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What is a data system?
Why do we need self-designing systems?




A TYPICAL BIG DATA TASK

image analysis: e.g., detect the number of horses

el ! of of of

DFISIab

@ Harvard SEAS



A TYPICAL BIG DATA TASK

image analysis: e.g., detect the number of horses

of of of

WDASIab

@ Harvard SEAS









of of of of of of of of of

Azt s I 7
- .. » . . -
44 = ¥, S o. o \
:‘- d : : “'
) Pe XS
. A 2 3
4 .
D A S O
: " N, 9
\
29 < )
. '.
. “ K. “8
A < )
. Lo Ly @
. 3 X
)} -8 .
SN N
L, he +* 4
: ‘.to L - - 4
L. o XLLACEN
-~ Yy G.~ .Q -
O~ - - s =

The core problem:

The size and organization of the data
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Three steps in big data/Al regardless of application
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Three steps in big data/Al regardless of application
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. How fast we can move and process data
" depends on the storage design decisions



What is a data system?

A data system is an end-to-end software system that:
manages storage, data movement, and provides access to data
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1. For decades: data systems = SQL DBs
but with big data, the need for fast data
systems is drasticallybroader than SQL
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broader than SQL

store data X = ~— get data with property Z

data

systems
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broader than SQL

big data apps

data
systems A |
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broader than SQL

big data apps

data
systems

——t——

New data systems to handle new requirements



broader than SQL

TRANSACTIONS
Deposit money to my bank account

Transfer money from ... to...
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broader than SQL
TRANSACTIONS

Deposit money to my bank account

Transfer money from ... to...

ANALYTICS

HOow much do customers
of X spent on average every month®
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broader than SQL
TRANSACTIONS

Deposit money to my bank account

Transfer money from ... to...

ANALYTICS

HOow much do customers
of X spent on average every month®

Al
s this transaction legal®

Should we give a loan to customer X?
WDASIab J
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broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?
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broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?

Al
s this new review a legitimate one”
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broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?

Al
s this new review a legitimate one”

COMMUTING

Compute price for next Uber ride
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broader than SQL

New data-driven applications

data

New requirements

The need for
data systems
grows with data

New user flows
New workloads

time
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2. As data grows, having the right data system
for each application is increasingly more critical
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2. As data grows, having the right data system
for each application is increasingly more critical

system architecture
t starts with storage &~
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the right data system

3 register = this room
%) caches = this city
memory = nearby city
disk = Pluto
Jim Gray, Turing Award 1998
W UHSlab
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the right data system

register = this room
caches = this city
memory = nearby city
disk = Pluto

speed

Jim Gray, Turing Award 1998

Data movement dominates everything




the right data system

70-80% of processing costs
go into data movement

computational hardware
utilization: only 30-50%
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The problem: as the big data/Al world keeps changing...
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The problem: as the big data/Al world keeps changing...

there Is a continuous need for new data systems
put it Is extremely hard to design & build new systems
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How do we design a data system that is X times faster for a workload W~
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How do we design a data system that is X times faster for a workload W~ “

How do we design a data system that allows for control of cloud cost”
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How do we design a data system that is X times faster for a workload W~ “

How do we design a data system that allows for control of cloud cost”

What happens if we introduce new application feature Y

Should we upgrade to new version Z7?

What will break our system®?
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BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

What happens if we introduce new application feature Y 0‘

Should we upgrade to new version Z7?

What will break our system?




BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

nuge cloud cost

environmental iImpact




BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

expensive transitions

nuge cloud cost

environmental iImpact




BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

expensive transitions

nuge cloud cost

application tfeasibility
environmental iImpact




BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

huge cloud cost  expensive transitions application feasibility environmental impact

complexity

now we BUILD systems
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Design: 6-7 years 8
Reasoning: months/impossible

GET N EXPERT DESIGNERS

GIVE THEM T TIME
HOPE FOR THE BEST ‘
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SELF-DESIGNING SYSTEMS

Automatically invent & build the perfect system for any new application
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massive design space of system designs
® @ @
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I '*'* /7 system= N\
few existing designs -*-‘-*- [ a set of low-level }
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#-*-* /~ system=
few existing designs -*-‘-*- a set of low-level }
\.design decisions /

massive design space of system designs
® @ ®
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massive design space of system designs

reasoning: understand all the /

design decisions & thelr impaot‘
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data types

HOW
DO WE
START o
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ALGORITHMS

data structure decisions define
the algorithms that access data

DATA
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ALGORITHMS
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EDBT 2016

no perfect structure S
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EDBT 2016
SIGMOD 2016




EDBT 2016
SIGMOD 2016
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point read range read

update memory
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point read range read

update

_~Tmemory

insert o delete
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ALGORITHMS
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DATA SYSTEMS
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ALGORITHMS
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

buffer
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE
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filters

buffer




NoSQL systems are the backbone of the BigData and Al era
L SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN

KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE
_ filters \‘ fences )
buffer ) N e cache

diverse
data structures
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters ) ( fences )
buffer e\ cache

diverse . |
INteractions
data structures
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NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

_ fiters ) ( fences )
buffer . cache

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)
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Constant and increasing efforts
for new system designs as

%@ applications & hardware change

%

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)



robustness

Interactions hardware parallelism cloud cost
SLAS

diverse

data structures

Requirements/Goals
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. ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

Requirements/Goals  Context
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robustness

cloud cost
SLAS

diverse
data structures

INnteractions hardware parallelism
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AUTO DESIGN




Rob Tarjan, Turing Award 1986
/S THERE A CALCULUS OF DATA STRUCTURES

Dy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NP, average case, constant factors vs asymptotic, low bounds]
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Rob Tarjan, Turing Award 1986
. ‘1S THERE A CALCULUS OF DATA STRUCTURES

oy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NF, average case, constant factors vs asymptotic, low bounds]
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am free
ultimate [ theory

Nikos Kazantzakis, philosopher
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words

Nikos Kazantzakis, philosopher



the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory
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the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

grammar/
sentences

interactions
| hope for nothing

| fear nothing
alphabet prinCipleS /am free

words data structures

Nikos Kazantzakis, philosopher



the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

NEW

| hope for nothing

| fear nothing
alphabet prinCipleS /am free

grammar/
sentences

Interactions

words data structures

Nikos Kazantzakis, philosopher



the grammar of data systems design

action IS hol
the most 'Y Of
_ form
s theory

which are "all”
[ possible data systems

L we may ever invent?

grammar/
sentences

interactions
| hope for nothing

| fear nothing
alphabet principles | am free

words data structures

Nikos Kazantzakis, philosopher



Trillions of possible data structures
Data Calculator @SIGMOD 2018
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Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024
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New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017
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Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023
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Trillions of possible data structures
Data Calculator @S5IGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023

10x faster Image Al
Image Calculator, SIGMOD 2024




1. DESIGN SPACE
data layout of data structures

algorithm design

systems: interactions of components
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1. DESIGN SPACE
data layout of data structures

algorithm design

systems: interactions of components

2. NAVIGATE SEARCH SPACE
cost synthesis: computation and data movement
learned cost models in memory/parallelism
design continuums to shrink space
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Categories

Design Primitives to Auto Generate Trillions of Data Structures

Unless otherwise specijiea, we use a

reduced default values domain of Hash Table
100 values for integers, 10 values for B+TTEE/ CS B+TFEE/ FAST
doubles, and 1 value for functions. LPL
Primitive Domain size| H LL (UDP | B+ | CSB+ [FAST | ODP
1|Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, yes | no | function(func) 3
and arrays. Function: contains only a subset of the key, i.e., as in tries. no | no [ yes | no no no | yes
2 [Value retention. No: node contains no real value data, e.g., intermediate nodes
- of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b- yes | no | function(func) 3
2 trees, and arrays. Function: contains only a subset of the values. no [ no | yes | no no no | yes
© . . .
N | 3|Key order. Determines the order of keys in a node or the order of fences if real |
c . none | sorted | k-ary (k: int) 12
© keys are not retained. none [none|none [sorted|sorted|4-ary [sorted
h . . .
© [ 4|Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row- | _ _
() o o) o)
= Rules: requires key retention != no or value retention != no. groups(size: int) © ©
< | 5|Intra-node access. Determines how sub-blocks (one or more keys of this node) - - - - - -
. oy . . . . direct | head_link | tail_link | 9 = O O O O 9
can be addressed and retrieved within a node, e.g., with direct links, a link only link_function(func) 4 & O o o d d -
. ~ = Q = = = = =
to the first or last block, etc. © © © © © ©
6 | Utilization. Utilization constraints in regards to capacity. For example, >= 50% = (X%) | function(func) | none 3 >= >= >=
denotes that utilization has to be greater than or equal to half the capacity. (we currently only consider X=50) none [none|none | 50% | 50% | 50% | none
7 |Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom off | on(num_hashes: int, =
fil h b f hash f : d b £ bi num_ bits: int) o
" ilters get as parameters the number of hash functions and number of bits. up t0 10 num _hashes considered) | —|| off | off | off | off off | off | off
L &
¥ | 8(Zone map filters. A node's sub-block can be filitered using zone maps, e.g., the
= . P _ . 5 P 5 y min | max | both | exact | off 5 . . .
b can filter based on mix/max keys in each sub-block. off | off | off | min | min | min | off
S | 9]|Filters memory layout. Filters are stored contiguously in a single area of the = s s
Z .
node or scattered across the sub-blocks. consolidate | scatter 2 = = =
Rules: requires bloom filter != off or zone map filters != off. 7 7 7
10| Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be [fixed(value:int) | function(func) o | B| © S S ) ©
limited (i ... h b f sub-blocks) fixed b mited | terminal(cap: int) 8 + ﬂ N N = ﬂ
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, (up to 10 different capacities andup |22 | 5 | E = = = = =
decided by a function or the node is terminal and thus has a fixed capacity. to 10 fixed fanout values are 0 = - X X X -
considered) 4= -] B - = - 3
111 | I e s s o= 2m A% i ® i C 3t L il cvmn m m smmm ALl A LAy s e L L . d N o~ 2l A —




o | . = y o | '.""""""' '.'"’ S e ) U U @
S or balanced (i.e., all sub-blocks have the same size), unrestricted or functional. stricted | function(func) 13 %2 o c - c
= (up to 10 different fixed capacity v 8 @© @© ©
o. Rules: requires key partitioning != none. values are considered) S s S S S
13 |Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none | 4 |[none |next |none | none | none [none | none
14 [Skip node links. Each sub-block can be connected to another sub-block (not only
h . ith skio-links. Th b foct g i>ed perfect | randomized(prob: 13
the next or previous) with skip-links. They can be perfect, randomized or double) | function(func) | none none |none|none | none | hone |none | hone
custom.
15 [Area-links. Each sub-tree can be connected with another sub-tree at the leaf forward | backward | both |
, , _ 4 | none |none|forw. [ none | none |none | none
level throu area links. Examples include the linked leaves of a B+Tree. none
16 | Sub-block physical location. This represents the physical location of - - - -
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. inline | pointed | double- X % g *GEJ % %
Double-pointed: in heap but with pointers back to the parent. pointed 'S c 'S 'S 'S
o o o o
Rules: requires fanout/radix !=terminal.
17 | Sub-block physical layout. This represents the physical layout of sub-blocks. _
. . _ _ BFS | BFS layer(level-grouping: — — - )
Scatter: random placement in memory. BFS: laid out in a breadth-first layout. nt) | scatter : e 2 S % J;
BFS layer list: hierarchical level nesting of BFS layouts. (up to 3 different values for layer- S S S o LL
5 - - - grouping are considered) n n n @
o Rules: requires fanout/radix !=terminal.
L (18 |Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type. v v o v v
(/)] c : : : boolean 2 - - - > >
D @ Rules: requires fanout/radix !=terminal. b e b b b
© . . : : : :
gl | '= (19 |Sub-block consolidation. Single children are merged with their parents. ) ) w ) )
O : : : boolean 2 L L L 2 2
@) Rules: requires fanout/radix !=terminal. & & & & &
O) 20 |Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,
((b) : e 1 : > > > > >
it otherwise they are initialized only when data are available (lazy). lazy | eager 2 N N N N N
(4v) Rules: requires fanout/radix !=terminal.
0 21 |Sub-block links layout. If there exist links, are they all stored in a single array T
(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2 =
. . . . . . O
Rules: requires immediate node links != none or skip links != none. *
= 22 |Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a — — —
I node of the same type until a maximum depth (expressed as a function) is Jes(func) | no ] Q0 Q0 Q0
g reached. Then the terminal node type of this data structure will be used. ‘T.nj ‘Tc.n: ‘Tc.n:
e Rules: requires fanout/radix != terminal. no | no = > >
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DESIGN PRINCIPLES POSSIBLE NODE DESIGNS
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DESIGN PRINCIPLES POSSIBLE NODE DESIGNS POSSIBLE STRUCTURES

ARRAY  LINKED-LIST

HASH-TABLE QUEUE
% B-TREE SKIP-LIST
CSB-TREE TRIE

BeTree FAST
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@SIGMOD18

DESIGN PRINCIPLES POSSIBLE NODE DESIGNS POSSIBLE STRUCTURES

ARRAY  LINKED-LIST

HASH-TABLE QUEUE
%ﬁ B-TREE SKIP-LIST
CSB-TREE TRIE

BeTree FAST
e.g., array =1 node type

DFISIab e.g., b-tree = 2 node types
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(10732, 2-node)
(10748, 3-node)

=4

STARS ON THE SKY POSSIBLE DATA STRUCGTURES
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Example templates for diverse data structures
Design Abstractions of Template Type/Domain LSM B-Tree LSH A new
A variants variants variants design
o I. [ Key size: Denotes the size of keys in the workload. unsigned int auto-configured from the sample workload
Q
§. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
. 1y ) o size set to 1 GB auto-configured from the sample workload
= | & variable-length strings. max size set to
2| & . ,
- cﬁ *5 ~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in unmgngd integer | 2,.. 32] [32,64, |[1000, 1001, ...] )
COS I n e Z = 2 " | LSM trees or fanout of B-trees. function (func) ’ 128, 256, ..] (T is large)
=| 8| % :
al| §| 4 Runs per hot level (K): At what capacity hot levels are compacted. oned int
@ PV I_ D B 2 O 2 2 E z,, S Rule: should be less than size ratio. unsigned 1 11.. T} [T-1] 7
®| ,
a| =] 8 Runs per cold level (Z): At what capacity cold levels are compacted. . . 3
S g E 3. [Rule: should be less than size ratio. unsigned int [1..T] [1]
= Q . .
C I O u d cos t g = § 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
- =
o
<| S 2 Buffer capacity (Mp): Denotes the amount of memory allocated to in-memory 64-bit floating point 64 MB, 128 | [1 MB, 2 64 MB, 128 h/w
- 2] 27 p gp | :
O pti m iZ e d 2 N buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
¥ N . . .
S5 | 3. [Indexes(Mpp): Amount of memory allocated to indexes (fence pointers/hashtables). 64-bit floating point | memory to | memory for | memory for h/w
= function (func) cover L first level hash table dependent
9. | Bloom filter memory (M gy ): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
Se If 10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
i filter instance per block or per file or per run. The default is file. block | file | run file :
- - Z - , : : ;
DeSI n I n Ol 2| 8 Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
g g ; g N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
Ol =3 . . . .
é g % 1 }l}yl:)l:iztzﬁzgz;tzin)otes which run to be picked for compaction (only for partial/ first | last full | fullest ﬁrlSt’ ﬁ}llﬁst, first -
- 2] 2 ' ast fu
Key-val u e (é) = File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
< .§ 13. |hybrid compaction). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
@ - the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - B choose first
E g, larity of parse_{p| - (cold)
granularity of runs.
]
E . = [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
e =
a ‘% X | 15 |Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
8 = § " | for hybrid compaction). The default is set to 2. function (func) - optimal config)
— Q
j 5;‘ = | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
¢ 17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.
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Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
2, 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ : ) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | [2,.. 32] [32, 64, |[1000, 1001, ...] 2
.g " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int ]
S Rule: should be less than size ratio. unsigned 1 11.. T} [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s , 1)
E 3. [Rule: should be less than size ratio. unsigned int Lol [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 | [1 MB,2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes( M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (M gy ): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file l
% . . . . .
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
S hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S |13, |hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose_ first (hot),
X the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - choose first
], . parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.
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Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
2, 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ : ) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | 2,.. 32] [32, 64, |[1000, 1001, ...] 2
2 " | LSM trees or fanout of B-trees. function (func) ’ 128, 256, ..] (T 1s large)
5, .
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int ]
S Rule: should be less than size ratio. unsigned 1 [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s 1 1)
E 3. [Rule: should be less than size ratio. unsigned int [1..T] [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 | [1 MB, 2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes( M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (M gy ): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file l
% . . . . .
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
S hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S | 13. |hybrid compaction). For LSM-trees we set default to dense_fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
= the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - - choose first
R, . P parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.
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Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
g. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ . ) o | , auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in un51gn§d integer | 2,.. 32] [32,64, |[1000, 1001, ...] 2
.g " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int ]
S Rule: should be less than size ratio. unsigned 1 [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o int LT , 1)
E 3. |Rule: should be less than size ratio. ansighed i [1..T] [1]
O : :
s | 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
QO
!
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 [1 MB,2 [64 MB, 128 h/w
~ buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
Q
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes( M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level o dependent
9. | Bloom filter memory (M gy ): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file
% . . . . .
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
S
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
9 hybrid compaction). - last full est
= File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
.§ 13. | hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
E the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse_fp | choose_first - choose first
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.
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Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
g. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ : ) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | 2,.. 32] 32,64, [[1000, 1001, ...] 7
2 " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int ]
S Rule: should be less than size ratio. nnsignetm [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s , 3
E 3. [Rule: should be less than size ratio. unsigned int [1.. 1] [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 [1 MB,2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes( M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (Mg ): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file
% . . . . .
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybr partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
9 hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S |13, |hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
X the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - choose first
], . parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) h optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.
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