

DiMEDIA:

Diffusion Models in Medical Imaging and Analysis

https://vios.science/tutorials/DiMEDIA-2024

Nefeli Gkouti Archimedes/Athena RC, University of Athens

Prof. Sotirios A. Tsaftaris Archimedes/Athena RC, University of Edinburgh

Tutorial Schedule

First Half

- □Part 1: Introduction (30 mins)
 - ✤ What? Why? How?
 - Denoising Diffusion Models
 - Understanding and Intuition
- □Part 2: Advanced Topics (30 mins)
 - Sampling Strategies
 - Conditioning

Second Half

Q&A

- □ Medical Imaging Applications (30 mins)
 - Synthesis
 - ✤ Segmentation
 - Anomaly Detection
 - Reconstruction
 - ✤ Registration

This tutorial is an abridged version of the successful diffusion tutorials in MICCAI 2023 in Vancouver, and ISBI 2024 in Athens

Acknowledgement

MICCAI 2023 - Tutorial

Some slides are adopted/inspired/borrowed from these very nice tutorials!

CVPR 2023 - Tutorial

💿 NVIDIA.

ISBI 2024 - Tutorial

We went to learn a few things about you

We will use wooclap:

- Are you familiar with diffusion models
- o Are you familiar with generative model theory?
- What are your primary objectives for today?

More will come...

How to participate?

.

© Copy participation link

•

Diffusion Models *What? Why? How?*

What? Generative Models

 $\mathcal{M} = \{ VAE, GAN, NF, Diffusion Models \}$

Introduction	Advanced Topic	
--------------	----------------	--

What? Generative Models

Density Estimation $p_{\theta}(x)$

 $p_{\theta} \in \mathcal{M}$ Model family

Sampling $x_{new} \sim p_{\theta}$

Unsupervised Representation Learning $z \leftarrow p_{\theta}(x)$

Introduction	Applications
	AUDILAUUUS
Introduction	

What? Generative models

likelihood-based models

Require

- <u>inductive bias</u> to ensure a tractable normalizing constant for likelihood computation; or
- <u>surrogate objectives</u> to approximate ML training.

implicit generative models

Require adversarial training:

- notoriously unstable; leading to
- mode collapse

diffusion models bypass both with neat tricks

Figure by Lilian Weng https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Introduction	Advanced Topic	Applications

Sampling Trilemma

Xiao, Z., Kreis, K., & Vahdat, A. (2021). Tackling the generative learning trilemma with denoising diffusion gans. ICLR

Introduction	Advanced Topic	Applications

Why? Unprecedented Quality

"realistic photo of a cybernetic Eagle"

Realism
 Control
 Prior

 \square

and Midjourney

Tribe taking a selfie ..."

"A dystopian male face made of volcanic lava, mysterious, image containing secret codes"

Images from ideogram.ai

Introduction

Advanced Topic

Images generated by these engines or taken from 12

Applications

Why? Community Push

Companies

Big models and data

stability.ai

Open-Source Ease of Use

Generative Models

Why? Research Community Push

	ISBI	MICCAI	ICLR	CVPR	ICML	NeurIPS
2024	-	-	7%	12%	-	-
2023	7%	7%	3%	4%	4%	6%
2022	4%	2%	1%	>1%	1%	1%
2021	1%	>1%	>1%	≈0%	>1%	>1%

Percentage of accepted papers in great conferences that include diffusion in their title is growing

Introduction	Advanced Topic	Ap	plica	tions

Why? Medical Imaging Popularity

Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.

Introduction	Advanced Topic	Applications

Why? Medical Imaging Applications

Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.

Introduction	Abolications

Diffusion Models How?

Training by Denoising

Introduction		Applications
	Auvanceu Topic	Applications

How? Training by Denoising

- Add gradually noise
- Training by denoising

Reverse denoising process (generative)

+ 100	

Data

How? Training by Denoising

How? Inference

Listra du ationa	Applications
	ADDUCATIONS

Tutorial Schedule

First Half

Second Half

 $\Box Q&A$

We are here!

□Part 1: Introduction (30 mins)

- ♦ What? Why? How?
- Denoising Diffusion Models
- Understanding and Intuition

□Part 2: Advanced Topics (30 mins)

- Sampling Strategies
- Conditioning

Medical Imaging Applications (30 mins)

- Synthesis
- Segmentation
- Anomaly Detection
- Reconstruction
- ✤ Registration

Denoising Diffusion Model

-								
								T
	 		•					
		•	•	 	•	 L	╺.	

Denoising Diffusion Models

Denoising diffusion models consist of two processes:

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Reverse denoising process (generative)

In	troc	nor

Data

We use normal distribution to generate a noisy image conditioned on previous image

$$q(x_t|x_{t-1}) = N(x_t; \sqrt{\beta_t}x_{t-1}, (1-\beta_t)I)$$

Introduction

Advanced Topic

Applications

Forward diffusion process

joint distribution $\rightarrow q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$

XA XT

Given the step
$$\beta_s$$
, we can generate a particular step t
 $q(x_t|x_0) = N(x_t; \sqrt{\overline{a}_t}x_0, (1 - \overline{a}_t)I)$ where $\overline{a}_t = \prod_{s=1}^t (1 - \beta_s)$
 \uparrow
diffusion kernel

For sampling at timestep t: $x_t = \sqrt{\bar{a}_t} x_0 + (1 - \bar{a}_t) \varepsilon$ where $\epsilon \sim N(0, I)$

 β_t is the noise schedule such that $\bar{a}_t \to 0 \Rightarrow q(x_T | x_0) \approx N(x_T; 0, I)$

The diffusion kernel at timestep T can be approximated using standard normal distribution

XT

25

Advanced Topic Applications

Introduction

Forward diffusion process

The diffusion kernel $q(x_t|x_0)$ is Gaussian convolution

.

26

$$q(x_t) = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$x_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$x_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0 = \int q(x_0) q(x_t | x_0) dx_0$$

$$y_t = \int q(x_0, x_t) dx_0$$

$$y_t = \int q(x_0, x_0) dx_0$$

$$y_t = \int q(x_0, x_0)$$

We can sample $x_t \sim q(x_t)$ by first sampling $x_0 \sim q(x_0)$ and then sampling $x_t \sim q(x_t|x_0)$

Introduction	Advanced Topic	Applications

Generation by Denoising

Recall $q(x_T) \sim N(x_T; 0, I)$

Start from $x_T \sim N(x_T; 0, I)$ Iteratively $x_{t-1} \sim q(x_{t-1}|x_t)$

But $q(x_{t-1}|x_t)$ is **intractable**! We can approximate it with a normal distribution. if β_t is small in forward process

We need a **parametric model** to mimic $q(x_{t-1}|x_t)$

Diffused Data Distributions

Applications

Reverse diffusion process

We define a denoising distribution $p_{\theta}(x_{t-1}|x_t)$

Data

Introduction	Advanced Topic

Noise

Applications

Reverse diffusion process

$$p(x_T) = N(x_T; 0, I)$$

$$p_{\theta}(x_{t-1}|x_t) = N(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_t^2 I) \rightarrow$$

$$\mu_{\theta} \text{ is a trainable network (like U-net)}$$

$$\underbrace{p_{\theta}(x_{0:T})}_{T} = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$$

29

joint distr. of full reverse trajectory

For training, we form variational upper bound (ELBO) that is commonly used for training variational autoencoders:

$$E_{q(x_0)}[-\log p_{\theta}(x_0)] \le E_{q(x_0)q(x_{1:T}|x_0)}[-\log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)}] =: ELBO$$

Introduction	Advanced Topic	Applications
Introduction		

Reverse diffusion process

$$E_{q(x_0)}[-\log p_{\theta}(x_0)] \le E_{q(x_0)q(x_{1:T}|x_0)}[-\log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)}] =: ELBO$$

recall $x_t = \sqrt{\bar{a}_t} x_0 + (1 - \bar{a}_t) \epsilon$

After some simple arithmetic operations, the variational objective is:

$$ELBO = E_{x_o \sim q(x_0), t \sim \cup\{1, T\}, \epsilon \sim N(0, I)} [\lambda_t || \epsilon - \epsilon_\theta (\sqrt{\overline{a_t} x_0 + (1 - \overline{a_t})\epsilon}, t) ||^2]$$

 λ_t is a function of β_t

What does the diffusion model optimise?

How to participate?

© Copy participation link

 (\mathbf{r})

Tutorial Schedule

First Half

Second Half

- □Part 1: Introduction (30 mins)
 - ✤ What? Why? How?
 - Denoising Diffusion Models
 - Understanding and Intuition

Part 2: Advanced Topics (30 mins)

- Sampling Strategies
- Conditioning

Q&A

Medical Imaging Applications (30 mins)

- We are here! * Synthesis
 - Segmentation
 - Anomaly Detection
 - Reconstruction
 - ✤ Registration

Understanding and Intuition

Score Function

Likelihood models want to learn $p_{\theta}(x)$ directly Diffusion models want to learn the score $\nabla_x \log p_{\theta}(x)$ (i.e. the gradient with respect to the input of the loglikelihood)

> a distribution can be written as: $p_{\theta}(\mathbf{x}) = \frac{e^{-f_{\theta}(x)}}{Z_{\theta}}$

	Intro	duction			
--	-------	---------	--	--	--

Score Function

a distribution can be written as:

$$p_{\theta}(\mathbf{x}) = \frac{e^{-f_{\theta}(x)}}{Z_{\theta}}$$

$$\log p_{\theta}(\mathbf{x}) = \log e^{-f_{\theta}(\mathbf{x})} - \log Z_{\theta}$$

$$Z_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log Z_{\theta}$$

$$\mathcal{I}$$

$$\epsilon_{\theta}$$

How to learn it?

Mixture of two Gaussians Score function (the vector field) Density function (contours)

The score is pointing to the areas of biggest mass

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Int	ro	1 Ott	<u>on</u>

Denoising Score Matching

How to learn the score?

$$\mathbb{E}_{q(\mathbf{x})} \left\| \underbrace{\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x})}_{\text{Diffusion Model}} - \underbrace{\nabla_{\mathbf{x}} \log p_{\boldsymbol{\theta}}(\mathbf{x})}_{\text{Score}} \right\|_{2}^{2}$$

$$\mathbb{E}_{q(\mathbf{x})} \left\| \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log q(\mathbf{x}_{t} \mid \mathbf{x}) \right\|_{2}^{2}$$

Vincent, Pascal. "A connection between score matching and denoising autoencoders." Neural computation 23.7 (2011): 1661-1674.

Introduction	Advanced Topic	Applications
Perturbation at many scales

Learning in **low** density regions

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Introduction	Advanced Topic	Applications

Diffusion Models Learn the Gradient

Advanced Topic

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning.

Introduction

 $\nabla_x \log p(x)$

Figure by the author of the papers. Copyright rests with the authors.

Diffusion and Differential Equations

□ Perturbation process is a Stochastic Differential Equation (SDE)

□ From complex to simple

□ Allow different values for SDE modelling

 $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Introduction	Advanced Topic	Applications

Reversing the Process is Generation

□ Samplers are discrete solutions of the reverse-time SDE

 $\mathrm{d}\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] \mathrm{d}t + g(t) \mathrm{d}\mathbf{w}$

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Introduction	Advanced Topic	Applications

Fourier Transform

Slide inspired in CVPRs 2022 tutorial on diffusion models

Introduction	Advanced Topic	Applications

Content – Detail Tradeoff

Reverse denoising process (generative)

Noise

Data

Gaussian Perturbation?

t = 0.1T

t = 0.3T

[1] Daras, Giannis, et al. "Soft diffusion: Score matching for general corruptions." arXiv preprint arXiv:2209.05442 (2022).

[2] Bansal, Arpit, et al. "Cold diffusion: Inverting arbitrary image transforms without noise." arXiv preprint arXiv:2208.09392 (2022).

[3] Kascenas, Antanas, et al. "The role of noise in denoising models for anomaly detection in medical images." Medical Image Analysis (2023): 102963.

n	tro			tio	n
	LI C	JU	uu	ιυ	

Advanced Topic

Applications

Architecture – Reusing the *classics*, and the *SoTA*

Unet!

Or transformers Or VQ-VAEs Or...

Figure by the author of the papers.

Jonathan Ho, Ajay Jain, Pieter Abbeel (2020) Denoising Diffusion Probabilistic Models. NeuriPS

Introduction	Advanced Topic	Applications	

How do you think a diffusion model might compare to GANs in terms of output quality and stability?

How to participate?

© Copy participation link

88

Tutorial Schedule

First Half

- □Part 1: Introduction (30 mins)
 - ✤ What? Why? How?
 - Denoising Diffusion Models
 - Understanding and Intuition
- Part 2: Advanced Topics (30 mins)
 - Sampling Strategies
 - Conditioning

Second Half

Q&A

We are here!

- Medical Imaging Applications (30 mins)
 - Synthesis
 - ✤ Segmentation
 - Anomaly Detection
 - Reconstruction
 - Registration

Part 2 – Advanced Topics

Sampling Strategies

Conditioning Mechanisms

An inherent drawback: slowness

- Facts about DMs
 - Training
 - 150-1000 V100 GPU days
 - Sampling
 - 50k samples, 5 A100 GPU days

Variational Autoencoders, Normalizing Flows

Xiao, Z., Kreis, K., & Vahdat, A. (2021). Tackling the generative learning trilemma with denoising diffusion gans. ICLR

How to accelerate diffusion models?

Naïve acceleration methods

- such as reducing diffusion time steps in training or sampling
 - Leading to immediate worse performance.

We need something clever!

Introduction	Advanced Topic	Applications

Acceleration: Forward Process

Forward diffusion process (fixed)

Data

$$\mathbf{x}_{0} \to \cdots \mathbf{x}_{t} \to \mathbf{x}_{t+1} \to \cdots \to \mathbf{x}_{T}$$
$$q(\mathbf{x}_{t} | \mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_{t} : \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I})$$

- Does it have to be a Markovian process?
- Is there any faster diffusion process?

Introduction	

Noise

Denoising Diffusion Implicit Models (DDIM)

- Diffusion Model does not need to be Markovian!
 DDPM forward process: q_σ(x_t | x_{t-1})
- The loss function for DDPM: $L(\theta) = [\|\epsilon \epsilon_{\theta}(\mathbf{x}_{t}, t)\|^{2}]$

• Define a new forward process: $q_{\sigma}(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{x}_0)$

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

						-	
n	tr	\sim		11	\sim	10	
		· · · ·	 	 	· · · ·		

Acceleration: Skip steps

- By skipping k steps, we have a step size of $k\Delta t$.
- Sampling is *k* times faster.
- We trade image quality for speed.

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction

DDIM Result

- DDIM: Non-Markovian process but 10-50x faster!!
 - We can directly use a pretrained DDPM to do sampling acceleration

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta = 1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T = 1000 steps, and S < T can be seen as simulating DDPMs trained with S steps), and $\eta = 0.0$ indicates DDIM.

			CIFA	R10 (32 :	× 32)	CelebA (64×64)					
	S	10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
~	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction	Advanced Topic	Applications

Denoising Diffusion Implicit Models (DDIM)

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502.

Introduction	Advanced Topic	Applications

Image Interpolation

α

Progressive Distillation for Fast Sampling

Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Introduction	Advanced Topic	Applications

Progressive Distillation for Fast Sampling

Salimans T, Ho J. Progressive distillation for fast sampling of diffusion models[J]. arXiv preprint arXiv:2202.00512, 2022.

Introduction	Advanced Topic	Applications

Latent-space Diffusion Models

Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-10695.

Introduction	Advanced Topic	Applications

Taxonomy of Sampling Acceleration

Cao, Hanqun, et al. "A survey on generative diffusion models." *IEEE Transactions on Knowledge and Data Engineering* (2024).

Introduction	Advanced Topic	Applications

Tutorial Schedule

First Half

- □Part 1: Introduction (30 mins)
 - ✤ What? Why? How?
 - Denoising Diffusion Models
 - Understanding and Intuition
- □Part 2: Advanced Topics (30 mins)
 - Sampling Strategies
 - Conditioning

We are here!

Second Half

Q&A

- Medical Imaging Applications (30 mins)
 - Synthesis
 - ✤ Segmentation
 - Anomaly Detection
 - Reconstruction
 - ✤ Registration

Part 2 – Advanced Topics

• Sampling Strategies

Introduction

Conditioning example: Image-to-image generation

Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in neural information processing systems 35 (2022): 36479-36494.

L to t to			

Trends in Conditioning

The number of papers on controllable generation based on T2I diffusion models.

Cao P, Zhou F, Song Q, et al. Controllable Generation with Text-to-Image Diffusion Models: A Survey[J]. arXiv preprint arXiv:2403.04279, 2024.

٦	
n	
T	u
2	
1	
Ł	L
3	7
٢	
1	
\sim	U
١	7
2	U.
7	
Т	
۲	
'n	
I	

How to evaluate generated samples?

- How to evaluate a generative model?
 - Quality
 - Diversity

- Low FID
 - Not real enough
- High diversity
 - Means hard to control

• We want to introduce condition so that the generation can be controllable

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Intr	α	LICT	nn
	ou	uoi	

Generation Direction

- $\nabla_{x_t} \log p(\mathbf{x}_t)$: the direction of generation
 - SDE, generate with randomness
- What about a condition *y*?
 - $\nabla_{x_t} \log p(\mathbf{x}_t | y)$: the direction of generation, conditioned on y
- We have $p(x_t|y) = \frac{p(y|x_t)p(x_t)}{p(y)}$, then we have

$$\nabla_{x_t} \log p(\mathbf{x}_t | y) = \nabla_{x_t} \log p(y | \mathbf{x}_t) + \nabla_{x_t} \log p(\mathbf{x}_t)$$

Direction of unconditional generation

69

Direction of the condition

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Introduction	Advanced Topic	Applications

Classifier Guidance - Post Editing

• Let's create a classifier $p_{\phi}(y|x_t)$

Take derivate to x_t and get $\nabla_{x_t} \log p(\hat{y} | \mathbf{x}_t)$

70

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Introduction	Advanced Topic	Applications

Classifier Guidance

We use the gradient to guide the generation process towards a desired class.

Gradient guidance is not restricted to classification models. Other models (e.g., regression, segmentation, ...) work just in the same way.

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Introduction

Classifier Free Conditioning – Pre-training

Colorization

Inpainting

Uncropping

Decompression

- For image generation of a fake image *x*, we can use a conditioning image *y*.
- This requires paired training.
- During training and sampling, we add information of the conditioning image *x* through channel-wise concatenation.

72

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.

Introduction	Advanced Topic	Applications

Comparison

- Conditioning
 - Pre-training: classifier free
 - Post-editing: classifier guidance
- Pros and Cons
 - Classifier guidance
 - Low training costs
 - Less detailed generation
 - Classifier free
 - Great details; Training with y, the more input samples the easier to train
 - Every time you want to add another signal/condition, needs to retrain the model

Introduction	Advanced Topic	Applications

Evolutions of Text-to-Image Diffusions

- Pixel Space Diffusion Models
 - GLIDE (ICML 2022)
 - Transforms the input text c into a token sequence via a transformer
 - Replace the *class-embedding* with the *pooled text feature* and **concatenate** to the attention layers
 - Imagen (NeurIPS 2022)
 - Use a pre-trained LLM as its text encoder
 - "Cross-attention is the most effective technique"
 - DALL.E 2, 3(arXiv 2022)
 - Bridges the gap between CLIP text and the image latent space $p(z_i|z_t)$
- Latent Space Diffusion Models
 - LDM (CVPR 2022)
 - Enhance the underlying Unet with cross-attention
 - Stable Diffusion (SD) v1, v2(CVPR 2022)
 - SD XL (ICLR 2024)

Introduction

Glide: Text Conditioning

75

Nichol, Alex, et al. "Glide: Towards photorealistic image generation and editing with text-guided diffusion models." arXiv preprint arXiv:2112.10741 (2021).

Introduction	Advanced Topic	Applications

Imagen: Text Conditioning

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. fly event.

76

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow.

Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in neural information processing systems 35 (2022): 36479-36494.

Introduction	Advanced Topic	Applications
ControlNet

- We pretrain a diffusion model with text prompts.
- We freeze this model.
- We fine-tune a copy conditioned on
 - С.
- We pass information through skip connections.

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 20287

Introduction	Advanced Topic	Applications

ControlNet

(a) Stable Diffusion

Introduction

(b) ControlNet

conditioning image

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

Advanced Topic

Applications

Taxonomy of Controllable Generations

Cao P, Zhou F, Song Q, et al. Controllable Generation with Text-to-Image Diffusion Models: A Survey[J]. arXiv preprint arXiv:2403.04279, 2024.

Introduction	Advanced Topic	Applications
		AUDIIGAIIONS

Why do you think diffusion models exhibit such performance?

How to participate?

88

@ Copy participation link

 $(\mathbf{>}$

What types of applications in Medical Imaging are you most interested in applying generative models to?

How to participate?

© Copy participation link

(>

Q&A

Generated by DALL.E 3

Tutorial Schedule

First Half

- □Part 1: Introduction (30 mins)
 - ✤ What? Why? How?
 - Denoising Diffusion Models
 - Understanding and Intuition
- □Part 2: Advanced Topics (30 mins)
 - Sampling Strategies
 - Conditioning

Second Half

Q&A

✤ Registration

Part 2 – Medical Image Applications

Image Reconstruction

Image Registration

Image Segmentation

Anomaly Detection

Image Synthesis

		105
Introduction	Advanced Topic	Applications

Image synthesis

Examples from the community

The simple setup of the problem

Synthetic

Figure by Song et al ICLR 2022. Copyright rests with the authors.

PAPERS

Real

Pinaya et al (2022) Brain Imaging Generation with Latent Diffusion Models. MICCAI 2022 workshop Khader et al. (2022) Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. Scientific Reports, 2023 Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation. Ye, Jiarong, et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. MICCAI 2023 Fernandez, V.et al. (2022). Can segmentation models be trained with fully synthetically generated data? MICCAI 2022 Workshop Packhäuser et al. (2022) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. ISBI 2023 Fernandez, V. et al (2023). Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models. MICCAI 2023 Workshop Sagers, Luke W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. Frisch, Yannik, et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023. Kim et al. (2022) Diffusion Deformable Model for 4D Temporal Medical Image Generation. MICCAI 2022 Ali et al. (2022) Spot the fake lungs: Generating Synthetic Medical Images using Neural Diffusion Models. AICS 2022 Rouzrokh et al. (2022) Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report. Chambon et al (2022) Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains. NeurIPS2022 Lyu et al. (2022) Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models. Ozbey et al. (2023) Unsupervised Medical Image Translation with Adversarial Diffusion Models. IEEE Transactions on Medical Imaging 2023 Ktena, Ira, et al. (2024) Generative models improve fairness of medical classifiers under distribution shifts. Nature Medicine, 2024 Dominik J. E. Waibel, et al. (2023) Diffusion Model Predicts 3D Shapes from 2D Microscopy Images. ISBI 2023. P.Huy, et al. (2023) Denoising Diffusion Medical Models. ISBI 2023. Adv Introduction

10n	000	nic
10		

Why? Medical Image Data is Scarce

Introduction	Advanced Topic	Applications

Use of Synthetic Data

- □ Full "private" training
- □ Data augmentation
- □ Test-time augmentation
- □ Testing edge cases

Evaluation Criteria

Realism

Diversity

□ Privacy

108

Pinaya, Walter HL, et al. "Generative AI for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023).

Generating high-resolution 3D brain data

Synthetic

- Latent Diffusion Models trained on data from UK Biobank (N = 31,740)
 T1 MRI brain images with 1 mm³ voxel size (160 × 224 × 160 voxels)
- Conditioned on covariates, such as:
 - $\circ \ \text{Age}$
 - \circ Gender
 - Ventricular and Brain volumes

Pinaya et al (2022). Brain Imaging Generation with Latent Diffusion Models. MICCAI 2022 workshop Khader et al. (2023) Medical Diffusion - Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. Scientific Reports, 2023

Fine-tuning Stable Diffusion

Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation.

Introduction	Advanced Topic	Applications

Unlabelled Pre-training

Ye, Jiarong, et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. MICCAI 2023

Introduction	Advanced Topic	Applications

Generating Segmentation Masks

Fernandez, V.et al. (2022). Can segmentation models be trained with fully synthetically generated data? MICCAI 2022 Workshop

Introduction Advanced Topic	Applications
-----------------------------	--------------

Generation of Anonymous Chest Radiographs

Fig. 1: Proposed privacy-enhancing image sampling strategy. Image taken from [1].

Data used to train the abnormality classifier

Fig. 3: Randomly selected images generated by the trained LDM. Images taken from [1].

Slides courtesy of Kai Packhäuser

113

Packhäuser et al. (2022) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. ISBI 2023

Introduction Applications Advanced Topic Applications

Privacy Distillation

Fernandez, V. et al (2023). Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models. MICCAI 2023 Workshop

Introduction	Advanced Topic	Applications
--------------	----------------	--------------

Synthetic Image Augmentation

Synthetic-to-real ratio of 10:1

Sagers, Luke W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models.

Introduction	Advanced Topic	Applications

Synthetic Data for Distribution Shifts

Ktena, Ira, et al. (2024) Generative models improve fairness of medical classifiers under distribution shifts. Nature Medicine, 2024

Introduction	Advanced Topic	Applications

Synthesising Rare Samples

Diffusion Process

Frisch, Yannik, et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. MICCAI 2023.

Introduction Advanced Topic Applications

DIffusion based Shape PRediction, DISPR 3D shell shapes generation conditioned on 2D microscopy images

Dominik J. E. Waibel, et al. (2023) Diffusion Model Predicts 3D Shapes from 2D Microscopy Images. ISBI 2023.

Applications

Denoising Diffusion Medical Models DDMM

The DDMM model is built from one or more branches of DDPM (radiographs and segmentation branches) that share the same noise scheduler and latent code, which enforce semantic consistency

P.Huy, et al. (2023) Denoising Diffusion Medical Models. ISBI 2023.

Image segmentation

Examples from the community

Setup

PAPERS

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022
Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL 2023
Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR 2023
Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023
Guo et al. (2023) Accelerating Diffusion Models Via Pre-Segmentation Diffusion Sampling for Medical Image Segmentation. ISBI 2023
La Barbera et al. (2022) Anatomically constrained CT image translation for heterogeneous blood vessel segmentation. BMVC 2022
Kim et al. (2022) Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation. ICLR 2023
Wu et al (2022) MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model. MIDL 2023

Figure by Song et al ICLR 2022. Copyright rests with the authors.

Introduction	Advanced Topic	Applications
--------------	----------------	--------------

Diffusion Models for Segmentation Mask Generation

The anatomical information is added by concatenating the input images b to the noisy segmentation mask $x_{b,t}$ in every step t.

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022

Introduction	Advanced Topic	Applications

Generation of Segmentation Ensembles

Corresponding brain MR image b

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022

Advanced Topic

3D Segmentation with PatchDDM

- We add a position encoding in all 3 spatial dimensions.
- Training is on patches only, and saves memory and training time.
- Inference runs over the whole 3D volume.

Introduction

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL 2023

Advanced Topic

Applications

Ambiguous Segmentation

- Ambiguity Modelling Network (AMN) models the distribution of ground truth masks given an input image.
- Ambiguity Controlling Network (ACN) models the noisy output from the diffusion model conditioning on an input image.

Introduction

Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR

Applications

Segmentation with Diffusion Pre-training

Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023

intro du ation	Applications
	ADDIICAIIONS
Introduction	7 (p p li cation le

Acceleration of Diffusion Segmentation

- They obtain pre-segmentation predictions x_{pre} based on a separately trained segmentation network.
 - They start with noisy predictions and use fewer reverse steps T' to generate segmentation results.

135

With a significantly smaller number of reverse sampling steps, PD-DDPM outperforms the vanilla DDPM

Guo et al. (2023) Accelerating Diffusion Models Via Pre-Segmentation Diffusion Sampling for Medical Image Segmentation. ISBI 2023

Introduction	Advanced Topic	Applications

Anomaly detection

Examples from the community

The simple setup of the problem

Reconstruction

PAPERS

Pinaya et al (2022) Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. MICCAI 2022 Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR 2022 workshop Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis 2023 Behrendt, Finn, et al. (2023) Patched diffusion models for unsupervised anomaly detection in brain mri. MIDL 2023 Liang, Ziyun, et al. (2023) Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI. MICCAI 2023 Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022 Sanchez et al. (2022) What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. MICCAI 2022 workshop

> Figure by Song et al ICLR 2022. Copyright rests with the authors.

Introduction

Advanced Topic

Applications

Unsupervised Anomaly Segmentation

- Latent Diffusion Model (LDM) learns the distribution
 of healthy brain data
- Compression (Vector-Quantised VAE) scales for high-resolution images

LDM identify regions with a low likelihood of being part of the healthy dataset

Reverse/denoising process is used to **inpaint** these regions and "**heal**" the possible anomalies

Pinaya et al (2022) Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. MICCAI 2022

Anomaly Detection with Simplex Noise

- Typical Gaussian noise is found to be insuffient for anomaly detection.
- Therefore, we explore the use of simplex noise for the corruption and sample generation of medical images.

 E_{seg} E_{sq} x_0 x_{λ} \hat{x}_0 GT 2 9 2

(a) Structures of simplex noise

simplex noise scale controls target anomaly size

Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

Introduction Advanced Topic Applications

Anomaly Detection with Coarse Noise

Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis 2023

Introduction	Advanced Topic	Applications
Anomaly Detection from Patches

Advanced Topic

Behrendt, Finn, et al. (2023) Patched diffusion models for unsupervised anomaly detection in brain mri. MIDL 2023

Introduction

141

Applications

Anomaly Detection from Modality Cycles

Liang, Ziyun, et al. (2023) Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI. MICCAI 2023

Introduction	Advanced Topic	Applications

Weakly Supervised Lesion Detection

• Goal: Pixel-wise anomaly detection using image-level labels only

Introduction	Advanced Topic	Applications

Weakly Supervised Lesion Detection

Introduction	Applications

Weakly Supervised Lesion Detection

Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022

Introduction	Advanced Topic	Applications

Gradient Guidance

Lesion Localization with Diffusion Models

Classifier-free guidance

DDIM Encoding - Empty condition
 DDIM Decoding - Target class

Introduction	Advanced Topic	Applications
--------------	----------------	--------------

Image reconstruction

Examples from the community

Solving Inverse Problems in Medical Imaging with Score-Based Generative Models

- No need for paired data
- Learn from the prior

Introduction

- using a dataset of complete medical images to learn the underlying data distribution
- Conditional Sampling for inverse problem
 - y = Ax, y is the measurement and x is the image.
 - Equivalent results for supervised methods

Song Y, Shen L, Xing L, et al. Solving inverse problems in medical imaging with score-based generative models[J]. arXiv preprint arXiv:2111.08005, 2021.

Advanced Topic Applications

Score-based diffusion models for accelerated MRI

An unconditional diffusion prior is trained on fully-sampled MR acquisitions

Add a **data consistency** term at each sampling step:

$$\boldsymbol{x}_i \leftarrow \boldsymbol{x}_i + \lambda A^*(\boldsymbol{y} - A\boldsymbol{x}_i)$$

Chung H, Ye J C. Score-based diffusion models for accelerated MRI[J]. Medical image analysis, 2022, 80: 102479.

Introduction	Applications
	ADDUCADODS
IIIIIOGGOUOII	

General Inverse Problems

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}_0) + oldsymbol{n}, \quad oldsymbol{y}, oldsymbol{n} \in \mathbb{R}^n, \, oldsymbol{x} \in \mathbb{R}^d$$

151

Chung H, Kim J, Mccann M T, et al,[J]. arXiv preprint arXiv:2209.14687, 2022.

Introduction	Applicationa
	ANNUCSIONS
	ΠΟΟΠΟΕΙΟΟΤΙΘ

Image registration

Examples from the community

DiffuseMorph

- To perform <u>image registration</u> along the continuous trajectory
- **Diffusion network**: To estimate a conditional score function
- Deformation network: To yield the registration fields & provide the deformed image

Loss function

$$\min_{G_{\theta}, M_{\psi}} L_{diffusion}(c, x_{t}, t) + \lambda L_{regist}(m, f)$$

$$\begin{bmatrix} L_{diffusion}(c, x_{t}, t) = \mathbb{E}_{\epsilon, x_{t}, t} \| G_{\theta}(c, x_{t}, t) - \epsilon \|_{2}^{2} \\ L_{regist}(m, f) = -(m(\phi) \otimes f) + \lambda_{\phi} \Sigma \| \nabla \phi \|^{2} \end{bmatrix}$$

Slides courtesy of Boah Kim & Jong Chul Ye

1. Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022

Useful key references, gits to watch etc

- Surveys
 - https://arxiv.org/abs/2404.07771
 - https://arxiv.org/abs/2209.02646
 - https://arxiv.org/abs/2209.00796
- Github
 - https://github.com/heejkoo/Awesome-Diffusion-Models
- Tutorial
 - https://arxiv.org/pdf/2403.18103.pdf
 - https://cvpr2022-tutorial-diffusion-models.github.io
 - https://huggingface.co/blog/annotated-diffusion
 - https://huggingface.co/docs/diffusers

DiMEDIA:

Diffusion Models in Medical Imaging and Analysis

https://vios.science/tutorials/DiMEDIA-2024

Nefeli Gkouti Archimedes/Athena RC, University of Athens

Prof. Sotirios A. Tsaftaris Archimedes/Athena RC, University of Edinburgh

DiMEDIA 2024