
The Power of Graph Learning
Floris Geerts (University of Antwerp, Belgium)

Graph learning

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

Image: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph level

Vertex level

Subgraph level

Edge/link level

Prediction and classification problems on graphs

Examples
Vertex classification: categorise online user/items,
location amino acids (protein folding, alpha fold)

Link prediction: knowledge graph completion,
recommender systems, drug side effect discovery

Graph classification: molecule property, drug
discovery

Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure
based solely on its amino acid sequence

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Image credit: DeepMind

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

� Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

� Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”

Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Many patients take multiple drugs to treat
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict

adverse side effects

,

Prescribed
drugs

Drug
side effect

30%
prob.

65%
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

� Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Graphs are everywhere!

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph learning methods are thus widely applicable

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Graphs are everywhere!

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph learning methods are thus widely applicable

How is learning typical done?

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

ℝd

…

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

The world of
classical ML

Embeddings

Graph embedding:

Vertex embedding:

-Vertex embedding:

ξ : 𝒢 → 𝕐

ξ : 𝒢 → (𝒱 → 𝕐)

p ξ : 𝒢 → (𝒱p → 𝕐)

𝒢 = all graphs
𝒱 = all vertices
𝕐 = output space

Graph embeddings
Graph embedding:

Graph classification/regression

ξ : 𝒢 → 𝕐

Toxic

Non toxic

ξ(G)

Vertex embeddings
Vertex embedding:

Vertex classification/regression. For example, prediction of subject
of papers.

ξ : 𝒢 → (𝒱 → 𝕐)

paper1 → math
paper2 → computer science

⋮ ⋮ ⋮
papern → biology

→

Images: Cora dataset

ξ(G, v)

p-Vertex embeddings
-Vertex embedding:

For example, 2-vertex embeddings: link prediction

p ξ : 𝒢 → (𝒱p → 𝕐)

(Adam, Eve)
(Trump, Biden)→

ξ(G, v, w)

…

↦
↦

link
no link

What makes graphs special?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

Images: flaticon.com, Noun project

flatten

http://flaticon.com

What makes graphs special?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

permuted adjacency
matrices

0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
2

3
4

5

1
2

3
4

5

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

Images: flaticon.com, Noun project

flatten

http://flaticon.com

What makes graphs special?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

:-(Different representation different result⇒
permuted adjacency

matrices

0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
2

3
4

5

1
2

3
4

5

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

Images: flaticon.com, Noun project

flatten

http://flaticon.com

Invariant embeddings

G ∈ 𝒢

We need embeddings to be graph invariants

Isomorphic inputs should give the same result

Invariant embeddings

G ∈ 𝒢

We need embeddings to be graph invariants

Isomorphic inputs should give the same result

for all G, all isomorphisms π, and v ∈ Vp
G : ξ(G, v) = ξ(π(G), π(v))

ξ : 𝒢 → (𝒱p → 𝕐) : (G, v) ↦ ξ(G, v)-vertex embeddingp is invariant if

Invariance is typically achieved by composing invariant building
blocks to build embeddings

Graph learning: Invariant embeddings

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

The world of
classical ML

Graph learning: Invariant embeddings

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

The world of
classical MLInvariant!

Graph learning: Invariant embeddings

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

The world of
classical MLInvariant!

Hypothesis class ℋ

Graph learning: ERM
Given training set and hypothesis class of invariant embedding
methods

𝒯 ℋ
𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78Graph classification Vertex classification Link prediction

Graph learning: ERM
Given training set and hypothesis class of invariant embedding
methods

Empirical risk minimisation: Find embedding in which
minimises empirical loss on training set :

𝒯 ℋ

ξ ℋ
𝒯

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

Era
 of

Deep
Graph

learning

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN
Simplicial MPNNs

k-GNNs
k-FGNNs

k-LGNNs

SGNs
GatedGCNs

Walk GNNs

Reconstruction GNNs
Ordered subgraph Networks

GNN as Kernel
Nested GNNs

“Deep” hypothesis classes

Hypothesis classes: how do they look like?
(a) Graph RNN (b) Graph ConvNet

Figure 1: Generic feature representation hi of vertex i on a graph RNN (a) and a graph convNet (b).

The iterative scheme is guaranteed to converge as long as the mapping is contractive, which can be
a strong assumption. Besides, a large number of iterations can be computational expensive.

Gated Graph Neural Networks of Li et al. (2016). In this work, the authors use the gated recurrent
units (GRU) of Chung et al. (2014):

hi = fG-GRU (xi, {hj : j ! i}) = CG-GRU(xi,
X

j!i

hj) (4)

As the minimization of Eq. (4) does not have an analytical solution, Li et al. (2016) designed the
following iterative scheme:

ht+1
i = CG-GRU(h

t
i, h̄

t
i), ht=0

i = xi 8i,

where h̄t
i =

X

j!i

ht
j ,

and CG-GRU(ht
i, h̄

t
i) is equal to

zt+1
i = �(Uzh

t
i + Vzh̄

t
i)

rt+1
i = �(Urh

t
i + Vrh̄

t
i)

h̃t+1
i = tanh

�
Uh(h

t
i � rt+1

i) + Vhh̄
t
i

�

ht+1
i = (1� zt+1

i)� ht
i + zt+1

i � h̃t+1
i ,

where � is the Hadamard point-wise multiplication operator. This model was used for NLP tasks
by Li et al. (2016) and also in quantum chemistry by Gilmer et al. (2017) for fast organic molecule
properties estimation, for which standard techniques (DFT) require expensive computational time.

Tree-Structured LSTM of Tai et al. (2015). The authors extended the original LSTM model of
Hochreiter & Schmidhuber (1997) to a tree-graph structure:

hi = fT-LSTM (xi, {hj : j 2 C(i)}) = CT-LSTM(xi, hi,
X

j2C(i)

hj), (5)

3

where ` denotes the layer level, and ReLU is the rectified linear unit. We will refer to this architecture
as the vanilla graph ConvNet. Sukhbaatar et al. (2016) used this graph neural network to learn the
communication between multiple agents to solve multiple tasks like traffic control.

Syntactic Graph Convolutional Networks of Marcheggiani & Titov (2017). The authors pro-
posed the following transfer function:

h`+1
i = f `

S-GCN

�
{h`

j : j ! i}
�

= ReLU

0

@
X

j!i

⌘ij � V `h`
j

1

A (8)

where ⌘ij act as edge gates, and are computed by:

⌘ij = �
�
A`h`

i +B`h`
j

�
. (9)

These gated edges are very similar in spirit to the Tree-LSTM proposed in Tai et al. (2015). We
believe this mechanism to be important for graphs, as they will be able to learn what edges are
important for the graph learning task to be solved.

3 MODELS

Proposed Graph LSTM. First, we propose to extend the Tree-LSTM of Tai et al. (2015) to arbitrary
graphs and multiple layers:

h`+1
i = f `

G-LSTM

�
x`
i , {h`

j : j ! i}
�
= CG-LSTM(x

`
i , h

`
i ,
X

j!i

h`
j , c

`
i) (10)

As there is no recurrent formula is the general case of graphs, we proceed as Scarselli et al. (2009)
and use an iterative process to solve Eq. (10): At layer `, for t = 0, 1, ..., T

h̄`,t
i =

X

j!i

h`,t
j ,

i`,t+1
i = �(U `

i x
`
i + V `

i h̄
`,t
i)

o`,t+1
i = �(U `

ox
`
i + V `

o h̄
`,t
i)

c̃`,t+1
i = tanh

�
U `
cx

`
i + V `

c h̄
`,t
i

�

f `,t+1
ij = �(U `

fx
`
i + V `

f h
`,t
j)

c`,t+1
i = i`,t+1

i � c̃`,t+1
i +

X

j!i

f `,t+1
ij � c`,t+1

j

h`,t+1
i = o`,t+1

i � tanh(c`,t+1
i)

and initial conditions: h`,t=0
i = c`,t=0

i = 0, 8i, `
x`
i = h`�1,T

i , x`=0
i = xi, 8i, `

In other words, the vector h`+1
i is computed by running the model from t = 0, .., T at layer `. It

produces the vector h`,t=T
i which becomes h`+1

i and also the input x`+1
i for the next layer. The

proposed Graph LSTM model differs from Liang et al. (2016); Peng et al. (2017) mostly because
the cell CG-LSTM in these previous models is not iterated over multiple times T , which reduces the
performance of Graph LSTM (see numerical experiments on Figure 4).

Proposed Gated Graph ConvNets. We leverage the vanilla graph ConvNet architecture of
Sukhbaatar et al. (2016), Eq.(7), and the edge gating mechanism of Marcheggiani & Titov (2017),
Eq.(8), by considering the following model:

h`+1
i = f `

G-GCNN

�
h`
i , {h`

j : j ! i}
�

= ReLU

0

@U `h`
i +

X

j!i

⌘ij � V `h`
j

1

A (11)

5

where ` denotes the layer level, and ReLU is the rectified linear unit. We will refer to this architecture
as the vanilla graph ConvNet. Sukhbaatar et al. (2016) used this graph neural network to learn the
communication between multiple agents to solve multiple tasks like traffic control.

Syntactic Graph Convolutional Networks of Marcheggiani & Titov (2017). The authors pro-
posed the following transfer function:

h`+1
i = f `

S-GCN

�
{h`

j : j ! i}
�

= ReLU

0

@
X

j!i

⌘ij � V `h`
j

1

A (8)

where ⌘ij act as edge gates, and are computed by:

⌘ij = �
�
A`h`

i +B`h`
j

�
. (9)

These gated edges are very similar in spirit to the Tree-LSTM proposed in Tai et al. (2015). We
believe this mechanism to be important for graphs, as they will be able to learn what edges are
important for the graph learning task to be solved.

3 MODELS

Proposed Graph LSTM. First, we propose to extend the Tree-LSTM of Tai et al. (2015) to arbitrary
graphs and multiple layers:

h`+1
i = f `

G-LSTM

�
x`
i , {h`

j : j ! i}
�
= CG-LSTM(x

`
i , h

`
i ,
X

j!i

h`
j , c

`
i) (10)

As there is no recurrent formula is the general case of graphs, we proceed as Scarselli et al. (2009)
and use an iterative process to solve Eq. (10): At layer `, for t = 0, 1, ..., T

h̄`,t
i =

X

j!i

h`,t
j ,

i`,t+1
i = �(U `

i x
`
i + V `

i h̄
`,t
i)

o`,t+1
i = �(U `

ox
`
i + V `

o h̄
`,t
i)

c̃`,t+1
i = tanh

�
U `
cx

`
i + V `

c h̄
`,t
i

�

f `,t+1
ij = �(U `

fx
`
i + V `

f h
`,t
j)

c`,t+1
i = i`,t+1

i � c̃`,t+1
i +

X

j!i

f `,t+1
ij � c`,t+1

j

h`,t+1
i = o`,t+1

i � tanh(c`,t+1
i)

and initial conditions: h`,t=0
i = c`,t=0

i = 0, 8i, `
x`
i = h`�1,T

i , x`=0
i = xi, 8i, `

In other words, the vector h`+1
i is computed by running the model from t = 0, .., T at layer `. It

produces the vector h`,t=T
i which becomes h`+1

i and also the input x`+1
i for the next layer. The

proposed Graph LSTM model differs from Liang et al. (2016); Peng et al. (2017) mostly because
the cell CG-LSTM in these previous models is not iterated over multiple times T , which reduces the
performance of Graph LSTM (see numerical experiments on Figure 4).

Proposed Gated Graph ConvNets. We leverage the vanilla graph ConvNet architecture of
Sukhbaatar et al. (2016), Eq.(7), and the edge gating mechanism of Marcheggiani & Titov (2017),
Eq.(8), by considering the following model:

h`+1
i = f `

G-GCNN

�
h`
i , {h`

j : j ! i}
�

= ReLU

0

@U `h`
i +

X

j!i

⌘ij � V `h`
j

1

A (11)

5

Published as a conference paper at ICLR 2019

Here, it is also worth discussing an important benefit of GNNs beyond distinguishing different graphs,
that is, capturing similarity of graph structures. Note that node feature vectors in the WL test are
essentially one-hot encodings and thus cannot capture the similarity between subtrees. In contrast, a
GNN satisfying the criteria in Theorem 3 generalizes the WL test by learning to embed the subtrees
to low-dimensional space. This enables GNNs to not only discriminate different structures, but also to
learn to map similar graph structures to similar embeddings and capture dependencies between graph
structures. Capturing structural similarity of the node labels is shown to be helpful for generalization
particularly when the co-occurrence of subtrees is sparse across different graphs or there are noisy
edges and node features (Yanardag & Vishwanathan, 2015).

4.1 GRAPH ISOMORPHISM NETWORK (GIN)

Having developed conditions for a maximally powerful GNN, we next develop a simple architecture,
Graph Isomorphism Network (GIN), that provably satisfies the conditions in Theorem 3. This model
generalizes the WL test and hence achieves maximum discriminative power among GNNs.

To model injective multiset functions for the neighbor aggregation, we develop a theory of “deep
multisets”, i.e., parameterizing universal multiset functions with neural networks. Our next lemma
states that sum aggregators can represent injective, in fact, universal functions over multisets.
Lemma 5. Assume X is countable. There exists a function f : X ! Rn so that h(X) =

P
x2X f(x)

is unique for each multiset X ⇢ X of bounded size. Moreover, any multiset function g can be
decomposed as g (X) = �

�P
x2X f(x)

�
for some function �.

We prove Lemma 5 in the appendix. The proof extends the setting in (Zaheer et al., 2017) from sets to
multisets. An important distinction between deep multisets and sets is that certain popular injective set
functions, such as the mean aggregator, are not injective multiset functions. With the mechanism for
modeling universal multiset functions in Lemma 5 as a building block, we can conceive aggregation
schemes that can represent universal functions over a node and the multiset of its neighbors, and thus
will satisfy the injectiveness condition (a) in Theorem 3. Our next corollary provides a simple and
concrete formulation among many such aggregation schemes.
Corollary 6. Assume X is countable. There exists a function f : X ! Rn so that for infinitely
many choices of ✏, including all irrational numbers, h(c, X) = (1 + ✏) · f(c) +

P
x2X f(x) is

unique for each pair (c, X), where c 2 X and X ⇢ X is a multiset of bounded size. Moreover, any
function g over such pairs can be decomposed as g (c, X) = '

�
(1 + ✏) · f(c) +

P
x2X f(x)

�
for

some function '.

We can use multi-layer perceptrons (MLPs) to model and learn f and ' in Corollary 6, thanks to
the universal approximation theorem (Hornik et al., 1989; Hornik, 1991). In practice, we model
f (k+1) � '(k) with one MLP, because MLPs can represent the composition of functions. In the first
iteration, we do not need MLPs before summation if input features are one-hot encodings as their
summation alone is injective. We can make ✏ a learnable parameter or a fixed scalar. Then, GIN
updates node representations as

h(k)
v = MLP

(k)

✓⇣
1 + ✏(k)

⌘
· h(k�1)

v +

X
u2N (v)

h(k�1)
u

◆
. (4.1)

Generally, there may exist many other powerful GNNs. GIN is one such example among many
maximally powerful GNNs, while being simple.

4.2 GRAPH-LEVEL READOUT OF GIN

Node embeddings learned by GIN can be directly used for tasks like node classification and link
prediction. For graph classification tasks we propose the following “readout” function that, given
embeddings of individual nodes, produces the embedding of the entire graph.

An important aspect of the graph-level readout is that node representations, corresponding to subtree
structures, get more refined and global as the number of iterations increases. A sufficient number of
iterations is key to achieving good discriminative power. Yet, features from earlier iterations may
sometimes generalize better. To consider all structural information, we use information from all
depths/iterations of the model. We achieve this by an architecture similar to Jumping Knowledge

5

Message Passing Simplicial Networks

The invertibility condition for the aggregation function H
can be relaxed, but is satisfied by many commonly used
graph convolutions: i) For an undirected graph, the nor-
malised adjacency matrix has non-negative eigenvalues. If
the eigenvalues are all positive, the aggregation function
is invertible. ii) The Fourier transform is the square ma-
trix of eigenvectors, as used in the spectral GNN (Bruna
et al., 2014). When the graph Laplacian is non-singular,
the Fourier transform matrix is invertible. iii) For the trans-
form � by graph wavelet basis, Haar wavelet basis or graph
framelets, � is invertible in all cases (Xu et al., 2019a; Li
et al., 2020; Zheng et al., 2020a;b; 2021; Wang et al., 2020).
So the bound in Theorem 15 applies to them.

SCNN Simplicial Complex Neural Networks (SCNNs)
were proposed by Ebli et al. (2020). We consider a version
of their model using only the first power of a Laplacian
matrix, generically denoted here by Mn:

Hout
n =

�
MnH

in
n Wn

�
, n = 0, . . . , p. (9)

In this type of layer, the features on simplices of different
dimensions n = 0, 1 . . . , p are computed in parallel.

Theorem 16 (Number of linear regions for an SCNN layer).
Consider a p-dimensional simplicial complex with Sn n-
simplicies for n = 0, 1, . . . , p. Suppose that each Mn is
invertible. Then the number of linear regions of the functions
represented by a ReLU SCNN layer (9) has the optimal
upper bound

RSCNN =

pY

n=0

2

dn�1X

i=0

✓
mn � 1

i

◆!Sn

, (10)

where, for each of the n-simplices, dn is the input feature
dimension and mn is the number of output features.

The product over n in (10) reflects the fact that the features
over simplices of different dimensions do not interact. The
GNN bound in Theorem 15 is recovered as the special case
of the SCNN bound with p = 0.

It is instructive to compare the SCNN bound in Theorem 16
with the optimal bound for a dense layer. By Roth’s lemma
(Roth, 1934), vec(MnH in

n Wn) = (W>
n ⌦Mn) · vec(H in

n),
where vec denotes column-by-column vectorization and ⌦
the Kronecker product. Hence, for each n, we can regard
the SCNN layer as a standard layer (Ux) with weight
matrix U = (W>

n ⌦ Mn) 2 R(mnSn)⇥(Sndn) and input
vector x = vec(H in

n) 2 RSndn . Notice that for the SCNN
layer, the weight matrix has a specific structure. A stan-
dard dense layer with Sndn inputs and mnSn ReLUs with
generic weights and no biases computes functions with
2
PSndn�1

i=0

�mnSn�1
i

�
regions.

GNN SCNN MPSN

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Regions over 2D slice ofGNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Regions over 2D slice ofSCNN input space, S=3, d=1, m=3, p=2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Regions over 2D slice ofMPSN input space, S=3, d=1, m=3, p=2

Figure 4. A 2D slice of the input feature spaces of GNN, SCNN,
MPSN layers with S0 = S1 = 3, S2 = 1 (the complex is a
triangle), d0 = d1 = d2 = 1, m = 3, colored by linear regions of
the represented functions, for a random choice of the weights.

MPSN In our Message Passing Simplicial Network
(MPSN), the features on simplices of different dimensions
are allowed to interact. For a p-dimensional complex, de-
note the set of n-simplices by Sn with Sn = |Sn|. Denote
the n-simplex input feature dimension by dn, and the output
feature dimension by mn = m, n = 0, . . . , p. We consider
an MPSN layer with linear message functions, sum aggre-
gation for all messages and an update function taking the
sum of the messages followed by a ReLU activation. For
each dimension n, the output feature matrix Hout

n equals:

⇣
MnH

in
n Wn+UnH

in
n�1Wn�1+OnH

in
n+1Wn+1

⌘
, (11)

where is an entry-wise activation (s 7! max{0, s} for
ReLU), Wn 2 Rdn⇥mn are trainable weight matrices and
Mn 2 RSn⇥Sn , Un 2 RSn⇥Sn�1 , and On 2 RSn⇥Sn+1

are some choice of adjacency matrices for the simplicial
complex. These could be the Hodge Laplacian matrix Ln

and the corresponding boundary matrices B>
n , Bn+1, or one

of their variants (e.g. normalised).

It is convenient to write the entire layer output in standard
form. Using Roth’s lemma and concatenating over n we
can write (11) as (details in Appendix B)

Hout
= (WH in

), (12)

where H in
= vec([H in

0 |H in
1 | · · · |H in

p]) 2 RN , N =Pp
n=0 Sndn, Hout

= vec([Hout
0 |Hout

1 | · · · |Hout
p]) 2 RM ,

M =
Pp

n=0 Snm, and

W =

2

64

W>
0 ⌦M0 W>

1 ⌦O0

W>
0 ⌦U1 W>

1 ⌦M1 W>
2 ⌦O1

W>
1 ⌦U2 W>

2 ⌦M2 W>
3 ⌦O2

. . .

3

75 . (13)

We study the number of linear regions of the function (12)
with ReLU based on the matrix W 2 RM⇥N . For each of
the output coordinates i 2 {1, . . . ,M}, the ReLU splits the
input space RN into two regions separated by a hyperplane
{H in 2 RN

: Wi:H in
= 0} with normal W>

i: 2 RN .

In order to count the total number of regions, we will use re-
sults from the theory of hyperplane arrangements. Zaslavsky

the multiset {{(Bj,i2,:,Bi1,j,:) | j 2 [n]}}. As before, we use the multiset representation introduced in
section 4. Consider the matrix X 2 Rn⇥2a defined by

Xj,: = (Bj,i2,:,Bi1,j,:), j 2 [n]. (7)

Our goal is to compute an output tensor W 2 Rn2⇥b, where Wi1,i2,: = u(X).

Consider the multi-index set
�
↵ | ↵ 2 [n]2a, |↵| n

of cardinality b =

�
n+2a�1
2a�1

�
, and write it in

the form {(�l,�l) | �,� 2 [n]a, |�l|+ |�l| n, l 2 b}.

Now define polynomial maps ⌧1, ⌧2 : Ra ! Rb by ⌧1(x) = (x�l | l 2 [b]), and ⌧2(x) = (x�l | l 2
[b]). We apply ⌧1 to the features of B, namely Yi1,i2,l := ⌧1(B)i1,i2,l = (Bi1,i2,:)

�l ; similarly,
Zi1,i2,l := ⌧2(B)i1,i2,l = (Bi1,i2,:)

�l . Now,

Wi1,i2,l := (Z:,:,l · Y:,:,l)i1,i2 =
nX

j=1

Zi1,j,lYj,i2,l =
nX

j=1

B�l
j,i2,:

B�l
i1,j,:

=
nX

j=1

(Bj,i2,:,Bi1,j,:)
(�l,�l),

hence Wi1,i2,: = u(X), where X is defined in Equation 7. To get an implementation with the model
in Equation 6 we need to replace ⌧1, ⌧2 with MLPs. We use the universal approximation theorem to
that end (details are in the supplementary material).

To conclude, each update step of the 2-FWL algorithm is implemented in the form of a block Bi

applying m1,m2 to the input tensor B, followed by matrix multiplication of matching features,
W = m1(B) ·m2(B). Since Equation 4 requires pairing the multiset with the input color of each
k-tuple, we take m3 to be identity and get (B,W) as the block output.

Generalization to k-FWL. One possible extension is to add a generalized matrix multiplica-
tion to k-order networks to make them as expressive as k-FWL and hence (k + 1)-WL. Gener-
alized matrix multiplication is defined as follows. Given A1, . . . ,Ak 2 Rnk

, then (�k
i=1Ai)i =Pn

j=1 A1
j,i2,...,ikA2

i1,j,...,ik · · ·A
k
i1,...,ik�1,j .

Relation to (Morris et al., 2018). Our model offers two benefits over the 1-2-3-GNN suggested in
the work of Morris et al. (2018), a recently suggested GNN that also surpasses the expressiveness of
message passing networks. First, it has lower space complexity (see details below). This allows us to
work with a provably 3-WL expressive model while Morris et al. (2018) resorted to a local 3-GNN
version, hindering their 3-WL expressive power. Second, from a practical point of view our model is
arguably simpler to implement as it only consists of fully connected layers and matrix multiplication
(without having to account for all subsets of size 3).

Complexity analysis of a single block. Assuming a graph with n nodes, dense edge data and
a constant feature depth, the layer proposed in Morris et al. (2018) has O(n3) space complexity
(number of subsets) and O(n4) time complexity (O(n3) subsets with O(n) neighbors each). Our
layer (block), however, has O(n2) space complexity as only second order tensors are stored (i.e.,
linear in the size of the graph data), and time complexity of O(n3) due to the matrix multiplication.
We note that the time complexity of Morris et al. (2018) can probably be improved to O(n3) while our
time complexity can be improved to O(n2.x) due to more advanced matrix multiplication algorithms.

7 Experiments

Implementation details. We implemented the GNN model as described in Section 6 (see Equa-
tion 6) using the TensorFlow framework (Abadi et al., 2016). We used three identical blocks
B1, B2, B3, where in each block Bi : Rn2⇥a ! Rn2⇥b we took m3(x) = x to be the identity (i.e.,
m3 acts as a skip connection, similar to its role in the proof of Theorem 2); m1,m2 : Ra ! Rb are
chosen as d layer MLP with hidden layers of b features. After each block Bi we also added a single
layer MLP m4 : Rb+a ! Rb. Note that although this fourth MLP is not described in the model
in Section 6 it clearly does not decrease (nor increase) the theoretical expressiveness of the model;
we found it efficient for coding as it reduces the parameters of the model. For the first block, B1,
a = e+ 1, where for the other blocks b = a. The MLPs are implemented with 1⇥ 1 convolutions.

7

Neural Message Passing for Quantum Chemistry

time steps and is defined in terms of message functions Mt

and vertex update functions Ut. During the message pass-
ing phase, hidden states ht

v at each node in the graph are
updated based on messages mt+1

v according to

mt+1
v =

X

w2N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v, m

t+1
v) (2)

where in the sum, N(v) denotes the neighbors of v in graph
G. The readout phase computes a feature vector for the
whole graph using some readout function R according to

ŷ = R({hT
v | v 2 G}). (3)

The message functions Mt, vertex update functions Ut, and
readout function R are all learned differentiable functions.
R operates on the set of node states and must be invariant to
permutations of the node states in order for the MPNN to be
invariant to graph isomorphism. In what follows, we define
previous models in the literature by specifying the message
function Mt, vertex update function Ut, and readout func-
tion R used. Note one could also learn edge features in
an MPNN by introducing hidden states for all edges in the
graph ht

evw
and updating them analogously to equations 1

and 2. Of the existing MPNNs, only Kearnes et al. (2016)
has used this idea.

Convolutional Networks for Learning Molecular Fin-
gerprints, Duvenaud et al. (2015)

The message function used is M(hv, hw, evw) =
(hw, evw) where (., .) denotes concatenation. The vertex
update function used is Ut(ht

v, m
t+1
v) = �(Hdeg(v)

t mt+1
v),

where � is the sigmoid function, deg(v) is the degree of
vertex v and HN

t is a learned matrix for each time step t
and vertex degree N . R has skip connections to all previous

hidden states ht
v and is equal to f

P
v,t

softmax(Wtht
v)

!
,

where f is a neural network and Wt are learned readout
matrices, one for each time step t. This message pass-
ing scheme may be problematic since the resulting mes-
sage vector is mt+1

v = (
P

ht
w,
P

evw) , which separately
sums over connected nodes and connected edges. It fol-
lows that the message passing implemented in Duvenaud
et al. (2015) is unable to identify correlations between edge
states and node states.

Gated Graph Neural Networks (GG-NN), Li et al.
(2016)

The message function used is Mt(ht
v, h

t
w, evw) = Aevwht

w,
where Aevw is a learned matrix, one for each edge label e
(the model assumes discrete edge types). The update func-
tion is Ut = GRU(ht

v, m
t+1
v), where GRU is the Gated

Recurrent Unit introduced in Cho et al. (2014). This work
used weight tying, so the same update function is used at
each time step t. Finally,

R =
X

v2V

�
⇣
i(h(T)

v , h0
v)
⌘

�

⇣
j(h(T)

v)
⌘

(4)

where i and j are neural networks, and � denotes element-
wise multiplication.

Interaction Networks, Battaglia et al. (2016)

This work considered both the case where there is a tar-
get at each node in the graph, and where there is a graph
level target. It also considered the case where there are
node level effects applied at each time step, in such a
case the update function takes as input the concatenation
(hv, xv, mv) where xv is an external vector representing
some outside influence on the vertex v. The message func-
tion M(hv, hw, evw) is a neural network which takes the
concatenation (hv, hw, evw). The vertex update function
U(hv, xv, mv) is a neural network which takes as input
the concatenation (hv, xv, mv). Finally, in the case where
there is a graph level output, R = f(

P
v2G

hT
v) where f is

a neural network which takes the sum of the final hidden
states hT

v . Note the original work only defined the model
for T = 1.

Molecular Graph Convolutions, Kearnes et al. (2016)

This work deviates slightly from other MPNNs in
that it introduces edge representations etvw which
are updated during the message passing phase.
The message function used for node messages is
M(ht

v, h
t
w, etvw) = etvw. The vertex update function

is Ut(ht
v, m

t+1
v) = ↵(W1(↵(W0ht

v), m
t+1
v)) where

(., .) denotes concatenation, ↵ is the ReLU activation
and W1, W0 are learned weight matrices. The edge
state update is defined by et+1

vw = U 0
t(e

t
vw, ht

v, h
t
w) =

↵(W4(↵(W2, etvw), ↵(W3(ht
v, h

t
w)))) where the Wi are

also learned weight matrices.

Deep Tensor Neural Networks, Schütt et al. (2017)

The message from w to v is computed by

Mt = tanh
�
W fc((W cfht

w + b1) � (W dfevw + b2))
�

where W fc, W cf , W df are matrices and b1, b2 are bias
vectors. The update function used is Ut(ht

v, m
t+1
v) =

ht
v + mt+1

v . The readout function passes each node inde-
pendently through a single hidden layer neural network and
sums the outputs, in particular

R =
X

v

NN(hT
v).

Laplacian Based Methods, Bruna et al. (2013); Deffer-
rard et al. (2016); Kipf & Welling (2016)

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

What
kind of

language?

Expressive
power?

Graph Embedding Language

Graph Embedding Language (GEL)

Most methods are specified in terms of linear algebra computations
interleaved with non-linear function applications

Crucial component is multiplication with adjacency matrix which
corresponds to neighbourhood aggregation

Desired language needs function application and aggregation

Graph Neural Networks 101
Non-linear activation function (ReLU, sign, sigmoid, …)

 denotes embedding of vertices in graph G

Weight matrices and and bias vector

σ

F(t)
G ∈ ℝn×d

W(t)
1 ∈ ℝd×d W(t)

2 ∈ ℝd×d b ∈ ℝ1×d

F(t)
G := σ (F(t−1)

G W(t)
1 + AGF(t−1)

G W(t)
2 + B(t))

Initial hot-one embedding of vertex labels

Aggregation over
neighbours

Matrix form

F(0)
G

0.1 31 8 4.03
5 0.03 9.7 −1

−3 118 −63 0.204

v1v2v3

Adjacency matrix

∈ ℝn×d

GNN 101: Graph embedding
Weight matrix and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

Aggregation over all
vertices

FG := σ ∑
v∈VG

F(L)
G W + b ∈ ℝ1×d

Hypothesis class consists of parametrised by weights
and biases

Empirical Risk Minimisation: Find best parameters

ℋ ξΘ : G ↦ FG
Θ = W(1)

1 , …, W(L)
1 , W(1)

2 . …, W((L)
2 , W, b(1), …, b(L), b

Θ

Graph Embedding Language (GEL)

ξφ : 𝒢 → (𝒱ℓ → ℝd)

 of dimension and free variables φ(x) d x = {x1, …, xℓ}

GEL expression

Higher order embedding

Syntax

Semantics

A simplified version of a query languages with aggregates studied in database
theory and it resembles Datalog∘

Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)
Abo Khamis, Ngo, Pichler, Suciu, Wang: Convergence of Datalog over (Pre-) Semiring.. (2022)
G. and Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

ξφ(G, xi/v, xj /w) := {1 (v, w) ∈ EG

0 otherwise

ξφ(G, xi/v) := j th feature of v

ξφ(G, xi/v, xj /w) := {1 v = w
0 otherwise

SemanticsAtomic expressions

Label: of dim 1 and free var

Edge: of dim1, free vars

Equality: of dim 1, free vars

xi

xi, xj

xi, xj

φ(xi, xj) := E(xi, xj)

φ(xi) := Labj(xi)

φ(xi, xj) := 1[xi = xj]

Atomic GEL expressions
Assigning vertex to v xi

Let be GEL expressions of dim and free vars
Let be a function. Then,

is a GEL expression of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application

Let be GEL expressions of dim and free vars
Let be a function. Then,

is a GEL expression of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application

Semantics

ξφ(G, x/v) := F(ξφ1
(G, x1/v1), …, ξφℓ

(G, xℓ/vℓ)) Linear algebra
Activation functions

Anything you want…
∈ ℝd

∈ ∈
ℝd1 ℝdℓ

Let and be GEL expressions of dim and and free vars Let
be a function mapping bags of vectors in to a vector in . Then,

 is a GEL expression of dim and free vars

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

, w ∈ V|y|
G

Let and be GEL expressions of dim and and free vars Let
be a function mapping bags of vectors in to a vector in . Then,

 is a GEL expression of dim and free vars

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

, w ∈ V|y|
G

guard
ξφ2

(G, x/v, y/w) ≠ 0

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute?

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute? 6 x Triangle count

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute? 6 x Triangle count

Let us see a more elaborate example

Message Passing Neural Networks
We define
Then for , we get

φ(0)(x1) := 1[x1 = x1]
t > 0

φ(t)(x1) := 𝖴𝗉𝖽(t)(φ(t−1)(x1), 𝖺𝗀𝗀Θ(t)

x2
[φ(t−1)(x2) |E(x1, x2)])

For readout layer, we get

φ := 𝖺𝗀𝗀Θ
x1

[φ(L)(x1) |1[x1 = x1]])

Gilmer, Schoenholz, Riley, Vinyals, Dahl.: Neural message passing for quantum chemistry. (2017)

edge guarded aggregation

This encompasses the GNNs 101

dummy guard

MPNNs including readout phase fit in GEL2(Ω, Θ)

Fragments of GEL
GEL : k variable fragment of GEL with functions in and
aggregations in

GGEL : 2 variable fragment GEL with edge guarded
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)
φ(x) = 𝖺𝗀𝗀Θ

y [φ1 ∣ E(x, y)]

MPNNs without readout phase fit in GGEL(Ω, Θ)

Fragments of GEL
GEL : k variable fragment of GEL with functions in and
aggregations in

GGEL : 2 variable fragment GEL with edge guarded
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

Most hypothesis classes
 fit in one of those fragments! GGEL2

GEL2

GEL3

GELk

Graph Convolutional Networks
Use as propagation matrix

 with

Hence, and we can use

 as the “adjacency” matrix in
in the MPNN expressions we have seen before.

D−1/2(I + A)D−1/2

φ(x1) := F(𝖺𝗀𝗀𝗌𝗎𝗆
x2

[1[x2 = x2] |E(x1, x)]) F : ℝ → ℝ : x ↦
1

1 + x

ξϕ(G, v) =
1

1 + degG(v)

ψ(x1, x2) := φ(x1)(1[x1 = x2] + E(x1, x2))φ(x2)

GCN GGEL∈ 2(Ω, Θ)
GCN: Kipf and Welling: Semi-supervised classification with graph convolutional networks (2017)

Simplified GCNs

Uses path information in a single layer.

For and for initial feature:

ApF(0)

p = 3 φ(0)(x1)

ψ(x1) := 𝖺𝗀𝗀𝗌𝗎𝗆
x2 [𝖺𝗀𝗀𝗌𝗎𝗆

x1 [𝖺𝗀𝗀𝗌𝗎𝗆
x2

[φ(0)(x2) |E(x1, x2)] |E(x2, x1)] |E(x1, x2)]

Wu et al. :Simplifying Graph Convolutional Networks (2019)

SGNs GGEL∈ 2(Ω, Θ)

-vertex embeddingk

k-GNNs

ξ(t)(x1, …, xk) := σ(ξ(t−1)(x1, …, xk)W(t)
1 + (

k

∑
i=1

𝖺𝗀𝗀𝗌𝗎𝗆
y [ξ(t)(x1, …, xi−1, y, xi+1, …, xk)])W(t)

2)

Morris et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

Global aggregation

Weight matrixWeight matrixActivation
Function

k-GNNs GEL∈ k+1(Ω, Θ)

k-Folklore GNNs (k-FGNs)

ξ(t)(x1, …, xk) := 𝖬𝖫𝖯(t)
1 (𝖺𝗀𝗀𝗌𝗎𝗆

y [
k

∏
i=1

𝖬𝖫𝖯(t)
2 (ξ(t−1)(x1, …, xi−1, y, xi+1, …, xk)]))

Global aggregation-vertex embeddingk

Maron et al.: Provably powerful graph networks (2019)
W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph neural networks (2021)

k-FGNs GEL∈ k(Ω, Θ)

Subgraph count GNNs
Use count of subgraphs to augment MPNNs

homomorphism count for rooted motif ,

subgraph iso count for rooted motif

If motif has tree width k then can be computed using k+1 variables.

For example, can be expressed as

𝗁𝗈𝗆(Pr, Gv) P

𝗌𝗎𝖻(Pr, Gv) P

𝗁𝗈𝗆(Pr, Gv)

(G, v) ↦ 𝗁𝗈𝗆(,Gv)
φ(x1) := 𝖺𝗀𝗀𝗌𝗎𝗆

x2
𝖺𝗀𝗀𝗌𝗎𝗆

x3
[E(x1, x2)E(x1, x3)E(x2, x3)(1[x1 = x1] − 1[x1 = x2])

(1[x1 = x1] − 1[x1 = x3])(1[x1 = x1] − 1[x2 = x3])]

Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)
Barceló et al.: Graph neural networks with local graph parameters. (2021)

Tree width k GEL↦ k+1(Ω, Θ)

Subgraph GNNs: vertices

MPNN
Pool/aggregate

 φ(0)(x1, x2) := 1[x1 = x2]
φ(t)(x1, x2) := 𝖴𝗉𝖽(t)(φ(t−1)(x1, x2), 𝖺𝗀𝗀Θ

x3
[φ(t−1)(x1, x3) |E(x2, x3])

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

3 variables GEL↦ 3(Ω, Θ)

MPNN MPNN MPNN MPNN MPNN

Subgraph GNNs: edges

MPNN
Pool/aggregate

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

MPNN MPNN MPNN MPNN MPNN

φ(t)(x1, x2, x3) := 𝖴𝗉𝖽(t)(φ(t−1)(x1, x2, x3), 𝖺𝗀𝗀Θ
x4

[φ(t−1)(x1, x2, x4) |E(x3, x4])

4 variables GEL↦ 4(Ω, Θ)

Takeaway message #1:
Classification in terms of number of variables

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

GGEL2

GEL2

GEL3

GELk

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

Which
language?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

GEL
GGEL

k

2

Which
language?

Expressive power

Distinguishing power
Which inputs can be separated/distinguished by embeddings in ?

 Captured by the following equivalence relation on :

ℋ

𝒢 × 𝒱p

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

Distinguishing power
Which inputs can be separated/distinguished by embeddings in ?

 Captured by the following equivalence relation on :

ℋ

𝒢 × 𝒱p

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

Strongest power: powerful enough to detect non-isomorphic
graphs: only contains isomorphic pairs

Weakest power: cannot differentiate any two graphs:
contains all pairs of graphs.

ℋ
ρ(ℋ)

ℋ ρ(ℋ)

Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

methods is more powerful than methods
 methods is bounded by methods in power

1 2

2 1

ρ(methods1) = ρ(methods2)

Both methods are as powerful

Allows for comparing different classes of embeddings methods

Allows for comparing embedding methods with algorithms, logic, …
on graphs

Expressive power in ML community

Focus has been on characterising the distinguishing power of classes
of embedding methods.

Hopefully, characterisations of shed light on what graph properties
a learning method in can detect/use.

ℋ

ρ(ℋ)
ℋ

Logic
First-order logic with k variables and counting quantifiers ().Ck

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))
unary label predicatebinary edge predicate

Given graph , vertex satisfies :G v ∈ VG φ It has at most 5 neighbours
each with at least two neighbours labeled “a”

k=2

Guarded fragment of

 only existential quantification for the form

𝖦𝖢2 𝖢2

∃≥ny(E(x, y) ∧ φ(y))

Logic
We can consider and

The distinguishing power of these logics is well understood

ρ(𝖢k) ρ(𝖦𝖢2)

ρ(𝖢k) := {(G, v, H, w) ∣ ∀φ ∈ 𝖢k : (G, v) ⊧ φ ⟺ (H, w) ⊧ φ)}

ρ(C2)

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Cannot distinguish d-regular graphs

Cannot count cycles (triangles)

Only tree information

Arvind et al.: On the power of color refinement (2015)
Images: Wolfram MathWorld, Christopher Morris

3-regular graphs

Expressive power of GEL: Main result

ρ(GELk(Ω, Θ)) = ρ(𝖢k)
Theorem (G. and Reutter 2022)

ρ(GGEL(Ω, Θ)) = ρ(GC2)
Theorem (Xu et al. 2019, Morris et al. 2019, G. and Reutter 2022)

Lower bounds: contains linear combinations, concatenation, product (or
activation functions) and contains summation

Ω
Θ

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019
Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)
Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)
M. Grohe: The logic of graph neural networks. (2021)

The following results follow from standard analysis of aggregate query
languages: all real number arithmetic can be eliminated.

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

G H

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

NO!

G H

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

NO!

G H

G and H are known to be
indistinguishable by 𝖢2

⇒ (G, H) ∈ ρ(𝖢2) = ρ(GNN101)

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

YES!

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

YES!

P satisfies but NP does not ∃=1x∃=1y E(x, y)

⇒

(P, NP) ∉ ρ(𝖢2) ⇒ (P, NP) ∉ ρ(GNN101)

single degree one node

Consequences
If embedding method M can be cast in GEL then

If embedding method M can also encode formulas in then

k(Ω, Θ) ρ(𝖢k) ⊆ ρ(M)

𝖢k ρ(𝖢k) ⊇ ρ(M)

ℋ

2-IGN

Graphormer

PPGN

CWN

ChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

GGEL
GEL2

GEL3

GELk

What else can we say?
ρ(MPNNs) = ρ(𝖢2)

What else can we say?
ρ(MPNNs) = ρ(𝖢2)

Other - more insightful - characterisations?

What else can we say?
ρ(MPNNs) = ρ(𝖢2)

Other - more insightful - characterisations?

homomorphism counts

Homomorphisms
Let and be graphs.

A function is a homomorphism if it is edge preserving
 and label preserving.

P = (VP, EP, LP) G = (VG, EG, LG)

h : VP → VG
(v, w) ∈ Ep ⇒ (h(v), h(w)) ∈ EG

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4 2#edges=10

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4 2#edges=10 70 = 2 ⋅ 23 + 2 ⋅ 33

Graph isomorphisms and homomorphisms

Two graph and are isomorphic if and only if

for all graphs

G H
𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

P

Theorem (Lovász 1967)

Graph isomorphisms and homomorphisms

Two graph and are isomorphic if and only if

for all graphs

G H
𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

P

Theorem (Lovász 1967)

Homomorphism count information is very insightful and a
complete invariant.

Graph isomorphisms and homomorphisms

Two graph and are isomorphic if and only if

for all graphs

G H
𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

P

Theorem (Lovász 1967)

Homomorphism count information is very insightful and a
complete invariant.

What if we do not consider all graphs ?P

Homomorphism count vectors

We can consider for a set of graphs : ρ(𝒫) 𝒫

ρ(𝒫) := {(G, H) ∣ ∀P ∈ 𝒫 : 𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)}

Two graph and are isomorphic if and only if
 for the set of all graphs.

G H
(G, H) ∈ ρ(𝒫) 𝒫

Theorem (Lovász 1967)

if and only if

 for all trees
if and only if

 for the set of all trees.

(G, H) ∈ ρ(𝖢2)

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

(G, H) ∈ ρ(𝒯) 𝒯

Beautiful characterisations
Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)
Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

Important class of
MPNNs can only detect
tree-based information

if and only if

 for all trees
if and only if

 for the set of all trees.

(G, H) ∈ ρ(𝖢2)

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

(G, H) ∈ ρ(𝒯) 𝒯

Beautiful characterisations
Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)
Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

Important class of
MPNNs can only detect
tree-based information

All embedding methods in GEL can only distinguish graphs based on tree
information!

2(Ω, Θ)

Beautiful characterisations

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)

if and only if

 for all graphs P of treewidth k
if and only if

 for the set of all graphs of tree width k

(G, H) ∈ ρ(𝖢k+1)

𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

(G, H) ∈ ρ(𝒯k) 𝒯k

Theorem (Dell et al. 2019, Dvorák 2010)

Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

Beautiful characterisations

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)

if and only if

 for all graphs P of treewidth k
if and only if

 for the set of all graphs of tree width k

(G, H) ∈ ρ(𝖢k+1)

𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

(G, H) ∈ ρ(𝒯k) 𝒯k

Theorem (Dell et al. 2019, Dvorák 2010)

Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

All embedding methods in GEL can only distinguish graphs
 based on treewidth pattern information!

k(Ω, Θ)
k − 1

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k-tree

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k-tree

k=2

Trees=Treewidth 1

More connections

To combinatorial graph algorithms color refinement and higher-
dimensional Weisfeiler-Leman graph isomorphism tests.

To linear algebraic congruences between adjacency matrices and
systems of equations.

To distance measures on graphs and metric equivalences.

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)
Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

Takeaway message #2:
Classification in terms of logic, homomorphism counts, …

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

GGEL2

GEL2

GEL3

GELk

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

ℋ

ℋ

Approximation properties
Equip the set of graphs with a topology and assume that
consists of continuous graph embeddings from to .

Let be a compact set of graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Approximation properties
Equip the set of graphs with a topology and assume that
consists of continuous graph embeddings from to .

Let be a compact set of graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

 If is closed under linear combinations and
product, then can approximate any continuous

function satisfying

ℋ
ℋ

Ξ : 𝒞 → ℝ
ρ(ℋ) ⊆ ρ({Ξ}) .

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Can be generalised to embeddings with output space ℝd

Stone-Weierstrass

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

MPNNs: Approximation
On compact set of graphs, MPNNs can approximate any continuous graph
embedding satisfying Ξ : 𝒞 → ℝ ρ(𝖢2) ⊆ ρ({Ξ})

Theorem

Intricate relation between distinguishing power and approximation properties

G H
(G, H) ∈ ρ(MPNN) ⇒

Cannot approximate graph
functions based on
- connected components
- 3-cliques
-

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

What is the VC dimension of ?

ℋ

ℋ

ℋ

VC dimension
A set of graphs can be shattered by if for any boolean
vector , there is a such that for all

We define the VC dimension of on as

G1, …, Gs ℋ
τ ∈ {0,1}s ξτ ∈ ℋ ξτ(Gi) = τi i = 1,…, s

ℋ 𝒢′ ⊆ 𝒢

for some hypothesis classes also equality holds.

𝖵𝖢𝒢′
(ℋ) ≤ |𝒢′ /ρ(ℋ) |

Theorem (Morris et al. 2023)

Morris, G.,Tönshoff, Grohe; WL meet VC (2023).

𝖵𝖢𝒢′
(ℋ) := max{s ∣ ∃G1, …, Gs in 𝒢′ which can be shattered by ℋ}

Equivalence classes induced by ρ(ℋ)

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

What is the VC dimension of ?

Which embeddings can be expressed by embeddings in ?

ℋ

ℋ

ℋ

ℋ

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)
I am blue and there exist

 a red vertex somewhere… component1

component2

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

Cannot be reached by neighborhood aggregation

I am blue and there exist
 a red vertex somewhere… component1

component2

Which unary formulas can MPNNs express?C2

Let be a unary formula. Then, is equivalent to a
 formula if and only if is expressible by the class of

MPNNs.

φ(x) C2 φ(x)
𝖦𝖢2 φ(x)

Theorem (Barceló et al. 2020)

∃ξ ∈ MPNN : ∀G ∈ 𝒢, ∀v ∈ VG : (G, v) ⊧ φ ⇔ ξ(G, v) = 1

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of graph neural networks (2020)
Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The Expressive Power of Graph Neural Networks as a Query Language. (2020)

MPNNs+

Every unary formula is expressible by the class of MPNNs+C2 φ(x)
Theorem (Barceló et al. 2020)

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of graph neural networks (2020)
Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The Expressive Power of Graph Neural Networks as a Query Language. (2020)

Allow for aggregation over all vertices not only edge-guarded

Of course, there are queries beyond which MPNNs can express𝖢2

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

Situates queries expressible by GNNs in (non-uniform) TC0

Boolean functions computable by non-uniform
polynomial-size bounded-depth family of circuits

with threshold gates

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

Situates queries expressible by GNNs in (non-uniform) TC0

Boolean functions computable by non-uniform
polynomial-size bounded-depth family of circuits

with threshold gates

Converse holds, with random
vertex features.

Takeaway message #3:
Classification along different dimensions of expressibility,

not only distinguishabilty

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

GGEL2

GEL2

GEL3

GELk

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

Distinguishability,
approximation, generalisation,

uniform and non-uniform
expressiveness

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

GEL

Distinguishability,
approximation, generalisation,

uniform and non-uniform
expressiveness

Conclusion

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Subgraph GNNs
Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Subgraph GNNs
Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Running graph learning
method on many views, then

aggregate. Analysis of expressive
power

Todos
Number of variables depends on GEL skills, are there better notions?

Specialized homomorphism count characterizations, more fine
grained than logic?

Analysis does not always explain experiments. Is a more fine grained
analysis possible, perhaps taking learning process into account?

Relational embedding methods.

Recurrent GNNs are closely related to fixpoint computations.
Relationship to query languages with recursion?

Recipe for upper bounding architectures

1. Take you GNN architecture and write it in
GEL, but using a minimal number of variables of
variables.

2.Call this number of variables k.

3.Then the power of your architecture is bounded
by 𝖢k

