
SELF-DESIGNING
DATA SYSTEMS
FOR THE AI ERA
Stratos
Idreos

What if we can reason about systems design?

What is a data system?
Why do we need self-designing systems?

image analysis: e.g., detect the number of horses
A TYPICAL BIG DATA TASK

image analysis: e.g., detect the number of horses
A TYPICAL BIG DATA TASK

The core problem:

The size and organization of the data

steps involved in image processing for AI:

STORE MOVE PROCESS

Three steps in big data/AI regardless of application

steps involved in image processing for AI:

STORE MOVE PROCESS

Three steps in big data/AI regardless of application

How fast we can move and process data
depends on the storage design decisions

What is a data system?
A data system is an end-to-end software system that:

manages storage, data movement, and provides access to data

What is a data system?
A data system is an end-to-end software system that:

manages storage, data movement, and provides access to data

1. For decades: data systems = SQL DBs  
but with big data, the need for fast data  
systems is drastically broader than SQL

data
systems

store data X get data with property Z

broader than SQL

big data apps

data
systems

ANALYTICS
AI

broader than SQL

big data apps

data
systems

ANALYTICS
AI

broader than SQL

New data systems to handle new requirements

Deposit money to my bank account
Transfer money from … to…

TRANSACTIONS

broader than SQL

Deposit money to my bank account
Transfer money from … to…

TRANSACTIONS

How much do customers
of X spent on average every month?

ANALYTICS

broader than SQL

Deposit money to my bank account
Transfer money from … to…

TRANSACTIONS

How much do customers
of X spent on average every month?

ANALYTICS

Is this transaction legal?
AI

Should we give a loan to customer X?

broader than SQL

How many costumers on average
leave a 4 star review or better?

SOCIAL NETWORKS: REVIEWS/POSTS

broader than SQL

How many costumers on average
leave a 4 star review or better?

SOCIAL NETWORKS: REVIEWS/POSTS

Is this new review a legitimate one?
AI

broader than SQL

Compute price for next Uber ride
COMMUTING

How many costumers on average
leave a 4 star review or better?

SOCIAL NETWORKS: REVIEWS/POSTS

Is this new review a legitimate one?
AI

broader than SQL

broader than SQL

time

New data-driven applications

New workloads

New requirements
New user flows

The need for
data systems
grows with data

da
ta

2. As data grows, having the right data system
for each application is increasingly more critical

the right data system

2. As data grows, having the right data system
for each application is increasingly more critical

the right data system

system architecture
it starts with storage

2024

sp
ee

d COMPUTE

DATA MOVEMENT

register = this room

disk = Pluto
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city

the right data system

2024

sp
ee

d COMPUTE

DATA MOVEMENT

register = this room

disk = Pluto
memory = nearby city

Jim Gray, Turing Award 1998

caches = this city

the right data system

Data movement dominates everything

70-80% of processing costs
go into data movement

computational hardware
utilization: only 30-50%

the right data system

The problem: as the big data/AI world keeps changing…

there is a continuous need for new data systems
but it is extremely hard to design & build new systems

The problem: as the big data/AI world keeps changing…

How do we design a data system that is X times faster for a workload W?

NEED TO DESIGN NEW DATA SYSTEMS

How do we design a data system that is X times faster for a workload W?

How do we design a data system that allows for control of cloud cost?

NEED TO DESIGN NEW DATA SYSTEMS

How do we design a data system that is X times faster for a workload W?

How do we design a data system that allows for control of cloud cost?

What happens if we introduce new application feature Y?

What will break our system?

Should we upgrade to new version Z?

NEED TO DESIGN NEW DATA SYSTEMS

How do we design a data system that is X times faster for a workload W?

How do we design a data system that allows for control of cloud cost?

What happens if we introduce new application feature Y?

What will break our system?

Should we upgrade to new version Z?

NEED TO DESIGN NEW DATA SYSTEMS

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

huge cloud cost

environmental impact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

huge cloud cost
expensive transitions

environmental impact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

huge cloud cost
expensive transitions

environmental impact
application feasibility

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

how we systemsBUILD
complexity

huge cloud cost expensive transitions environmental impact application feasibility

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

design is an art

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

design is an art

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

design is an art

Design: 6-7 years
Reasoning: months/impossible

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

design is an art

Design: 6-7 years
Reasoning: months/impossible

phd

th
e d

in
nin

g

sy
st

em
s d

es
ig

ners

phd

phd

phd

phd

phd

phd

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

phd

BUILD

design is an art

Design: 6-7 years
Reasoning: months/impossible

years

data
hardware

applications

SELF-DESIGNING SYSTEMS
Automatically invent & build the perfect system for any new application

massive design space of system designs

massive design space of system designs

system=
a set of low-level
design decisions

massive design space of system designs

few existing designs
system=

a set of low-level
design decisions

massive design space of system designs

few existing designs
system=

a set of low-level
design decisions

cloud budgetworkload

massive design space of system designs

reasoning: understand all the
design decisions & their impact

cloud budgetworkload

——HOW——
DO WE

——START——

——HOW——
DO WE

——START——

concurrency

data types

hardware

robustness

complex
operations

cloud
optimizer

indexing

SLAs

multi-tenancy

DATA

INDEX
——HOW——

DO WE
——START——

DATA

INDEX

data structure decisions define
the algorithms that access data

ALGORITHMS

DATA

INDEX

[7,4,2,6,1,3,9,10,5,8]

ALGORITHMS
unordered

DATA

INDEX

[7,4,2,6,1,3,9,10,5,8]

ALGORITHMS
unordered

DATA

INDEX

[7,4,2,6,1,3,9,10,5,8]

ALGORITHMS
[1,2,3,4,5,6,7,8,9,10]

unordered

ordered

Read
Update

Memory

no perfect structure

amplification

EDBT 2016
SIGMOD 2016

Read
Update

Memory

M
em

ory

Re
ad

Up
da

te
no perfect structure

amplification

EDBT 2016
SIGMOD 2016

Read
Update

Memory

M
em

ory

Re
ad

Up
da

te

differential approximate

point
tree

no perfect structure

amplification

EDBT 2016
SIGMOD 2016

read

update memory

point read

update memory

range read

point read

update

memory

range read

deleteinsert

DATA

INDEX

ALGORITHMS
point read

up
da

te

mem
ory

range read

delete
insert

DATA

INDEX

ALGORITHMS

DATA SYSTEMS

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

buffer

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

buffer

level 0 level 1 level 2 level 3

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

buffer

level 0

filters

level 1 level 2 level 3

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

buffer

level 0

filters fences

level 1 level 2 level 3

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

buffer

level 0

filters fences
cache

level 1 level 2 level 3

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism
robustness
cloud cost

SLAs

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism
robustness
cloud cost

SLAs

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism
robustness
cloud cost

SLAs

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

Memory

Rea
d

Upd
ate

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism
robustness
cloud cost

SLAs

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

Memory

Rea
d

Upd
ate

LSH

LSM

b-tree

diverse
data structures

buffer

level 0

filters fences
cache

level 1 level 2 level 3

interactions hardware parallelism
robustness
cloud cost

SLAs

LSM-tree
KV-stores

FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
MACHINE LEARNING, SQL, CRYPTO, SCIENCE

NoSQL systems are the backbone of the BigData and AI era

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

Memory

Rea
d

Upd
ate

LSH

LSM

b-tree
Constant and increasing efforts  

for new system designs as
applications & hardware change

data & queries

performance

$budget

$$

diverse
data structures interactions hardware parallelism

robustness
cloud cost

SLAs

Requirements/Goals

data & queries

performance

$budget

$$ SLA

diverse
data structures interactions hardware parallelism

robustness
cloud cost

SLAs

Requirements/Goals Context

data & queries

performance

$budget

$$ SLA

diverse
data structures interactions hardware parallelism

robustness
cloud cost

SLAs

Requirements/Goals Context

data & queries

performance

$budget

$$ SLA

DATA
SYSTEM
design & code

best

diverse
data structures interactions hardware parallelism

robustness
cloud cost

SLAs

Requirements/Goals Context

data & queries

performance

$budget

$$ SLA

what-if reasoning

data & queries

performance

$budget

$$ SLA

what-if reasoning

design1
perf1
cost1

data & queries

performance

$budget

$$ SLA

what-if reasoning

design1
perf1
cost1

design2
perf2
cost2

AUTO DESIGN

AUTO DESIGN “IS THERE A CALCULUS OF DATA STRUCTURES
by which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)

Rob Tarjan, Turing Award 1986

[P vs NP, average case, constant factors vs asymptotic, low bounds]

“IS THERE A CALCULUS OF DATA STRUCTURES
by which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)

Rob Tarjan, Turing Award 1986

[P vs NP, average case, constant factors vs asymptotic, low bounds]

IS THERE A CALCULUS OF DATA SYSTEMS?

the grammar of data systems design

Nikos Kazantzakis, philosopher

hope
for nothing

I
fear freeam

the holyis
of

ultimate

action

form
theory

most

II

nothing
the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

words

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

the grammar of data systems design

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

NEW

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

the grammar of data systems design

interactions

data structures

principles

the

ultimate

action

theory

hope for nothing

I
fear

freeam
I

I
nothing

is

Nikos Kazantzakis, philosopher

holy
of

form
most

alphabet

grammar/
sentences

words

principles

data structures

interactions

which are “all”
possible data systems
we may ever invent?

the grammar of data systems design

Trillions of possible data structures
Data Calculator @SIGMOD 2018

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023

10x faster Image AI
Image Calculator, SIGMOD 2024

data layout of data structures

systems: interactions of components

>10^100

algorithm design

1. DESIGN SPACE

data layout of data structures

systems: interactions of components

2. NAVIGATE SEARCH SPACE

design continuums to shrink space

>10^100

algorithm design

1. DESIGN SPACE

 cost synthesis: computation and data movement
learned cost models in memory/parallelism

 C
at

eg
or

ie
s

 Design Primitives to Auto Generate Trillions of Data Structures
Unless otherwise specified, we use a

reduced default values domain of
100 values for integers, 10 values for

doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees,
and arrays. Function: contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function: contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node)

can be addressed and retrieved within a node, e.g., with direct links, a link only
to the first or last block, etc.

direct | head_link | tail_link |
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50%
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none
(we currently only consider X=50) 3

none none none
>=

50%
>=

50%
>=

50% none

N
od

e
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int,
num_bits: int)
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r

sc
at

te
r

sc
at

te
r

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number,
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func)
| unlimited | terminal(cap: int)

(up to 10 different capacities and up
to 10 fixed fanout values are

considered)

22

fix
ed

(1
00

)

un
lim

ite
d

te
rm

(2
56

)

fix
ed

(2
0)

fix
ed

(2
0)

fix
ed

(1
6)

te
rm

(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the
sub-block where a key is located can be dictated by a radix or range partitioning
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to
none, then keys can be forward or backwards appended.

none(fw-append | bw-append)
| range() | radix() | function
(func) | temporal(size_ratio:

int, merge_policy: [tier| level])

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value,
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced |
unrestricted | function(func)

(up to 10 different fixed capacity
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only

the next or previous) with skip-links. They can be perfect, randomized or
custom.

 perfect | randomized(prob:
double) | function(func) | none 13 none none none none none none none

15 Area-links. Each sub-tree can be connected with another sub-tree at the leaf
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both |
none 4 none none forw. none none none none

Ch
ild

re
n

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent.
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d

in
lin

e

po
in

te
d

po
in

te
d

po
in

te
d

Rules: requires fanout/radix != terminal.
17 Sub-block physical layout. This represents the physical layout of sub-blocks.

Scatter: random placement in memory. BFS: laid out in a breadth-first layout.
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping:
int) | scatter

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL
Rules: requires fanout/radix != terminal.

18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.
boolean 2

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

Rules: requires fanout/radix != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

fa
lse

fa
lse

fa
lse

fa
lse

Rules: requires fanout/radix != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a
node of the same type until a maximum depth (expressed as a function) is
reached. Then the terminal node type of this data structure will be used.

yes(func) | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)

 C
at

eg
or

ie
s

Unless otherwise specified, we use a
reduced default values domain of

100 values for integers, 10 values for
doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees,
and arrays. Function: contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function: contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node)

can be addressed and retrieved within a node, e.g., with direct links, a link only
to the first or last block, etc.

direct | head_link | tail_link |
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50%
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none
(we currently only consider X=50) 3

none none none
>=

50%
>=

50%
>=

50% none

N
od

e
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int,
num_bits: int)
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r

sc
at

te
r

sc
at

te
r

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number,
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func)
| unlimited | terminal(cap: int)

(up to 10 different capacities and up
to 10 fixed fanout values are

considered)

22

fix
ed

(1
00

)

un
lim

ite
d

te
rm

(2
56

)

fix
ed

(2
0)

fix
ed

(2
0)

fix
ed

(1
6)

te
rm

(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the
sub-block where a key is located can be dictated by a radix or range partitioning
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to
none, then keys can be forward or backwards appended.

none(fw-append | bw-append)
| range() | radix() | function
(func) | temporal(size_ratio:

int, merge_policy: [tier| level])

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value,
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced |
unrestricted | function(func)

(up to 10 different fixed capacity
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only

the next or previous) with skip-links. They can be perfect, randomized or
custom.

 perfect | randomized(prob:
double) | function(func) | none 13 none none none none none none none

15 Area-links. Each sub-tree can be connected with another sub-tree at the leaf
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both |
none 4 none none forw. none none none none

Ch
ild

re
n

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent.
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d

in
lin

e

po
in

te
d

po
in

te
d

po
in

te
d

Rules: requires fanout/radix != terminal.
17 Sub-block physical layout. This represents the physical layout of sub-blocks.

Scatter: random placement in memory. BFS: laid out in a breadth-first layout.
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping:
int) | scatter

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL

Rules: requires fanout/radix != terminal.
18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.

boolean 2

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

Rules: requires fanout/radix != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

fa
lse

fa
lse

fa
lse

fa
lse

Rules: requires fanout/radix != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a
node of the same type until a maximum depth (expressed as a function) is
reached. Then the terminal node type of this data structure will be used.

yes(func) | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)

POSSIBLE NODE DESIGNSDESIGN PRINCIPLES

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

POSSIBLE NODE DESIGNS

ARRAY LINKED-LIST

SKIP-LIST

QUEUEHASH-TABLE

B-TREE

TRIECSB-TREE
FASTBeTree

POSSIBLE STRUCTURESDESIGN PRINCIPLES

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

POSSIBLE NODE DESIGNS

ARRAY LINKED-LIST

SKIP-LIST

QUEUEHASH-TABLE

B-TREE

TRIECSB-TREE
FASTBeTree

POSSIBLE STRUCTURESDESIGN PRINCIPLES

@SIGMOD18

sorted

zone map
bloom

filter bits

link

children
layout

no
no

s

e.g., array = 1 node type
e.g., b-tree = 2 node types

STARS ON THE SKY POSSIBLE DATA STRUCTURES

(10^24)

(10^32, 2-node)

(10^48, 3-node)

STARS ON THE SKY POSSIBLE DATA STRUCTURES

(10^24)

(10^32, 2-node)

(10^48, 3-node)

The TIGRIS Container Description Language and Compiler

Lukas M.Maas
Harvard University

maas@seas.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

SIGMOD
VLDB
ICDE
EDBT

Conference

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

0
5
10
15
20
25
30
35
40
45
50

N
um

be
r o

f p
ub

lic
at

io
ns

Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS

STARS ON THE SKY POSSIBLE DATA STRUCTURES

(10^24)

(10^32, 2-node)

(10^48, 3-node)

The TIGRIS Container Description Language and Compiler

Lukas M.Maas
Harvard University

maas@seas.harvard.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

SIGMOD
VLDB
ICDE
EDBT

Conference

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

0
5
10
15
20
25
30
35
40
45
50

N
um

be
r o

f p
ub

lic
at

io
ns

Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS

1048-5x103 = 1048 zero progress

(10^48, 3-node)

The design space of systems is even larger

(10^48, 3-node) (10^48, 3-node) (10^48, 3-node)

The design space of systems is even larger

manually

selecting

“good” designs

LSM-tree based
KV-system

B-tree based
KV-system

manually

selecting

“good” designs

LSH based
KV-system

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

lsm-tree

b-tree

log+index

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

read-cost

w
rit

e-
co

st
manually

selecting

“good” designs

lsm-tree

b-tree

log+index

read-cost

w
rit

e-
co

st

size ratio
merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning (range, time, …)

sub-block (skip-)links

sub-block location

manually

selecting

“good” designs

lsm-tree

b-tree

log+index

read-cost

w
rit

e-
co

st
size ratio

merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning (range, time, …)

sub-block (skip-)links

sub-block location

lsm-tree

b-tree

log+index

read-cost

w
rit

e-
co

st
size ratio

merge policy

filters bits per entry

size of buffer/cache

internal k-v layout

key retention
value retention

partitioning (range, time, …)

sub-block (skip-)links

sub-block location

Design Continuum

performance continuum
unified design template

@PVLDB2022
Cosine

Cloud-cost
Optimized

Self
Designing

Key-value
Store

@PVLDB2022
Cosine

Cloud-cost
Optimized

Self
Designing

Key-value
Store

@PVLDB2022
Cosine

Cloud-cost
Optimized

Self
Designing

Key-value
Store

@PVLDB2022
Cosine

Cloud-cost
Optimized

Self
Designing

Key-value
Store

@PVLDB2022
Cosine

Cloud-cost
Optimized

Self
Designing

Key-value
Store

P
a
r
a
m
e
t
e
r
s

M
e
t
r
ic
s

Terms

Designs
Log LSH Table

[80, 19, 82,
74, 58, 2, 89]

Tiered LSM-
Tree [55,
23, 43]

Lazy Leveled
LSM-Tree [25]

Leveled
LSM-Tree
[32, 29, 23]

COLA [15, 45] FD-Tree [57] B✏Tree [16, 15,
44, 70, 9, 45]

B+Tree [13] Sorted Array

T (Growth
Factor)

N·E
MB

N·E
MB

[2, B] [2, B] [2, B] 2 [2, B] [2, B] B N·E
MB

K (Hot Merge
Threshold)

T � 1 T � 1 T � 1 T � 1 1 1 1 1 1 1

Z (Cold
Merge

Threshold)

T � 1 T � 1 T � 1 1 1 1 1 1 1 1

D (Max.
Node Size)

1 1 [1, N
B

] [1, N
B

] [1, N
B

] N
B

N
B

1 1 N
B

MF (Fence &
Filter Mem.)

N·F
B

N · F · (1 + 1
B

) N · (F
B

+ 10) N · (F
B

+ 10) N · (F
B

+ 10)
F ·T ·MB

E·B
F ·T ·MB

E·B
F ·T ·MB

E·B
F ·T ·MB

E·B
N·F
B

Update O(1
B

) O(1
B

) O(L
B

) O(1
B

· (T + L)) O(T
B

· L) O(L
B

) O(T
B

· L) O(T
B

· L) O(L) O(N·E
MB ·B)

Zero Result
Lookup

O(N·E
MB

) O(0) O(T · e
�MBF

N) O(e
�MBF

N) O(e
�MBF

N) O(L) O(L) O(L) O(L) O(1)

Existing
Lookup

O(N·E
MB

) O(1) O(1+T ·e
�MBF

N) O(1) O(1) O(L) O(L) O(L) O(L) O(1)

Short Scan O(N·E
MB

) O(N·E
MB

) O(L · T) O(1 + T · (L � 1)) O(L) O(L) O(L) O(L) O(L) O(1)

Long Scan O(N·E
MB

· s
B

) O(N·E
MB

· s
B

) O(T · s
B

) O(s
B

) O(s
B

) O(s
B

) O(s
B

) O(s
B

) O(s
B

) O(s
B

)

from write to read optimized
@CDIR2019Design Continuums

massive design space of system designs

massive design space of system designs

workload/hardware performance, cloud cost, robustness

workload/hardware performance, cloud cost, robustness

without having to code

massive design space of system designs

massive design space of system designs algorithm & cost synthesisalgorithm & cost synthesisdata layouts

algorithm & cost synthesis
point

up
da

te

memory

range

deleteinsert

algorithm & cost synthesis
point

up
da

te

memory

range

deleteinsert

algorithm & cost synthesis
point

up
da

te

memory

range

deleteinsert

query &
hardware parallelism

Should I scan or should I probe? @SIGMOD2016

Should I scan or should I probe? @SIGMOD2016

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

Should I scan or should I probe? @SIGMOD2016

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

But we have a
massive design
space to cover…..

Should I scan or should I probe? @SIGMOD2016

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
⇣

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot

⇣
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

⌘

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
�
ts,2 · fp · p ·q ·BWS

�
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

But we have a
massive design
space to cover…..

point

up
da

te

memory

range

deleteinsert

algorithm & cost synthesis

scan
hash
probe

random
access

sorted
search

bloom
probe

sorted
search

random
access

point

up
da

te

memory

range

deleteinsert

synthesize from first principles

algorithm & cost synthesis

scan
hash
probe

random
access

sorted
search

bloom
probe

sorted
search

random
access

point

up
da

te

memory

range

deleteinsert

synthesize from first principles

algorithm & cost synthesis

sorted
search

random
access

scan
hash
probe

random
access

sorted
search

bloom
probe

hash
probe

point

up
da

te

memory

range

deleteinsert

synthesize from first principles

algorithm & cost synthesis

sorted
search

random
access

hash
probe

scan
hash
probe

random
access

sorted
search

bloom
probe

point

up
da

te

memory

range

deleteinsert

synthesize from first principles

algorithm & cost synthesis

hash
probe

scan
hash
probe

random
access

sorted
search

bloom
probe

synthesize from first principles

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

algorithm & cost synthesis

hash
probe

scan
hash
probe

random
access

sorted
search

bloom
probe

synthesize from first principles

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

algorithm & cost synthesis

hash
probe

scan
hash
probe

random
access

sorted
search

bloom
probe

synthesize from first principles

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

algorithm & cost synthesis

hash
probe

1. MINIMAL CODE 2. BENCHMARK 3. FIT MODEL

e.g., binary search

Learned Cost Models @SIGMOD2018

algorithm & cost synthesis

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

unified
closed form

analytical
I/O model

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

…

Buffer Filters Fence
Pointers

Memory

Storage

FP

FP
FP …

…
…

…

…

node
run boundary
fence pointer

storage block

FP
FP

…

L-Y hot levels

Y cold levels

FP

…

Filters

Filters

BFBloom
Filter

Filter Choice by Mem. Budget

Hash
Table

or

(Fewer Bits per Key) (Full Key Size)

… oldest hot run contains
cascading fence pointers

storage engine template
unified design

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

workload
budget
perf.

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

workload
budget
perf.

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

workload
budget
perf.

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

cloud budget

la
te

nc
y

workload
budget
perf.
budget
perf.

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

cloud budget

la
te

nc
y

workload
budget
perf.
budget
perf.

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

cloud budget

la
te

nc
y

workload
budget
perf.
budget
perf.

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

workload
budget
perf.

budget

perf.

cloud budget

la
te

nc
y

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

(cloud, VM, design)
workload
budget
perf.

budget

perf.

cloud budget

la
te

nc
y

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

(cloud, VM, design)
workload
budget
perf.

budget

perf.

cloud budget

la
te

nc
y

lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

(cloud, VM, design)
workload
budget
perf.

budget

perf.

cloud budget

la
te

nc
y

WHAT-IF
lsm-tree

b-tree

log+index

unified
closed form

analytical
I/O model

learned
CPU model

h/w,
parallelism

cloud cost
mapping & SLA

AWS, Azure, Google

(cloud, VM, design)
workload
budget
perf.

budget

perf.

cloud budget

la
te

nc
y

WHAT-IF
lsm-tree

b-tree

log+index

How to test? workload/budget diversity

How to test? workload/budget diversity

Can we beat the best system for every workload?

How to test? workload/budget diversity

Can we beat the best system for every workload?

workload/budget diversity

workload/budget diversity

workload/budget diversity

workload/budget diversity

workload/budget diversity

COSINE

workload/budget diversity

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

Better throughput/cost
COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

Better throughput/cost
Self-designs

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

Better throughput/cost
Self-designs

Azu
re

AWS

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

Better throughput/cost
Self-designs

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

Better throughput/cost
Self-designs

COSINE

State of the Art
Meta, Microsoft, Mongo{

workload/budget diversity

diversity beats top systems self-designs (provider, VM, new design)

workload/budget diversity

diversity beats top systems self-designs (provider, VM, new design)

Cosine achieves the best perf. across all workloads by
automatically designing a new system every time.

workload/budget diversity

diversity beats top systems self-designs (provider, VM, new design)

Cosine achieves the best perf. across all workloads by
automatically designing a new system every time.

We can automatically design 1000x faster new NoSQL systems
1) design space
2) navigation (math/ML)
3) code generation
Papers: Cosine PVLDB 2023, and new Limousine at SIGMOD 2024

How do these concepts translate to the other big data areas
neural networks, image AI, Blockchain, …?

We can automatically design 1000x faster new NoSQL systems
1) design space
2) navigation (math/ML)
3) code generation
Papers: Cosine PVLDB 2023, and new Limousine at SIGMOD 2024

How do these concepts translate to the other big data areas
neural networks, image AI, Blockchain, …?

again, it all starts from the storage design space

We can automatically design 1000x faster new NoSQL systems
1) design space
2) navigation (math/ML)
3) code generation
Papers: Cosine PVLDB 2023, and new Limousine at SIGMOD 2024

seeing is at the very center of AI
because it is at the center of human life

image processing

developing

AI is SLOW

6-12 months

Data size Model size

Model sizePe
ta

by
te

s

0

450

900

1350

1800

Year
2013 2015 2017 2019 2021 2023

Data size

[1] https://ourworldindata.org/artificial-intelligence
[2] https://ourworldindata.org/grapher/artificial-intelligence-training-computation

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/grapher/artificial-intelligence-training-computation

Pe
ta

by
te

s

0

450

900

1350

1800

Year
2013 2015 2017 2019 2021 2023

Data size

Pe
ta

 F
LO

Ps

1E-12

1E-06

1E+00

1E+06

1E+12

Publication date
1958 1971 1984 1997 2010 2023

ADALINE

Perceptron
Neocognitron

Zip CNN
System 11

Decision tree6-layer MLP
Feedforward NN

DropoutAlexNet

VGG16GoogLeNet
ResNet-152

RetinaNet-R101

ProxylessNASPNASNet-5
EfficientNetV2AmoebaNet-AMnasNet

ViT-22BCoAtNet

ResNeXt-101

[1] https://ourworldindata.org/artificial-intelligence
[2] https://ourworldindata.org/grapher/artificial-intelligence-training-computation

Model size

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/grapher/artificial-intelligence-training-computation

AITraining
Inference

AITraining
Inference

AITraining
Inference

What’s this?

It’s a dog!

Training Inference

02576

labelsimages

02578Re-training

Training Inference

02576

labelsimages

02578Re-training

Training Inference
02576

labelsimages

02578Re-training

[2] https://www.forbes.com/sites/moorinsights/2019/05/09/google-cloud-doubles-down-on-nvidia-gpus-for-inference/?sh=4c9817226792
[1] https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/

Training Inference
02576

labelsimages

02578Re-training

[2] https://www.forbes.com/sites/moorinsights/2019/05/09/google-cloud-doubles-down-on-nvidia-gpus-for-inference/?sh=4c9817226792
[1] https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/

90% of cost!

Where does time go?

Pre-process

Image files

AI model

In
fe

re
nc

e
tim

e
(%

)

0

25

50

75

100

MobileNet V3

Data: ImageNet

AI Model: MobileNet V3

Machine: V100, PCIe

Xeon, SSD

Framework: PyTorch v1

Disk I/O

CPU

Transfer

GPU
Where does time go?

In
fe

re
nc

e
tim

e
(%

)

0

25

50

75

100

MobileNet V3

Data: ImageNet

AI Model: MobileNet V3

Machine: V100, PCIe

Xeon, SSD

Framework: PyTorch v1

Disk I/O

CPU

Transfer

GPU

}Data movement/
pre-processing

Only 10%
is GPU!

Where does time go?

In
fe

re
nc

e
tim

e
(%

)

0

25

50

75

100

MobileNet V3

Data: ImageNet

AI Model: MobileNet V3

Machine: V100, PCIe

Xeon, SSD

Framework: PyTorch v1

Disk I/O

CPU

Transfer

GPU

}Data movement/
pre-processing

Only 10%
is GPU!

Where does time go?

Re-think Storage for Image AI

How do machines
store images today?

JPEGHow do machines
store images today?

Joint Photographic Experts Group

How do machines
store images today? standard

standard
compression

JPEG is tailored for the

properties of the human eye

JPEG is tailored for the

properties of the human eye

images for AI are seen by

algorithms, not humans

there are more possible ways
to store an image than

stars on the sky

images for AI are seen by

algorithms, not humans

 10100 >1024

massive design space of possible image storage schemes

massive design space of possible image storage schemes

JPEG

massive design space of possible image storage schemes

JPEG costaccuracy

Design space Search 14x faster

Design space Search 14x faster

Sampling Partitioning

QuantizationPruning

Sampling

Remove rows/
columns

Partitioning

QuantizationPruning

Sampling

Remove rows/
columns

Partitioning

QuantizationPruning

Processing
granularity

Sampling

Remove rows/
columns

Partitioning

QuantizationPruning

Remove
unuseful data

Processing
granularity

Sampling

Remove rows/
columns

Partitioning

QuantizationPruning

Remove
unuseful data

Magnitude
reduction

Processing
granularity

Sampling

Remove rows/
columns

Partitioning

QuantizationPruning

Remove
unuseful data

Magnitude
reduction

Processing
granularity

10150K
possibilities

How can we prune the
design space?

Pruning

Spatial domain Frequency domain
102 90 80 72

76 89 72 39

56 58 49 30

54 49 32 5

152 95 70 44

99 70 65 45

78 58 30 20

40 32 20 2

82 90 60 14

80 65 40 21

77 40 24 20

70 60 59 30

92 90 50 12

82 60 32 20

60 40 30 4

20 10 8 8

200 150 100 98

180 172 160 150

170 165 120 112

92 90 70 49

180 154 134 102

120 134 103 95

103 90 83 74

94 89 80 24

90 86 82 76

85 80 72 45

70 63 53 45

60 54 40 30

120 102 64 50

90 82 70 54

80 65 55 30

70 50 30 22

112 108 100 78

97 85 65 48

90 78 74 30

72 45 24 5

90 85 80 78

82 70 65 49

78 65 54 32

74 45 30 21

110 95 85 78

98 90 76 40

68 49 31 20

31 20 10 4

104 92 82 70

95 80 70 35

68 52 32 24

52 32 15 2

Spatial domain Frequency domain
102 90 80 72

76 89 72 39

56 58 49 30

54 49 32 5

152 95 70 44

99 70 65 45

78 58 30 20

40 32 20 2

82 90 60 14

80 65 40 21

77 40 24 20

70 60 59 30

92 90 50 12

82 60 32 20

60 40 30 4

20 10 8 8

200 150 100 98

180 172 160 150

170 165 120 112

92 90 70 49

180 154 134 102

120 134 103 95

103 90 83 74

94 89 80 24

90 86 82 76

85 80 72 45

70 63 53 45

60 54 40 30

120 102 64 50

90 82 70 54

80 65 55 30

70 50 30 22

112 108 100 78

97 85 65 48

90 78 74 30

72 45 24 5

90 85 80 78

82 70 65 49

78 65 54 32

74 45 30 21

110 95 85 78

98 90 76 40

68 49 31 20

31 20 10 4

104 92 82 70

95 80 70 35

68 52 32 24

52 32 15 2

A frequency coefficientA pixel

Spatial domain Frequency domain
102 90 80 72

76 89 72 39

56 58 49 30

54 49 32 5

152 95 70 44

99 70 65 45

78 58 30 20

40 32 20 2

82 90 60 14

80 65 40 21

77 40 24 20

70 60 59 30

92 90 50 12

82 60 32 20

60 40 30 4

20 10 8 8

200 150 100 98

180 172 160 150

170 165 120 112

92 90 70 49

180 154 134 102

120 134 103 95

103 90 83 74

94 89 80 24

90 86 82 76

85 80 72 45

70 63 53 45

60 54 40 30

120 102 64 50

90 82 70 54

80 65 55 30

70 50 30 22

112 108 100 78

97 85 65 48

90 78 74 30

72 45 24 5

90 85 80 78

82 70 65 49

78 65 54 32

74 45 30 21

110 95 85 78

98 90 76 40

68 49 31 20

31 20 10 4

104 92 82 70

95 80 70 35

68 52 32 24

52 32 15 2

A frequency coefficient

A block

A pixel

A single block

A single block

Lowest-frequency
coefficient

A single block

Lowest-frequency
coefficient

frequencies
increase

Value 1 Value 2 Value 3 Value 4

Pruning strategy #1

{
A single block

Value 1 Value 2 Value 3 Value 4

Pruning strategy #2

{
A single block

Strategy 3 Strategy 4

Strategy 3 Strategy 4

Ac
cu

ra
cy

0

0.5

1

Number of coefficients
0 256 512 768 1024

Strategy 1 Strategy 2 Strategy 3 Strategy 4

ResNet50, A100, PyTorch v1

Number of coefficients
0 256 512 768 1024

Number of coefficients
0 256 512 768 1024

ImageNet-5c Blood-cell Weather

Ac
cu

ra
cy

0

0.5

1

Number of coefficients
0 256 512 768 1024

Strategy 1 Strategy 2 Strategy 3 Strategy 4

ResNet50, A100, PyTorch v1

Number of coefficients
0 256 512 768 1024

Number of coefficients
0 256 512 768 1024

ImageNet-5c Blood-cell Weather

10150K 6048

QuantizationSampling Partitioning Pruning

6048 new designs

Design space Search 14x faster

Performance models
6048 new designs Accuracy

Latency

Storage

Accuracy
model

sort

Most-compressed to least-compressed

Most-compressed to least-compressed

Ac
cu

ra
cy

sort & analyze ImageNet-5c, ResNet50
A100, PyTorch v1

Ac
cu

ra
cy

sort & analyze — sample & interpolate

Most-compressed to least-compressed

ImageNet, ResNet50
A100, PyTorch v1

Ac
cu

ra
cy

sort & analyze — sample & interpolate

3x reduction

Most-compressed to least-compressed

ImageNet, ResNet50
A100, PyTorch v1

ImageNet, ResNet50
A100, PyTorch v1sort & analyze — sample & interpolate + transfer learn

Most-compressed to least-compressed

Ac
cu

ra
cy

ImageNet, ResNet50
A100, PyTorch v1sort & analyze — sample & interpolate + transfer learn

Most-compressed to least-compressed

Ac
cu

ra
cy

+10x = 30x reduction

ImageNet, ResNet50
A100, PyTorch v1sort & analyze — sample & interpolate + transfer learn

Most-compressed to least-compressed

Ac
cu

ra
cy

+10x = 30x reduction

6048 200 training

Design space Search 14x faster

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1
IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1

2% loss vs.
2x gain

IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1

4% loss vs.
4x gain

IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1
IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Blood-cell

4% loss vs.
4x gain

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1
IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Blood-cell

No loss w/
9x gain4% loss vs.

4x gain

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1
IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Blood-cell

No loss w/
9x gain

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Weather

4% loss vs.
4x gain

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

IC JPEG

ResNet, ImageNet-5c

ResNet50
A100

PyTorch v1
IC brings benefits on diverse datasets

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Blood-cell

No loss w/
9x gain

Ac
cu

ra
cy

0.4

0.6

0.8

1

Inference time (ms)
0 0.175 0.35 0.525 0.7

ResNet, Weather No loss w/
7x gain

4% loss vs.
4x gain

In
fe

re
nc

e
tim

e
(m

s)

0

3.5

7

10.5

14

JPEG IC

Blood-cell
MobileNetV3

Intel CPU
PyTorch v1

14x

IC improves on cheap CPUs

Tr
ai

ni
ng

 ti
m

e
(m

s)

0

0.7

1.4

2.1

2.8

3.5

JPEG IC

Blood-cell, ResNet50
A100, PyTorch v1IC reduces training time

Tr
ai

ni
ng

 ti
m

e
(m

s)

0

0.7

1.4

2.1

2.8

3.5

JPEG IC

6x

Blood-cell, ResNet50
A100, PyTorch v1IC reduces training time

Generating design spaces for whole systems.
Reasoning: rules, math and ML to create entirely new designs

Generating design spaces for whole systems.
Reasoning: rules, math and ML to create entirely new designs

Primer: The Periodic Table of Data Structures
 IEEE Data Eng. Bull. 41(3), 2018

daslab.seas.harvard.edu

daslab.seas.harvard.edu

THANKS!

