SELF-DESIGNING

DATA SYSTEMS
FOR THE Al ERA

@ @ Harvard SEAS o = / |

~ — ~ = 0 o100 — O+ @

What is a data system?
Why do we need self-designing systems?

A TYPICAL BIG DATA TASK

image analysis: e.g., detect the number of horses

el ! of of of

DFISIab

@ Harvard SEAS

A TYPICAL BIG DATA TASK

image analysis: e.g., detect the number of horses

of of of

WDASIab

@ Harvard SEAS

of of of of of of of of of

Azt s I 7
- .. » . . -
44 = ¥, S o. o \
:‘- d : : “'
) Pe XS
. A 2 3
4 .
D A S O
: " N, 9
\
29 <)
. '.
. “ K. “8
A <)
. Lo Ly @
. 3 X
)} -8 .
SN N
L, he +* 4
: ‘.to L - - 4
L. o XLLACEN
-~ Yy G.~ .Q -
O~ - - s =

The core problem:

The size and organization of the data

of of of of of of of of of
of of of of of of of of of

Three steps in big data/Al regardless of application

% !
S

STORE MOVE

PROCESS

Three steps in big data/Al regardless of application

k K
S

MOVE

PROCESS

. How fast we can move and process data
" depends on the storage design decisions

What is a data system?

A data system is an end-to-end software system that:
manages storage, data movement, and provides access to data

DFISIab

@ Harvard SEAS

What is a data system?

A data system is an end-to-end software system that:
manages storage, data movement, and provides access to data

DFISIab

@ Harvard SEAS

1. For decades: data systems = SQL DBs
but with big data, the need for fast data
systems is drasticallybroader than SQL

DFISIab

@ Harvard SEAS

broader than SQL

store data X = ~— get data with property Z

data

systems

DHS'&b

@ Harvard SEAS

broader than SQL

big data apps

data
systems A |

. = 29-4]
—

ITEMS
— 28ITE E“‘r‘

NODAIRY
2227, PRODUCTS |
~ 5 y). |
- = ‘7(:

M

BaH
o |
| ‘
_ﬁ\\\\ N ~
\ b7 & |

b !
R.HUUT/E' ALANEN | —

WDASIab

@ Harvard SEAS

broader than SQL

big data apps

data
systems

——t——

New data systems to handle new requirements

broader than SQL

TRANSACTIONS
Deposit money to my bank account

Transfer money from ... to...

DFISIab

@ Harvard SEAS

broader than SQL
TRANSACTIONS

Deposit money to my bank account

Transfer money from ... to...

ANALYTICS

HOow much do customers
of X spent on average every month®

DFISlab

@ Harvard SEAS

broader than SQL
TRANSACTIONS

Deposit money to my bank account

Transfer money from ... to...

ANALYTICS

HOow much do customers
of X spent on average every month®

Al
s this transaction legal®

Should we give a loan to customer X?
WDASIab J

@ Harvard SEAS

broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?

DFISlab

@ Harvard SEAS

broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?

Al
s this new review a legitimate one”

DFISlab

@ Harvard SEAS

broader than SQL

SOCIAL NETWORKS: REVIEWS/POSTS

How many costumers on average
leave a 4 star review or better?

Al
s this new review a legitimate one”

COMMUTING

Compute price for next Uber ride

DﬂS'ﬂb

@ Harvard SEAS

broader than SQL

New data-driven applications

data

New requirements

The need for
data systems
grows with data

New user flows
New workloads

time

DFISIab

@ Harvard SEAS

2. As data grows, having the right data system
for each application is increasingly more critical

DFISIab

@ Harvard SEAS

2. As data grows, having the right data system
for each application is increasingly more critical

system architecture
t starts with storage &~

DFISIab

@ Harvard SEAS

the right data system

3 register = this room
%) caches = this city
memory = nearby city
disk = Pluto
Jim Gray, Turing Award 1998
W UHSlab
@ Harvard SEAS

the right data system

register = this room
caches = this city
memory = nearby city
disk = Pluto

speed

Jim Gray, Turing Award 1998

Data movement dominates everything

the right data system

70-80% of processing costs
go into data movement

computational hardware
utilization: only 30-50%

|_'|F|S|ab

@ Harvard SEAS

The problem: as the big data/Al world keeps changing...

il

g il N1
n B |
""'h g .
i i }thmﬁ}'} ‘ 4 " i{é
g : »7,,..;},,,.,1.‘ J Yor .1‘ /H
N | MeRC e ok G Pt .
i,

‘h“-‘: ' _‘"' "
;53 "'—"‘ g ~‘p Q .I'.: ‘;
H e - ::::iﬂi 5 ol 9 _'i.fjis\.j;,;m
: | . :
J
R | A _

The problem: as the big data/Al world keeps changing...

there Is a continuous need for new data systems
put it Is extremely hard to design & build new systems

|
il
‘ ‘ IEI;%? ‘ i ; o)
5! é ‘)f,{j
‘ ' AN
“ o5 S
! >

How do we design a data system that is X times faster for a workload W~

dlle

Eﬁlﬂ%’ﬂ!ﬂhN’ln‘iﬂl\!"

ik N
2 ‘ i"fr’fj
&,

How do we design a data system that is X times faster for a workload W~ “

How do we design a data system that allows for control of cloud cost”

il

How do we design a data system that is X times faster for a workload W~ “

How do we design a data system that allows for control of cloud cost”

What happens if we introduce new application feature Y

Should we upgrade to new version Z7?

What will break our system®?

. e
g i
g :’::7 1:‘.“}: |x‘)‘ .

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

What happens if we introduce new application feature Y 0‘

Should we upgrade to new version Z7?

What will break our system?

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

nuge cloud cost

environmental iImpact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

expensive transitions

nuge cloud cost

environmental iImpact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

expensive transitions

nuge cloud cost

application tfeasibility
environmental iImpact

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS

huge cloud cost expensive transitions application feasibility environmental impact

complexity

now we BUILD systems

'\l \P'
' \‘\,\P O)
OV Q?
& O
) S
o
&
oD

BUILD

GET N EXPERT DESIGNERS

—
GIVE THEM T TIME @
4D —_

HOPE FOR THE BEST

wmomEg 1)
mVu ;V

BUILD

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

BUILD

GET N EXPERT DESIGNERS

GIVE THEM T TIME

HOPE FOR THE BEST

Design: 6-7 years 8
Reasoning: months/impossible

GET N EXPERT DESIGNERS

GIVE THEM T TIME
HOPE FOR THE BEST ‘

ble

data _,
hardware /
applications V4

Re POSSI
\ y

SELF-DESIGNING SYSTEMS

Automatically invent & build the perfect system for any new application

DFISIab

@ Harvard SEAS

massive design space of system designs
® @ @

DFISlab

@ Harvard SEAS

| '*'* system= "\
PN asetoflowlevel

® \ design decisions /

4 - A
‘ ’
4

@
massive design space of system designs

DﬂS'ﬂb

@ Harvard SEAS

I '*'* /7 system= N\
few existing designs -*-‘-*- [a set of low-level }
® \design decisions /

7 N
A P>
v -
p ‘
4

massive design space of system designs
® @ @

DFISlab

@ Harvard SEAS

#-*-* /~ system=
few existing designs -*-‘-*- a set of low-level }
\.design decisions /

massive design space of system designs
® @ ®

DFISlab

@ Harvard SEAS

»
A

massive design space of system designs

reasoning: understand all the /

design decisions & thelr impaot‘

— HOW——
DO WE
START

data types

HOW
DO WE
START o

|_'|F|5Iab

@ Harvard SEAS

hardware

— HOW——
DO WE
START

ALGORITHMS

data structure decisions define
the algorithms that access data

DATA

g DASIab
@ Harvard SEAS

ALGORITHMS

DATA

@ Harvard SEAS

ALGORITHMS

DATA

@ Harvard SEAS

ALGORITHMS

o}
(S
¢ [1,2,3,4,5,6,7,8,9,10]

DATA

ﬁ DASIab
@ Harvard SEAS

EDBT 2016

no perfect structure S

D
%\V amp//flc Atios
i‘ 3

EDBT 2016
SIGMOD 2016

EDBT 2016
SIGMOD 2016

DASIab

@ Harvard SEAS

update o

DFISlab

@ Harvard SEAS

point read range read

update memory

DFISlab

@ Harvard SEAS

point read range read

update

_~Tmemory

insert o delete

DFISlab

@ Harvard SEAS

ALGORITHMS

JDASIab
@ Harvard SEAS

DATA SYSTEMS

A A A A A
- GBS s En & -

ALGORITHMS

DATA

WDRSIab
@ Harvard SEAS

W UHSlab

@ Harvard SEAS

(buffer)

DFISIab

@ Harvard SEAS

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

buffer

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

filters

buffer

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

filters) (fences

buffer

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

fences

filters

buffer

NoSQL systems are the backbone of the BigData and Al era
L SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN

KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE
_ filters \‘ fences)
buffer) N e cache

diverse
data structures

EEPAcC
Holab
DASIa

@ Harvard SEAS

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters) (fences)
buffer e\ cache

diverse . |
INteractions
data structures

W DASIab

@ Harvard SEAS

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters) (fences)
buffer) . .~ \ cache

diverse . |
INteractions hardware
data structures

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters) (fences)
buffer) . .~ \ cache

diverse . . .
INnteractions hardware parallelism
data structures

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

. filters) (fences)
buffer) N . .~ \ cache

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures Sl As

NoSQL systems are the backbone of the BigData and Al era
| SM-tree FACEBOOK, AMAZON, GOOGLE, TWITTER, LINKEDIN
KV-stores MACHINE LEARNING, SQL, CRYPTO, SCIENCE

_ fiters) (fences)
buffer . cache

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

Constant and increasing efforts
for new system designs as

%@ applications & hardware change

%

| ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

There exist numerous variations of NoSQL KV-stores
LSM-tree variants, B-trees (MongoDB), Hash-index (Microsoft)

robustness

Interactions hardware parallelism cloud cost
SLAS

diverse

data structures

Requirements/Goals

I:I“

i

@ Harvard SEAS

. ropustness
diverse . . |
INnteractions hardware parallelism cloud cost
data structures S| As

Requirements/Goals Context

Q@\O@ - I I I rreees
0\‘6@@\ $ $ $ SLA

JDASIab
@ Harvard SEAS

robustness

cloud cost
SLAS

diverse
data structures

INnteractions hardware parallelism

Requirements/Goals Context

robustness

cloud cost
SLAS

diverse
data structures

INnteractions hardware parallelism

Requirements/Goals Context

best

REge ., - - .
Tk
A y
'.4 S D/
. 4 ’
. ¢ RS
§ ~ . A
. -..? ‘ .)
" N '.'
-

design & code

[YYYYY

IARRRA]

.

dddlild

-
[
-
|
|

YYVYY

rreeed

Harvard SEAS

designt
e perfi
cost1

YYVYY

TYYRY
YR Y

®°O®
SN | .
¢)
. TIIE
X
© 8 SLA
O
\O

‘\ what-if reasoning

‘IH-Iab

@ Harvard SEAS

designt

e perfi
cost1
o Lidbbd
@\‘\O&\@ I ::-'.-.-E-
N > =
- l TIL
design2
R SL L aa I o perf2
R ® o

what-if reasoning

108 0 Mﬂt

g)

Wil

®
O
cn
cn

AUTO DESIGN

Rob Tarjan, Turing Award 1986
/S THERE A CALCULUS OF DATA STRUCTURES

Dy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NP, average case, constant factors vs asymptotic, low bounds]

|_'|F|S|ab

@ Harvard SEAS

' E&ENAS %
, @;Haward@@'g | IS THERE A CALCULUS OF DATA SYSTEMS?

Rob Tarjan, Turing Award 1986
. ‘1S THERE A CALCULUS OF DATA STRUCTURES

oy which one can choose the appropriate representation

and techniques for a given problem?” (SIAM,1978)
[P vs NF, average case, constant factors vs asymptotic, low bounds]

the grammar of data systems design

the grammar of data systems design

——
————
—
| —
o—
——
—
—
—
-~
| —
-

action is ¢, notning holy
hope the maost of
fear form
am free
ultimate [theory

Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

| hope for nothing

| fear nothing
[am free

Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

| hope for nothing

| fear nothing

alphabet | am free
Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

| hope for nothing

| fear nothing

alphabet | am free
Nikos Kazantzakis, philosopher

words

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

grammar/
sentences

| hope for nothing

| fear nothing

alphabet | am free
Nikos Kazantzakis, philosopher

words

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

grammar/
sentences

| hope for nothing

| fear nothing
alphabet principles | am free

words

Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

-~
grammar/

\
sentences i

words data structures

| hope for nothing

- | fear nothing
alphabet pﬂﬂClpleS /am free

Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

grammar/
sentences

interactions
| hope for nothing

| fear nothing
alphabet prinCipleS /am free

words data structures

Nikos Kazantzakis, philosopher

the grammar of data systems design

action Is ol
the most 'Y Of
form
ultimate theory

NEW

| hope for nothing

| fear nothing
alphabet prinCipleS /am free

grammar/
sentences

Interactions

words data structures

Nikos Kazantzakis, philosopher

the grammar of data systems design

action IS hol
the most 'Y Of
_ form
s theory

which are "all”
[possible data systems

L we may ever invent?

grammar/
sentences

interactions
| hope for nothing

| fear nothing
alphabet principles | am free

words data structures

Nikos Kazantzakis, philosopher

Trillions of possible data structures
Data Calculator @SIGMOD 2018

DFISIab

@ Harvard SEAS

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

DFISIab

@ Harvard SEAS

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

DFISIab

@ Harvard SEAS

Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023

DFISIab

@ Harvard SEAS

Trillions of possible data structures
Data Calculator @S5IGMOD 2018

New NoSQL systems: 1000x faster

Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020, and M2 @MLSys 2023

10x faster Image Al
Image Calculator, SIGMOD 2024

1. DESIGN SPACE
data layout of data structures

algorithm design

systems: interactions of components

-
L)
Ei
a)

(-

>10MN100

>10MN100

1. DESIGN SPACE
data layout of data structures

algorithm design

systems: interactions of components

2. NAVIGATE SEARCH SPACE
cost synthesis: computation and data movement
learned cost models in memory/parallelism
design continuums to shrink space

Bam |‘l:||:'|

Categories

Design Primitives to Auto Generate Trillions of Data Structures

Unless otherwise specijiea, we use a

reduced default values domain of Hash Table
100 values for integers, 10 values for B+TTEE/ CS B+TFEE/ FAST
doubles, and 1 value for functions. LPL
Primitive Domain size| H LL (UDP | B+ | CSB+ [FAST | ODP
1|Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, yes | no | function(func) 3
and arrays. Function: contains only a subset of the key, i.e., as in tries. no | no [yes | no no no | yes
2 [Value retention. No: node contains no real value data, e.g., intermediate nodes
- of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b- yes | no | function(func) 3
2 trees, and arrays. Function: contains only a subset of the values. no [no | yes | no no no | yes
© . . .
N | 3|Key order. Determines the order of keys in a node or the order of fences if real |
c . none | sorted | k-ary (k: int) 12
© keys are not retained. none [none|none [sorted|sorted|4-ary [sorted
h . . .
© [4|Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row- | _ _
() o o) o)
= Rules: requires key retention != no or value retention != no. groups(size: int) © ©
< | 5|Intra-node access. Determines how sub-blocks (one or more keys of this node) - - - - - -
. oy direct | head_link | tail_link | 9 = O O O O 9
can be addressed and retrieved within a node, e.g., with direct links, a link only link_function(func) 4 & O o o d d -
. ~ = Q = = = = =
to the first or last block, etc. © © © © © ©
6 | Utilization. Utilization constraints in regards to capacity. For example, >= 50% = (X%) | function(func) | none 3 >= >= >=
denotes that utilization has to be greater than or equal to half the capacity. (we currently only consider X=50) none [none|none | 50% | 50% | 50% | none
7 |Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom off | on(num_hashes: int, =
fil h b f hash f : d b £ bi num_ bits: int) o
" ilters get as parameters the number of hash functions and number of bits. up t0 10 num _hashes considered) | —|| off | off | off | off off | off | off
L &
¥ | 8(Zone map filters. A node's sub-block can be filitered using zone maps, e.g., the
= . P _ . 5 P 5 y min | max | both | exact | off 5 . . .
b can filter based on mix/max keys in each sub-block. off | off | off | min | min | min | off
S | 9]|Filters memory layout. Filters are stored contiguously in a single area of the = s s
Z .
node or scattered across the sub-blocks. consolidate | scatter 2 = = =
Rules: requires bloom filter != off or zone map filters != off. 7 7 7
10| Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be [fixed(value:int) | function(func) o | B| © S S) ©
limited (i ... h b f sub-blocks) fixed b mited | terminal(cap: int) 8 + ﬂ N N = ﬂ
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, (up to 10 different capacities andup |22 | 5 | E = = = = =
decided by a function or the node is terminal and thus has a fixed capacity. to 10 fixed fanout values are 0 = - X X X -
considered) 4= -] B - = - 3
111 | I e s s o= 2m A% i ® i C 3t L il cvmn m m smmm ALl A LAy s e L L . d N o~ 2l A —

o | . = y o | '.""""""' '.'"’ S e) U U @
S or balanced (i.e., all sub-blocks have the same size), unrestricted or functional. stricted | function(func) 13 %2 o c - c
= (up to 10 different fixed capacity v 8 @© @© ©
o. Rules: requires key partitioning != none. values are considered) S s S S S
13 |Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none | 4 |[none |next |none | none | none [none | none
14 [Skip node links. Each sub-block can be connected to another sub-block (not only
h . ith skio-links. Th b foct g i>ed perfect | randomized(prob: 13
the next or previous) with skip-links. They can be perfect, randomized or double) | function(func) | none none |none|none | none | hone |none | hone
custom.
15 [Area-links. Each sub-tree can be connected with another sub-tree at the leaf forward | backward | both |
, , _ 4 | none |none|forw. [none | none |none | none
level throu area links. Examples include the linked leaves of a B+Tree. none
16 | Sub-block physical location. This represents the physical location of - - - -
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. inline | pointed | double- X % g *GEJ % %
Double-pointed: in heap but with pointers back to the parent. pointed 'S c 'S 'S 'S
o o o o
Rules: requires fanout/radix !=terminal.
17 | Sub-block physical layout. This represents the physical layout of sub-blocks. _
. . _ _ BFS | BFS layer(level-grouping: — — -)
Scatter: random placement in memory. BFS: laid out in a breadth-first layout. nt) | scatter : e 2 S % J;
BFS layer list: hierarchical level nesting of BFS layouts. (up to 3 different values for layer- S S S o LL
5 - - - grouping are considered) n n n @
o Rules: requires fanout/radix !=terminal.
L (18 |Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type. v v o v v
(/)] c : : : boolean 2 - - - > >
D @ Rules: requires fanout/radix !=terminal. b e b b b
© . . : : : :
gl | '= (19 |Sub-block consolidation. Single children are merged with their parents.)) w))
O : : : boolean 2 L L L 2 2
@) Rules: requires fanout/radix !=terminal. & & & & &
O) 20 |Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,
((b) : e 1 : > > > > >
it otherwise they are initialized only when data are available (lazy). lazy | eager 2 N N N N N
(4v) Rules: requires fanout/radix !=terminal.
0 21 |Sub-block links layout. If there exist links, are they all stored in a single array T
(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2 =
. O
Rules: requires immediate node links != none or skip links != none. *
= 22 |Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a — — —
I node of the same type until a maximum depth (expressed as a function) is Jes(func) | no] Q0 Q0 Q0
g reached. Then the terminal node type of this data structure will be used. ‘T.nj ‘Tc.n: ‘Tc.n:
e Rules: requires fanout/radix != terminal. no | no = > >

@SIGMOD18

DESIGN PRINCIPLES POSSIBLE NODE DESIGNS

DFISlab

@ Harvard SEAS

@SIGMOD18

DESIGN PRINCIPLES POSSIBLE NODE DESIGNS POSSIBLE STRUCTURES

ARRAY LINKED-LIST

HASH-TABLE QUEUE
% B-TREE SKIP-LIST
CSB-TREE TRIE

BeTree FAST

DFISIab

@ Harvard SEAS

@SIGMOD18

DESIGN PRINCIPLES POSSIBLE NODE DESIGNS POSSIBLE STRUCTURES

ARRAY LINKED-LIST

HASH-TABLE QUEUE
%ﬁ B-TREE SKIP-LIST
CSB-TREE TRIE

BeTree FAST
e.g., array =1 node type

DFISIab e.g., b-tree = 2 node types

@ Harvard SEAS

(10732, 2-node)
(10748, 3-node)

=4

STARS ON THE SKY POSSIBLE DATA STRUCGTURES

DﬂS'ﬂb

@ Harvard SEAS

Conference

@ 457 g SIGMOD

-%. ;‘g VLDB

o B ICDE O

2 307 m EpBT 63“\‘

825 \\©

O 20 . GG

g @ S I "

Tl TN A
*1an 2 _sna EgnRRRSRRRRERARRRARRRANRRRANER)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 ,
Year

(10732, 2-node)
(10748, 3-node)

=4

STARS ON THE SKY
DFISIab

POSSIBLE DATA STRUCGTURES

@ Harvard SEAS

1 Conference

@ 457 m sSIGMOD

-%. ;g' VLDB o

© °“7 | ICDE N

2 307 m EpBT 63“\‘

3.25 ‘\\e

O 20- ‘“QG

i ok 1 i

Y s e st 4
]t 8= _ani ExnEASRRR:ANCRRRNAAEARRRRRRERERN]

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 4
Year '
; (10732, 2-node)

(10748, 3-node)

1048-5x103 = 1048 zero progress

, ‘(10’\483 node) | "(101\43 3- node) R | \(10’\483 node) R (10"48 3node)

The design space of systems Is even larger

DFISIab

@ Harvard SEAS

The design space of systems is even larger

W UHSlab

@ Harvard SEAS

W UHSlab

@ Harvard SEAS

W UHSlab

@ Harvard SEAS

Ism-tree

loa+index

@ Harvard SEAS

Ism-tree

loa+index

08 01 1 DHS Iab

@ Harvard SEAS

@ Harvard SEAS

Ism-tree

loa+index

95 e, 7
' WIREDTIGER % ,/6’0;’6/4,
mongoDB £ 4 /
Voqive = % %

FOUNDATIONDB WA
sunwm@ {9
(0FTWAR 00

Makers of Berkeley OB

RocksDB 4%
Y

cassandra

Google
BigTable
Ism-tree 725 amazon

"‘DynamoDB

HHHHHH

sriak

(")FASTER

loa+index

DASIab

@ Harvard SEAS

. @o o, %,
WIREDTIGER On, ‘O, 9
mongoDB s of/’ }
WSQLite e Q'Q ?9
FOUNDATIONDB @/
suwwm@ 9,
(OETWAR ’)0
Makers of Berheley D
or
Coo gl & cassandra
BigTable .
ISm-tree " ERog
HERASE
Friak
loa+index o
(")FASTER

¥DASIab

@ Harvard SEAS

wDASIab

@ Harvard SEAS

| WIREDTIGER
mongo
VSQL“;@ G

Makers of Berkeley OB

Ism-tree

loa+index

FOUNDATIONDB
(LELPU(A T@
(OFTWAR

Google
BigTable

RocksDB 4%
| T

9, A ”(,e/
2 Of/oo /}
% 9
9
s
cassandra
sriak
(")FASTER

write-cost

Ism-iree

loa+index

read-cost '“

g @i S s oS S S > N S S e . N oS > S S
E T D H S I b

@ Harvard SEAS

key retention

value retention

partitioning (range, time, ...)

sub-block (skip-)links

N L Yo EAD ‘.r"‘-—"~ .-v.\‘ SN . . "“.;
- z “ = - LA . hd vl 7 .3 Ry - (& 1) . .
o camid DR s e
Ry - - o - . . . Y
P - S - 3

write-cost

size ratio

sub-block location |
merge policy

filters bits per entry

size of buffer/cache

. internal k-v layout

o TR PR, SO RPN e) v B £ AR e ol v e — o e e & — g

o - e : "‘ P V, N AN RN A LSS W YT) LSS Dy A i n\
Ky - . A0 S W W, YIRS DL Oy N3 V3) Y W, YRGB V= N O3 W PIORE D OC R T e N
g < B . - [
. N g . .1 ‘a B N -
P . - Dl ‘
. -) R RY
PN N = . o PP RN - o & . N T .
Ao | R0 o2 -T0 2 L L . 3
VIR BT, -

W UHSlab

@ Harvard SEAS

key retention
value retention

partitioning (range, time, ...)

sub-block (skip-)links

write-cost

Ism-tree |
sub-block location

e

read-cost '

yOHSlab

@ Harvard SEAS

N
q
o
»

"
(I3

Design Continuum

unified design template
performance continuum |

Write-cost

Ism-tree

g L
R0 3 L pa—
n o R > 2 . RS B2, W,y T -
' > - A o - = e g N~ = I B @ & 2y P ~
. . -<_- - L Ed sl - R - » - - .
= — - -
\
18
"y
o
b
. Y - Sy - = Y 0 .- 8 . B
= A - — P S s — - . > = N) - - < - g - - . > - < Iy e ~ < < o~ I = .~
. < " - 2 — oo o - s o - oo o ez o — v - g P SR o S T Sy T - S P i S NG SN

read-cost

W UHSlab

@ Harvard SEAS

Example templates for diverse data structures
Design Abstractions of Template Type/Domain LSM B-Tree LSH A new
A variants variants variants design
o I. [Key size: Denotes the size of keys in the workload. unsigned int auto-configured from the sample workload
Q
§. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
. 1y) o size set to 1 GB auto-configured from the sample workload
= | & variable-length strings. max size set to
2| & . ,
- cﬁ *5 ~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in unmgngd integer | 2,.. 32] [32,64, |[1000, 1001, ...])
COS I n e Z = 2 " | LSM trees or fanout of B-trees. function (func) ’ 128, 256, ..] (T is large)
=| 8| % :
al| §| 4 Runs per hot level (K): At what capacity hot levels are compacted. oned int
@ PV I_ D B 2 O 2 2 E z,, S Rule: should be less than size ratio. unsigned 1 11.. T} [T-1] 7
®| ,
a| =] 8 Runs per cold level (Z): At what capacity cold levels are compacted. . . 3
S g E 3. [Rule: should be less than size ratio. unsigned int [1..T] [1]
= Q . .
C I O u d cos t g = § 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
- =
o
<| S 2 Buffer capacity (Mp): Denotes the amount of memory allocated to in-memory 64-bit floating point 64 MB, 128 | [1 MB, 2 64 MB, 128 h/w
- 2] 27 p gp | :
O pti m iZ e d 2 N buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
¥ N . . .
S5 | 3. [Indexes(Mpp): Amount of memory allocated to indexes (fence pointers/hashtables). 64-bit floating point | memory to | memory for | memory for h/w
= function (func) cover L first level hash table dependent
9. | Bloom filter memory (M gy): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
Se If 10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
i filter instance per block or per file or per run. The default is file. block | file | run file :
- - Z - , : : ;
DeSI n I n Ol 2| 8 Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
g g ; g N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
Ol =3
é g % 1 }l}yl:)l:iztzﬁzgz;tzin)otes which run to be picked for compaction (only for partial/ first | last full | fullest ﬁrlSt’ ﬁ}llﬁst, first -
- 2] 2 ' ast fu
Key-val u e (é) = File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
< .§ 13. |hybrid compaction). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
@ - the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - B choose first
E g, larity of parse_{p| - (cold)
granularity of runs.
]
E . = [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
e =
a ‘% X | 15 |Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
8 = § " | for hybrid compaction). The default is set to 2. function (func) - optimal config)
— Q
j 5;‘ = | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
¢ 17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.

Cosine
@PVLDB2022

Cloud-cost
Optimized

Self

Designing

Key-value

Store

S

LAYOUT PRIMITIVES

<€4—ALGORITHMIC ABSTRACTIONS—> =

Design Abstractions of Template

Type/Domain

Example templates for diverse data structures

LSM
variants

B-Tree
variants

LSH
variants

A new
design

Design and hardware specification

Data access

Parallelism

Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
2, 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ :) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | [2,.. 32] [32, 64, |[1000, 1001, ...] 2
.g " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int]
S Rule: should be less than size ratio. unsigned 1 11.. T} [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s , 1)
E 3. [Rule: should be less than size ratio. unsigned int Lol [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 | [1 MB,2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes(M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (M gy): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file l
%
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
S hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S |13, |hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose_ first (hot),
X the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - choose first
], . parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.

Cosine
@PVLDB2022

Cloud-cost
Optimized

Self

Designing

Key-value

Store

S

LAYOUT PRIMITIVES

<€4—ALGORITHMIC ABSTRACTIONS—> =

Design Abstractions of Template

Type/Domain

Example templates for diverse data structures

LSM
variants

B-Tree
variants

LSH
variants

A new
design

Design and hardware specification

Data access

Parallelism

Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
2, 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ :) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | 2,.. 32] [32, 64, |[1000, 1001, ...] 2
2 " | LSM trees or fanout of B-trees. function (func) ’ 128, 256, ..] (T 1s large)
5, .
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int]
S Rule: should be less than size ratio. unsigned 1 [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s 1 1)
E 3. [Rule: should be less than size ratio. unsigned int [1..T] [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 | [1 MB, 2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes(M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (M gy): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file l
%
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
S hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S | 13. |hybrid compaction). For LSM-trees we set default to dense_fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
= the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - - choose first
R, . P parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.

Cosine
@PVLDB2022

Cloud-cost
Optimized

Self

Designing

Key-value

Store

S

LAYOUT PRIMITIVES

<€4—ALGORITHMIC ABSTRACTIONS—> =

Design Abstractions of Template

Type/Domain

Example templates for diverse data structures

LSM
variants

B-Tree
variants

LSH
variants

A new
design

Design and hardware specification

Data access

Parallelism

Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
g. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ .) o | , auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in un51gn§d integer | 2,.. 32] [32,64, |[1000, 1001, ...] 2
.g " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int]
S Rule: should be less than size ratio. unsigned 1 [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o int LT , 1)
E 3. |Rule: should be less than size ratio. ansighed i [1..T] [1]
O : :
s | 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
QO
!
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 [1 MB,2 [64 MB, 128 h/w
~ buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
Q
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes(M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level o dependent
9. | Bloom filter memory (M gy): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file
%
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
S
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
9 hybrid compaction). - last full est
= File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
.§ 13. | hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
E the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse_fp | choose_first - choose first
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) - optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.

Cosine
@PVLDB2022

Cloud-cost
Optimized

Self

Designing

Key-value

Store

S

LAYOUT PRIMITIVES

<€4—ALGORITHMIC ABSTRACTIONS—> =

Design Abstractions of Template

Type/Domain

Example templates for diverse data structures

LSM
variants

B-Tree
variants

LSH
variants

A new
design

Design and hardware specification

Data access

Parallelism

Key size: Denotes the size of keys in the workload.

unsigned int

auto-configured from the sample workload

W
Q
g. 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice
“ :) o . . auto-configured from the sample workload
5, variable-length strings. max size set to 1 GB
~ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in uns1gn§d integer | 2,.. 32] 32,64, [[1000, 1001, ...] 7
2 " | LSM trees or fanout of B-trees. function (func) 128, 256, ..] (T is large)
80 :
2 Runs per hot level (K): At what capacity hot levels are compacted. : :
S | 4 d int]
S Rule: should be less than size ratio. nnsignetm [1..T] [T-1] 7
§ Runs per cold level (Z): At what capacity cold levels are compacted. o od s , 3
E 3. [Rule: should be less than size ratio. unsigned int [1.. 1] [1]
O
§ 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
o
2 | 7. |Buffer capacity (M3): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64 MB, 128 [1 MB,2 [64 MB, 128 h/w
3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
N : . :
~ Ind M : A t of 11 ted to ind f inters/hashtables). 64-bit ﬂoatlng p01nt| memory to memory for memory for h/w
:§ 8. |Indexes(M p): Amount of memory allocated to indexes (fence pointers/hashtables) function (func) cover I first level hash table dependent
9. | Bloom filter memory (Mg): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom file
filter instance per block or per file or per run. The default is file. block | file | run file
%
kS| Compaction/Restructuring algorithm: Full does level-to-level compaction; rtial | full | hvbrid full, , , ,
N I1. partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybr partial partial partial hybrid
=
Q : : : :
g.:\ 12 Run.strategy. Denotes which run to be picked for compaction (only for partial/ first | last full | fullest first, fullest, first -
9 hybrid compaction). - last full est
%‘ File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense fp
S |13, |hybrid compactiog). For LSM-trees we set default to dense fp as it empirically works oldest flushed | dense fp | dense fp | choose first (hot),
X the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse choose first - choose first
], . parse_fp | _
S granularity of runs. (cold)
9
= [14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
=
T |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
g for hybrid compaction). The default is set to 2. function (func) h optimal config)
)
S | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use 1 thread per CPU core

'Storage engine template in Cosine and example initializations for diverse storage engine designs.

from write to read optimized

iy _) S <

. . e S - s . ot e T T By
R S A S O Py > B 90 A S O

o o . - . - o &
PR - 5 R - = “ o . - 5 R . -2 -y) “ P ‘. -'
o Oy - Q> (-, > s I, 4 =01 - N A SO I o . Qx> w o< 3 P .. .,; o . g7 Sy, D — ." DA A" .\ Y. ".. ‘..».- 3 ey B 0 y & ‘- $ T_.

De

- -

sigh Contin

- r’Z MRl -4 .. - 4V - be Yo - o -,

uums @CDIR2019

Designs
= Log LSH Table Tiered LSM- Lazy Leveled Leveled COLA [15, 45] FD-Tree [57] B€Tree [16, 15, B+ Tree [13] Sorted Array
Terms [80, 19, 82, Tree [55, LSM-Tree [25] LSM-Tree 44, 70, 9, 45]
74, 58, 2, 89] 23, 43] [32, 29, 23]
N -FE N-FE N-FE
K (Hot Merge T — 1 T — 1 T — 1 T — 1 1 1 1 1 1 1
Threshold)
Z (Cold T — 1 T — 1 T — 1 1 1 1 1 1 1 1
Merge
Threshold)
N N N N N N
Node Size)
. F.- T -M F-T-M F-T-M F-T-M
My (Fence & — N -F 1+ 4&) N - (£ + 10) N - (£ +10) N - (£ + 10) == =B ==L =B —
Filter Mem.)
Update O(5) O(5) O(5) O(g - (T + L)) O(f - L) O(5) O(f - L) O(f - L) O(L) O(31575)
N.E —Mpp _MpFp _MpFp
Zero Result O(F7=) O (0) O(T - e N) O(e N) O(e N) O(L) O(L) O(L) O(L) O(1)
Lookup B
—MpBF
. N-E —
Existing O(Hr=) O(1) O(1+T-e N) O(1) O(1) O(L) O(L) O(L) O(L) O(1)
Lookup B
N -E N -E —
Short Scan O(M) O(Mg) O(L - T) O(1+T- -(L — 1)) O(L) O(L) O(L) O(L) O(L) O(1)
Long Scan OfrZ - &) O(yr= - 8) o(T - &) O(§) O(%) O(%) O(§) O(%) O(H) O(H)
g Mp B Mg B B B B B B B B B

massive design space of system designs
® @ ®

WDASIab

@ Harvard SEAS

massive design space of system designs
® @ ®

WDASIab

@ Harvard SEAS

workload/hardware performance, cloud cost, robustness

DFISlab

@ Harvard SEAS

workload/hardware wille performance, cloud cost, robustness

without having to code

DFISIab

@ Harvard SEAS

®
®
® "
massive design space of system designs__
® °

DFISlab

@ Harvard SEAS

data layouts

@ Harvard SEAS

algorithm & cost synthesis

: /;
DOoINt S

DﬂS'ﬂb

@ Harvard SEAS

algorithm & cost synthesis

: /;
DOoINt S

YYYYY

ARRAR

Slab
@ Ha

n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>