
SELF-DESIGNING 
DATA SYSTEMS 
FOR THE AI ERA
Stratos  
Idreos

What if we can reason about systems design?



What is a data system? 
Why do we need self-designing systems?
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The core problem: 

The size and organization of the data
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How fast we can move and process data  
depends on the storage design decisions
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1. For decades: data systems = SQL DBs  
but with big data, the need for fast data  
systems is drastically broader than SQL
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New data systems to handle new requirements
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of X spent on average every month?

ANALYTICS

Is this transaction legal?
AI

Should we give a loan to customer X?

broader than SQL
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COMMUTING
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broader than SQL

time

New data-driven applications

New workloads 

New requirements 
New user flows 

The need for 
data systems 
grows with data

da
ta



2. As data grows, having the right data system 
for each application is increasingly more critical
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the right data system 

system architecture
it starts with storage 
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Data movement dominates everything



70-80% of processing costs 
go into data movement

computational hardware 
utilization: only 30-50%

the right data system 



The problem: as the big data/AI world keeps changing…
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How do I make my data system run X times faster?

How do I control my bill on the cloud?

NEED TO DESIGN NEW DATA SYSTEMS

BOTTLENECK: SUB-OPTIMAL DATA SYSTEMS 

how we            systemsBUILD
complexity

huge cloud cost expensive transitions environmental impact application feasibility 
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years

data  
hardware 

applications



SELF-DESIGNING SYSTEMS
Automatically invent & build the perfect system for any new application 
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massive design space of system designs 

few existing designs
system= 

a set of low-level 
design decisions

cloud budgetworkload



massive design space of system designs 

reasoning: understand all the 
design decisions & their impact

cloud budgetworkload
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concurrency

data types

hardware

robustness

complex 
operations

cloud
optimizer

indexing

SLAs

multi-tenancy
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DATA

INDEX

data structure decisions define  
the algorithms that access data

ALGORITHMS
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ALGORITHMS
[1,2,3,4,5,6,7,8,9,10] 

unordered

ordered
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point read
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range read
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DATA SYSTEMS
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Constant and increasing efforts  

for new system designs as 
applications & hardware change
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“IS THERE A CALCULUS OF DATA STRUCTURES 
by which one can choose the appropriate representation  

and techniques for a given problem?” (SIAM,1978)

Rob Tarjan, Turing Award 1986

[P vs NP, average case, constant factors vs asymptotic, low bounds]

IS THERE A CALCULUS OF DATA SYSTEMS? 
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Trillions of possible data structures
Data Calculator @SIGMOD 2018

New NoSQL systems: 1000x faster
Cosine @PVLDB 2022 and Limousine @SIGMOD 2024

Synthesized statistics, 10x faster ML
Data Canopy @SIGMOD 2017

10x faster Neural Networks
MotherNets @MLSys 2020,  and M2 @MLSys 2023

10x faster Image AI
Image Calculator, SIGMOD 2024
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data layout of data structures

systems: interactions of components

2. NAVIGATE SEARCH SPACE

design continuums to shrink space

>10^100

algorithm design 

1. DESIGN SPACE

 cost synthesis: computation and data movement
learned cost models in memory/parallelism
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 Design Primitives to Auto Generate Trillions of Data Structures
Unless otherwise specified, we use a 

reduced default values domain of 
100 values for integers, 10 values for 

doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e 
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of 
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, 
and arrays. Function:  contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes 

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function:  contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real 

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node) 

can be addressed and retrieved within a node, e.g., with direct links, a link only 
to the first or last block, etc. 

direct | head_link | tail_link | 
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50% 
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none         
(we currently only consider X=50) 3

none none none
>= 

50%
>= 

50%
>= 

50% none

N
od

e 
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom 
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int, 
num_bits: int)                              
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they 

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the 

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r 

sc
at

te
r 

sc
at

te
r 

Rules: requires bloom filter != off or zone map filters != off.
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10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be 
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, 
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func) 
| unlimited | terminal(cap: int)                         

(up to 10 different capacities and up 
to 10 fixed fanout values are 

considered)
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56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the 
sub-block where a key is located can be dictated by a radix or range partitioning 
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to 
none, then keys can be forward or backwards appended.

none(fw-append |  bw-append) 
| range() | radix() | function
(func) | temporal(size_ratio: 

int, merge_policy: [tier| level]) 

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value, 
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced | 
unrestricted | function(func)                         

(up to 10 different fixed capacity 
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only 

the next or previous) with skip-links. They can be perfect, randomized or 
custom.

 perfect | randomized(prob: 
double) | function(func) | none 13 none none none none none none none

15 Area-links.  Each sub-tree can be connected with another sub-tree at the leaf 
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both | 
none 4 none none forw. none none none none

Ch
ild
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n 
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ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. 
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3
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po
in

te
d

Rules: requires fanout/radix  != terminal.
17 Sub-block physical layout.  This represents the physical layout of sub-blocks. 

Scatter: random placement in memory. BFS: laid out in a breadth-first layout. 
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping: 
int) | scatter                                           

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL
Rules: requires fanout/radix  != terminal.

18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.
boolean 2

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

Rules: requires fanout/radix  != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

Rules: requires fanout/radix  != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized, 

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix  != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array 

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed.  If set to yes, sub-blocks will be subsequently inserted into a 
node of the same type until a maximum depth (expressed as a function) is 
reached. Then the terminal node type of this data structure will be used.

yes(func)  | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)
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Unless otherwise specified, we use a 
reduced default values domain of 

100 values for integers, 10 values for 
doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e 
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of 
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees, 
and arrays. Function:  contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes 

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function:  contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real 

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node) 

can be addressed and retrieved within a node, e.g., with direct links, a link only 
to the first or last block, etc. 

direct | head_link | tail_link | 
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50% 
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none         
(we currently only consider X=50) 3

none none none
>= 

50%
>= 

50%
>= 

50% none

N
od

e 
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom 
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int, 
num_bits: int)                              
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they 

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the 

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r 

sc
at

te
r 

sc
at

te
r 

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be 
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number, 
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func) 
| unlimited | terminal(cap: int)                         

(up to 10 different capacities and up 
to 10 fixed fanout values are 

considered)

22

fix
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(1
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0)

fix
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0)
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(1
6)

te
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(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the 
sub-block where a key is located can be dictated by a radix or range partitioning 
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to 
none, then keys can be forward or backwards appended.

none(fw-append |  bw-append) 
| range() | radix() | function
(func) | temporal(size_ratio: 

int, merge_policy: [tier| level]) 

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value, 
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced | 
unrestricted | function(func)                         

(up to 10 different fixed capacity 
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la
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ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only 

the next or previous) with skip-links. They can be perfect, randomized or 
custom.

 perfect | randomized(prob: 
double) | function(func) | none 13 none none none none none none none

15 Area-links.  Each sub-tree can be connected with another sub-tree at the leaf 
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both | 
none 4 none none forw. none none none none

Ch
ild

re
n 

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent. 
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3
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e
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d
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d
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d

Rules: requires fanout/radix  != terminal.
17 Sub-block physical layout.  This represents the physical layout of sub-blocks. 

Scatter: random placement in memory. BFS: laid out in a breadth-first layout. 
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping: 
int) | scatter                                           

(up to 3 different values for layer-
grouping are considered)

5
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S
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Rules: requires fanout/radix  != terminal.
18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.

boolean 2

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

tr
ue

 

Rules: requires fanout/radix  != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

fa
lse

 

Rules: requires fanout/radix  != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized, 

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix  != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array 

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed.  If set to yes, sub-blocks will be subsequently inserted into a 
node of the same type until a maximum depth (expressed as a function) is 
reached. Then the terminal node type of this data structure will be used.

yes(func)  | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)
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e.g., array  = 1 node type
e.g., b-tree = 2 node types
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ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.
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Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data

~5K since the dawn of CS
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ABSTRACT

Data systems make extensive use of high-performance con-
tainer data structures to store large collections of base and
intermediate data, and to provide auxiliary structures such
as indexes and fast lookup tables. Because of their central
role in data system architectures, container structures need
to be closely tuned to both the underlying hardware and
workload. Consequently, over the last five decades, hundreds
of specialized container designs have been proposed and
novel applications demand new designs to achieve optimal
performance. While essential, high-performance container
structures are notoriously difficult to write and typically
consist of hundreds of lines of hand-tuned non-trivial code.
This not only makes the code hard to maintain and debug,
but also prevents data structure and system designers from
quickly iterating between alternative designs.

We present a new programming model for container data
structures that separates container definitions into a struc-
tural specification, a physical layout component and a set of
functional feature descriptions. We demonstrate the power of
this separation by introducing a declarative domain specific
language for container data structures, called TIGRIS, and
by describing an optimizing compiler that compiles TIGRIS
specifications to highly-efficient container implementations.
TIGRIS specifications are orders of magnitude shorter than
implementations written in traditional systems languages like
C, while being retargetable across platforms and allowing
for sophisticated automatic optimization and tuning. We
present initial results that indicate that TIGRIS can express
a large variety of traditional and special-purpose container
data structures in a concise manner, without sacrificing per-
formance. We also show how concise descriptions and the
reuse of optimizations can facilitate rapid exploration of the
container design space.

1. INTRODUCTION

Containers in Data Systems. Data-intensive programs, from
simple batch-processing scripts to highly complex database
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Figure 1. Publications in major database conferences refer-
encing indexes, trees or access methods in their title (as
registered in the DBPL [8]). The total number of matching
publication found was 806 at the time of writing.

systems, heavily rely on high-performance container data
structure implementations data structures for efficient data
storage and retrieval. Those containers organize data objects
according to specific access rules that allow optimal read and
update behavior for their respective use case. that match
the application. Generally, containers are used to store two
categories of data. Base data is commonly stored in lists
of tuples or dictionaries, or any variations thereof such as
paged collections and column-major layouts (i.e., tuples of
collections). Especially in smaller programs, data is often
fully loaded into memory and the program is directly oper-
ating on top of the data collection. Contrary, While some
programs would store all their data in dictionaries, complex
data system use containers not only to store base data but
also auxiliary data that aids data processing. Prominent con-
tainer structures in such systems include , such as primary
and secondary indexes, intermediate data collections created
during query processing, and meta-data collections such as
page-to-frame mappings in the buffer pool and fast lookup
tables for query processing and data encoding.
Modern data systems use a large variety of containers

for different purposes. Linked-lists, arrays and vectors of
different forms are commonly used to store intermediate re-
sults between data processing stages, while fast membership
queries can be quickly answered using compact bit-vectors
and Bloom filters. Hash tables, and ordered tree structures
such as the omni-present B-tree are used to provide effi-
cient data access for both point and range queries, and over
the last decades many optimizations and specializations to
those structures have been proposed, including compression,
caching and algorithmical optimizations. Hash tables and
tree structures also provide the foundation of many data
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Terms

Designs
Log LSH Table

[80, 19, 82,
74, 58, 2, 89]

Tiered LSM-
Tree [55,
23, 43]

Lazy Leveled
LSM-Tree [25]

Leveled
LSM-Tree
[32, 29, 23]

COLA [15, 45] FD-Tree [57] B✏Tree [16, 15,
44, 70, 9, 45]

B+Tree [13] Sorted Array

T (Growth
Factor)

N·E
MB

N·E
MB

[2, B] [2, B] [2, B] 2 [2, B] [2, B] B N·E
MB

K (Hot Merge
Threshold)

T � 1 T � 1 T � 1 T � 1 1 1 1 1 1 1

Z (Cold
Merge

Threshold)

T � 1 T � 1 T � 1 1 1 1 1 1 1 1

D (Max.
Node Size)

1 1 [1, N
B

] [1, N
B

] [1, N
B

] N
B

N
B

1 1 N
B

MF (Fence &
Filter Mem.)

N·F
B

N · F · (1 + 1
B

) N · ( F
B

+ 10) N · ( F
B

+ 10) N · ( F
B

+ 10)
F ·T ·MB

E·B
F ·T ·MB

E·B
F ·T ·MB

E·B
F ·T ·MB

E·B
N·F
B

Update O( 1
B

) O( 1
B

) O( L
B

) O( 1
B

· (T + L)) O( T
B

· L) O( L
B

) O( T
B

· L) O( T
B

· L) O(L) O( N·E
MB ·B )

Zero Result
Lookup

O(N·E
MB

) O(0) O(T · e
�MBF

N ) O(e
�MBF

N ) O(e
�MBF

N ) O(L) O(L) O(L) O(L) O(1)

Existing
Lookup

O(N·E
MB

) O(1) O(1+T ·e
�MBF

N ) O(1) O(1) O(L) O(L) O(L) O(L) O(1)

Short Scan O(N·E
MB

) O(N·E
MB

) O(L · T ) O(1 + T · (L � 1)) O(L) O(L) O(L) O(L) O(L) O(1)

Long Scan O(N·E
MB

· s
B

) O(N·E
MB

· s
B

) O(T · s
B

) O( s
B

) O( s
B

) O( s
B

) O( s
B

) O( s
B

) O( s
B

) O( s
B

)

from write to read optimized 
@CDIR2019Design Continuums
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Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T ), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e
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Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact
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Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T ), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e
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Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact
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Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS � 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T ), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e
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Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact
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How do these concepts translate to the other big data areas
neural networks, image AI, Blockchain, …?

again, it all starts from the storage design space

We can automatically design 1000x faster new NoSQL systems
1) design space  
2) navigation (math/ML) 
3) code generation 
Papers: Cosine PVLDB 2023, and new Limousine at SIGMOD 2024



seeing is at the very center of AI 
because it is at the center of human life

image processing 



developing 

AI is SLOW

6-12 months
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AITraining
Inference

What’s this?

It’s a dog!
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Training Inference
02576
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02578Re-training

[2] https://www.forbes.com/sites/moorinsights/2019/05/09/google-cloud-doubles-down-on-nvidia-gpus-for-inference/?sh=4c9817226792
[1] https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/

90% of cost!



Where does time go?

Pre-process

Image files

AI model
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Where does time go?

Re-think Storage for Image AI
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JPEGHow do machines 
store images today?

Joint Photographic Experts Group
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there are more possible ways 
to store an image than

stars on the sky

images for AI are seen by

algorithms, not humans

                 10100 >1024
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massive design space of possible image storage schemes 

JPEG costaccuracy
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Pruning strategy #2
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A single block
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Performance models
6048 new designs Accuracy

Latency

Storage
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model
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Generating design spaces for whole systems. 
Reasoning: rules, math and ML to create entirely new designs

Primer: The Periodic Table of Data Structures 
  IEEE Data Eng. Bull. 41(3), 2018 
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