Workshop

Packhäuser et al. (2022) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. ISBI 2023

Fernandez, V. et al (2023). Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models. MICCAI 2023 Workshop 

Sagers, Luke W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. 

Frisch, Yannik, et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023.

Kim et al. (2022) Diffusion Deformable Model for 4D Temporal Medical Image Generation. MICCAI 2022

Ali et al. (2022) Spot the fake lungs: Generating Synthetic Medical Images using Neural Diffusion Models. AICS 2022

Rouzrokh et al. (2022) Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report. 

Chambon et al (2022) Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains. NeurIPS2022

Lyu et al. (2022) Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models. 

Ozbey et al. (2023) Unsupervised Medical Image Translation with Adversarial Diffusion Models. IEEE Transactions on Medical Imaging 2023

Ktena, Ira, et al. (2024) Generative models improve fairness of medical classifiers under distribution shifts. Nature Medicine, 2024

Dominik J. E. Waibel, et al. (2023) Diffusion Model Predicts 3D Shapes from 2D Microscopy Images. ISBI 2023.

P.Huy, et al. (2023) Denoising Diffusion Medical Models. ISBI 2023.

Figure by Song et al ICLR 2022. 

Copyright rests with the authors.

Real
Synthetic
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Why? Medical Image Data is Scarce

107

Data Provider Data Users

Privacy concerns Limited data
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Use of Synthetic Data

108

❑ Full “private” training

❑ Data augmentation

❑ Test-time augmentation

❑ Testing edge cases

Pinaya, Walter HL, et al. "Generative AI for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023).

Evaluation Criteria

❑ Realism

❑ Diversity

❑ Privacy
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Generating high-resolution 3D brain data

• Latent Diffusion Models trained on data from UK Biobank (N = 31,740)

o T1 MRI brain images with 1 mm3 voxel size (160 × 224 × 160 voxels)

• Conditioned on covariates, such as:

o Age

o Gender

o Ventricular and Brain volumes 

109
Pinaya et al (2022). Brain Imaging Generation with Latent Diffusion Models. MICCAI 2022 workshop

Khader et al. (2023) Medical Diffusion - Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. Scientific Reports, 2023

Synthetic
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Fine-tuning Stable Diffusion

110
Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation.
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Unlabelled Pre-training

111Ye, Jiarong, et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. MICCAI 2023
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Generating Segmentation Masks

112Fernandez, V.et al. (2022). Can segmentation models be trained with fully synthetically generated data? MICCAI 2022 Workshop
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Generation of Anonymous Chest Radiographs

113Packhäuser et al. (2022) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. ISBI 2023 

Slides courtesy of Kai Packhäuser
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Data used to train the abnormality classifier

Real PGGAN LDM

Fig. 1: Proposed privacy-enhancing image sampling strategy. Image taken from [1].

Fig. 3: Randomly selected images generated by the trained LDM. Images taken from [1].

Fig. 2: Comparison of the classification performance of CheXNet.

Infiltration Nodule Mass Cardiomegaly
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Privacy Distillation

114Fernandez, V. et al (2023). Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models. MICCAI 2023 Workshop
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Synthetic-to-real ratio of 10:1

Synthetic Image Augmentation

115
Sagers, Luke W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. 
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Synthetic Data for Distribution Shifts

116Ktena, Ira, et al. (2024) Generative models improve fairness of medical classifiers under distribution shifts. Nature Medicine, 2024
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Synthesising Rare Samples 

117Frisch, Yannik, et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023.
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DIffusion based Shape PRediction, DISPR
3D shell shapes generation conditioned on 2D microscopy images

118Dominik J. E. Waibel, et al. (2023) Diffusion Model Predicts 3D Shapes from 2D Microscopy Images. ISBI 2023.

Introduction Advanced Topic ApplicationsDemos

the 2D image is concatenated in each 
timestep of diffusion process
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The DDMM model is built from one or more branches of DDPM (radiographs and segmentation branches) 
that share the same noise scheduler and latent code, which enforce semantic consistency

Denoising Diffusion Medical Models
DDMM

119P.Huy, et al. (2023) Denoising Diffusion Medical Models. ISBI 2023.
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Image segmentation
Examples from the community

127
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Setup

128

PAPERS

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL 2023

Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR 2023

Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023

Guo et al. (2023) Accelerating Diffusion Models Via Pre-Segmentation Diffusion Sampling for Medical Image Segmentation. ISBI 2023

La Barbera et al. (2022) Anatomically constrained CT image translation for heterogeneous blood vessel segmentation. BMVC 2022

Kim et al. (2022) Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation. ICLR 2023 

Wu et al (2022) MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model. MIDL 2023 Figure by Song et al ICLR 2022. 

Copyright rests with the authors.
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(*)

Diffusion Models for Segmentation Mask Generation

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022

The anatomical information is added by concatenating the input images 𝑏 to the noisy segmentation mask 𝑥𝑏, 𝑡 
in 

every step t.

Diffusion 

Model
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Generation of Segmentation Ensembles

130
Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022
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3D Segmentation with PatchDDM

131Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL 2023

• We add a position encoding in all 3 spatial dimensions.

• Training is on patches only, and saves memory and training time.

• Inference runs over the whole 3D volume.

Introduction Advanced Topic ApplicationsDemosIntroduction Advanced Topic Applications



Ambiguous Segmentation

132Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR

• Ambiguity Modelling 

Network (AMN) models the 

distribution of ground truth 

masks given an input 

image.

• Ambiguity Controlling 

Network (ACN) models the 

noisy output from the 

diffusion model conditioning 

on an input image.
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Segmentation with Diffusion Pre-training 

134Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023
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• They obtain pre-segmentation 

predictions 𝑥𝑝𝑟𝑒 based on a 

separately trained segmentation 
network.

• They start with noisy predictions and 

use fewer reverse steps 𝑇′ to 
generate segmentation results.

Acceleration of Diffusion Segmentation

135

With a significantly smaller number of reverse sampling steps, 

PD-DDPM outperforms the vanilla DDPM

Guo et al. (2023) Accelerating Diffusion Models Via Pre-Segmentation Diffusion Sampling for Medical Image Segmentation. ISBI 2023

Advanced Topic DemosIntroduction ApplicationsIntroduction Advanced Topic Applications



Anomaly detection
Examples from the community

136
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The simple setup of the problem

137

PAPERS

Pinaya et al (2022) Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. MICCAI 2022

Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR 2022 workshop

Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis 2023

Behrendt, Finn, et al. (2023) Patched diffusion models for unsupervised anomaly detection in brain mri. MIDL 2023

Liang, Ziyun, et al. (2023) Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI. MICCAI 2023

Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022

Sanchez et al. (2022) What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. MICCAI 2022 workshop

Figure by Song et al ICLR 2022. 

Copyright rests with the authors.
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• Latent Diffusion Model (LDM) learns the distribution 
of healthy brain data

• Compression (Vector-Quantised VAE) scales for 
high-resolution images

Unsupervised Anomaly Segmentation

138Pinaya et al (2022) Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. MICCAI 2022

LDM identify regions with 

a low likelihood of being 

part of the healthy dataset

Reverse/denoising 

process is used to inpaint 

these regions and “heal” 

the possible anomalies
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simplex noise scale controls target anomaly size

Anomaly Detection with Simplex Noise

139Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

• Typical Gaussian noise is found to be 

insuffient for anomaly detection.

• Therefore, we explore the use of simplex 

noise for the corruption and sample 

generation of medical images.
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Anomaly Detection with Coarse Noise

140Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis 2023
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Anomaly Detection from Patches

141
Behrendt, Finn, et al. (2023) Patched diffusion models for unsupervised anomaly detection in brain mri. MIDL 2023
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Anomaly Detection from Modality Cycles

142
Liang, Ziyun, et al. (2023) Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI. MICCAI 2023

Introduction Advanced Topic ApplicationsDemosIntroduction Advanced Topic Applications



• Goal: Pixel-wise anomaly detection using image-level labels only

Weakly Supervised Lesion Detection

Healthy Unhealthy

143
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Weakly Supervised Lesion Detection

Set of images of a 

healthy control

group

Set of patients

affected by a 

specific disease

Unpaired image-to-image translation

differenceimage of a patient

_
healthy reconstruction

Introduction Advanced Topic ApplicationsDemos
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145Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022

Weakly Supervised Lesion Detection

Gradient GuidanceDDIM 

Introduction Advanced Topic ApplicationsDemosIntroduction Advanced Topic Applications
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Gradient Guidance
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Lesion Localization with Diffusion Models

1. DDIM Encoding - Empty condition

2. DDIM Decoding - Target class

Latent Space 
Original

Image

Healthy 

Counterfactual
Heatmap

147Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. MICCAI 2022 workshop

Classifier-free guidance
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Image reconstruction
Examples from the community
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Solving Inverse Problems in Medical Imaging 
with Score-Based Generative Models

• No need for paired data 

• Learn from the prior
▪ using a dataset of complete medical 

images to learn the underlying data 
distribution

• Conditional Sampling for inverse 
problem
▪ 𝑦 = 𝐴𝑥, 𝑦 is the measurement and 𝑥

is the image.
▪ Equivalent results for supervised 

methods

Song Y, Shen L, Xing L, et al. Solving inverse problems in medical imaging with score-based generative models[J]. arXiv preprint arXiv:2111.08005, 2021.
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Score-based diffusion models for accelerated 
MRI 

Add a data consistency term at each sampling step:

An unconditional diffusion prior is trained on fully-sampled MR acquisitions

Chung H, Ye J C. Score-based diffusion models for accelerated MRI[J]. Medical image analysis, 2022, 80: 102479.

Introduction Advanced Topic ApplicationsDemos
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General Inverse Problems

Chung H, Kim J, Mccann M T, et al,[J]. arXiv preprint arXiv:2209.14687, 2022.
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Image registration
Examples from the community

153
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• To perform image registration along the 
continuous trajectory

• Diffusion network: To estimate a 
conditional score function

• Deformation network: To yield the 
registration fields & provide the 
deformed image

DiffuseMorph

154
1. Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022

Slides courtesy of Boah Kim & Jong Chul Ye

min
𝐺𝜃,𝑀𝜓

𝑳𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝑐, 𝑥𝑡, 𝑡 + 𝜆𝑳𝒓𝒆𝒈𝒊𝒔𝒕(𝑚, 𝑓)

𝑳𝒅𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝑐, 𝑥𝑡 , 𝑡 = 𝔼𝜖,𝑥𝑡,𝑡 𝐺𝜃 𝑐, 𝑥𝑡 , 𝑡 − 𝜖 2
2

𝑳𝒓𝒆𝒈𝒊𝒔𝒕 𝑚, 𝑓 = − 𝑚 𝜙 ⊗ 𝑓 + 𝜆𝜙∑ 𝛻𝜙 2

T
ra
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T
e
s
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Loss function

Introduction Advanced Topic ApplicationsDemosIntroduction Advanced Topic Applications



• Surveys

▪ https://arxiv.org/abs/2404.07771

▪ https://arxiv.org/abs/2209.02646

▪ https://arxiv.org/abs/2209.00796

• Github

▪ https://github.com/heejkoo/Awesome-Diffusion-Models

• Tutorial
▪ https://arxiv.org/pdf/2403.18103.pdf

▪ https://cvpr2022-tutorial-diffusion-models.github.io

▪ https://huggingface.co/blog/annotated-diffusion

▪ https://huggingface.co/docs/diffusers

Useful key references, gits to watch etc

161
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